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Abstract

A recently developed analytical method for systematic improvement of the convergence of path integrals is used to
generalization of Euler’s summation formula for path integrals. The firstp terms in this formula improve convergence of pa
integrals to the continuum limit from 1/N to 1/Np, whereN is the coarseness of the discretization. Monte Carlo simulat
performed on several different models show that the analytically derived speedup holds.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Feynman’s path integrals[1,2] represent a compac
and rich formalism for dealing with quantum theorie
They have proved to be powerful tools for inves
gating symmetries, deriving non-perturbative resu
delineating connections between different theories
different sectors of theories. Their flexibility and int
itive appeal have allowed us to generalize quantiza
to ever more complicated systems and have led
rich cross fertilization of ideas between high ene
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and condensed matter physics[3,4]. Today, they are
used both analytically and numerically[5–9] in many
other areas of physics, in chemistry and materials
ence, as well as in quantitative finance[10].

Unfortunately we still have very little knowledge o
the precise mathematical properties of path integr
As a result only an extremely limited number of pa
integrals can be solved exactly. Although the fu
tional formalism has been instrumental for derivi
many general approximation techniques, along wi
host of model-specific approximations, there rem
many models of interest that need to be treated num
ically (e.g., using Monte Carlo simulations).

Numerical integrations of path integrals have, ho
ever, proven to be notoriously demanding of comp
ing time. For this reason several research groups h
.
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worked at improving the convergence of path in
grals. Until recently the best available result for p
tition functions of a genericN -fold discretized theory
led to a 1/N4 convergence[11–13]. A new systematic
analysis of the relation of discretizations of differe
coarseness[14,15] has made it possible to drama
cally improve convergence for general transition a
plitudes, not just partition functions. A result of th
investigation has been a procedure for constructin
series of effective actionsS(p) having the same contin
uum limit as the starting actionS, but which approach
that limit as 1/Np. Explicit expressions for these e
fective actions have so far been constructed forp � 9
[15,16]. In the current Letter we will build on thi
derivation (and simplify it to some extent) and w
cast the new analytical input in the form of a gener
ized Euler summation formula for path integrals. It
our belief that the existence of such a general form
strongly hints at the possibility of (currently unsee
simplifications that might make it possible to set
a rigorous theory of path integration. In Section2 we
present a simple derivation of Euler’s summation f
mula for ordinary integrals as a useful guide to
generalization to path integrals that is given in S
tions3 and 4.

2. Euler summation formula for ordinary
integrals

The current status of the development of the p
integral formalism is quite similar to that of ordina
integrals before the setting up of integration theory
Riemmann. In those days integrals were calculated
rectly from the defining formula, i.e., one looked a
specific discretization of the integral (Darboux sum
attempted to do the sum explicitly, and finally tried
calculate the continuum limit. For example,

I [f ] ≡
T∫

0

f (t) dt = lim
N→∞ IN [f ], where

(1)IN [f ] =
N∑

n=1

f (tn)εN ,

εN = T/N and tn = nεN . It goes without saying tha
done this way, even the simplest ordinary integrals p
sented a challenge. The mathematicians of the 1
century did not have computers at their disposal or
development of integration theory might have co
much later, i.e., they might have succumbed to do
brute force numerical calculations of integrals of
but the simplest functions. The problem with these
pothetical numerical calculations would have been
fold: they would have been inefficient (the discretiz
sums converge slowly to the continuum value), a
they would have worked (thus quite probably slowi
down the further development of integration theor
Luckily, this early numerical road was not open. T
last great step in the development of integration be
Riemmann was made by Euler.

Discretization is not unique. This makes it possi
to changef (t) to some other function (adding term
proportional toεN , ε2

N , etc.) without changing the in
tegral. Let us assume thatf ∗(t) is such an equivalen
function with the added property that the sumsIN [f ∗]
do not depend onN . In fact we shall present a way o
explicitly constructingf ∗(t) for any givenf (t). We
first look at the simple case off (t) = 1. Now

(2)IN [1] =
N∑

n=1

εN = T ,

which is alreadyN -independent. Hence, in this cas
all the additional terms vanish. Note thatf ∗(t) is com-
pletely determined by the original functionf (t) (and
by εN ), so that the additional terms necessarily dep
only on the derivativesf ′, f ′′, etc.

The second step is to takef (t) = t . In this case we
get

(3)IN [t] =
N∑

n=1

tnεN = N(N + 1)

2

T 2

N2
= T 2

2
+ T 2

2N
.

From this it follows thatIN [t − εN

2 ] = T 2

2 . Therefore,
up tof ′′ and higher derivatives off that all vanish for
linearf (t), we havef ∗(t) = f (t) − εN

2 f ′(t).
We continue this procedure by looking atf (t) = t2.

In this case we find

IN

[
t2] =

N∑
n=1

t2
nεN = N(N + 1)(2N + 1)

6

T 3

N3

(4)= T 3

3
+ T 3

2N
+ T 3

6N2
.
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It follows thatIN [t2 − εN tn − 2
3ε2

N ] = T 3

3 . In terms of

f ∗ this givesf ∗(t) = f (t) − εN

2 f ′(t) − 2ε2
N

3 f ′′(t) +
· · ·. The additional terms now depend on higher po
ers ofεN as well as on higher derivatives and are
termined by consideringIN [t3], and so on. In this way
we have constructed a procedure for findingf ∗(t) for
any givenf (t). Remembering thatIN [f ∗] does not
depend onN we find

T∫
0

f (t) dt =
N∑

n=1

f (tn)εN − εN

2

N∑
n=1

f ′(tn)εN

(5)− 2ε2
N

3

N∑
n=1

f ′′(tn)εN + · · · .

This is the well-known Euler summation formula. W
may also write it more compactly as

(6)I [f ] = IN

[
f (p)

] + O
(
ε
p
N

)
,

wheref (p) is the truncation off ∗ to the firstp terms.
The Euler formula gives the analytical relation b
tween integrals and their discretized sums. Loo
at numerically, this formula allows us to increase
speed of convergence of discretized expressions to
continuum limit. For example, in the defining rel
tion the discretized expressions differ from the con
uum by a term of orderO(1/N). By using the Euler
sum formula withp terms we can reduce that err
to O(1/Np). All that is needed to do this is that th
integrand is differentiablep − 1 times. the following
sections we will generalize the above approach to p
integrals.

3. General properties of path integrals

In the functional formalism the quantum mecha

ical amplitudeA(a,b;T ) = 〈b|e−T Ĥ |a〉 is given in
terms of a path integral which is simply theN → ∞
limit of the (N − 1)-fold integral expression

(7)

AN(a, b;T ) =
(

1

2πεN

)N/2 ∫
dq1 · · ·dqN−1e

−SN .

The Euclidean time interval[0, T ] has been subdi
vided intoN equal time steps of lengthεN = T/N ,
with q = a andq = b. S is the naively discretized
0 N N
action of the theory. We focus on actions of the form

(8)S =
T∫

0

dt

(
1

2
q̇2 + V (q)

)
,

whose naive discretization is simply

(9)SN =
N−1∑
n=0

(
δ2
n

2εN

+ εNVn

)
,

where δn = qn+1 − qn, Vn = V (q̄n), and q̄n = 1
2 ×

(qn+1+qn). We use units in which̄h and particle mas
equal 1.

As was the case with ordinary integrals the d
inition of the path integrals also makes it necess
to make the transition from the continuum to the d
cretized theory, a process that is far from unique.
theories described by Eq.(8) we have the freedom t
choose any point in[qn, qn+1] in which to evaluate the
potential without changing physics – the discretiz
amplitudes do differ, but they tend to the same c
tinuum limit. The calculations we present turn out
be simplest in the mid-point prescription where t
potentialV is evaluated at̄qn. A more important free-
dom related to our choice of discretized action ha
do with the possibility of introducing additional term
that explicitly vanish in the continuum limit. Action
with such additional terms will be called effectiv
For example, the term

∑N−1
n=0 εNδ2

ng(q̄n), whereg is
regular whenεN → 0, does not change the conti
uum physics since it goes over intoε2

N

∫ T

0 dt q̇2g(q),
i.e., it vanishes asε2

N . Such terms do not change th
physics, but they do affect the speed of converge
A systematic study of the relation between differe
discretizations of the same path integral will allo
us to explicitly construct a series of effective actio
with progressively faster convergence to the con
uum. Before we do this we will parallel the derivatio
in the previous section and derive some general p
erties of the best effective action.

The amplitudeA(a,b;T ) of some theory with ac
tion S satisfies

A(a,b;T )

(10)

=
∫

dq1 · · ·dqn−1 A(b,qn−1; εN) · · ·A(q1, a; εN),
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for all N . This general relation is a direct consequen
of the linearity of states in a quantum theory. In an
ogy with ordinary integrals let us now suppose t
there exists an effective actionS∗ that is equivalen
to S (i.e., that leads to the same continuum limit f
all path integrals) with the additional property th
its N -fold discretized amplitudeA∗

N(a, b;T ) does not
depend onN , i.e., that satisfies

(11)A∗
N(a, b;T ) = A(a,b;T ).

As was the case in the previous section we will in f
construct a general procedure for evaluating this ef
tive action. For actions of the form given in Eq.(8) we
may write the amplitude as

A(qn+1, qn; εN)

(12)=
(

1

2πεN

)1/2

exp

(
− δ2

n

2εN

)
A(qn+1, qn; εN),

where the reduced amplitudeA → 1 asεN → 0. Writ-
ing S∗

N as

(13)S∗
N =

N−1∑
n=0

(
δ2
n

2εN

+ εNW ∗
n

)
,

and using Eqs.(7), (10) and (11)we find

(14)exp
(−εNW ∗

n

) = A(qn+1, qn; εN).

Note thatW ∗
n is reminiscent of some effective pote

tial, so it should depend on̄qn, however, from the
above relation we see that it must also depend onδn.
In addition,W ∗ also has an explicit dependence on
discrete time stepεN , hence

(15)W ∗
n = W ∗(δn, q̄n; εN).

As we have seen, the above functional form is a
rect consequence of the linearity of quantum the
The equivalence ofS andS∗ implies thatW ∗ → V (q̄)

when εN and δ go to zero. The final general prop
erty of W ∗ follows from the reality of amplitude
in the Euclidean formalism. Using the hermiticity
the Hamiltonian we findA(a,b;T ) = A(a,b;T )† =
〈b|e−T Ĥ |a〉† = 〈a|e−T Ĥ |b〉 = A(b,a;T ). In terms
of W ∗ this gives us

(16)W ∗(δn, q̄n; εN) = W ∗(−δn, q̄n; εN),

or, said another way, only even powers ofδn are
present in the expansion ofW ∗:
W ∗(δn, q̄n; εN)

= g0(q̄n; εN) + δ2
ng1(q̄n; εN) + δ4

ng2(q̄n; εN)

(17)+ · · · .
All the functionsgk are regular in theε → 0 limit. The
link to the starting theory is now simplyg0(q̄n; εN) →
V (q̄n) as εN goes to zero. This concludes the ge
eral properties ofW ∗. The remaining properties wi
be analyzed in the following section by studyi
the relation of discretizations of different coars
ness.

4. Euler summation formula for path integrals

We start by studying the relation between t
2N -fold andN -fold discretizations of the same th
ory. From Eq.(7) we see that we can write the 2N -fold
amplitude as anN -fold amplitude given in terms of
new actionS̃N determined by

(18)e−S̃N =
(

2

πεN

)N/2 ∫
dx1 · · ·dxN e−S2N ,

whereS2N is the 2N -fold discretization of the startin
action. We have written the 2N -fold discretized coor-
dinatesQ0,Q1, . . . ,Q2N in terms ofq ’s andx ’s in the
following way: Q2k = qk andQ2k−1 = xk . Note that
we haveq0 = a, qN = b, while theN − 1 remaining
q ’s play the role of the dynamical coordinates in t
N -fold discretized theory. Thex ’s are theN remaining
intermediate points that we integrate over in Eq.(18).
It is not difficult to see that if we use the naively di
cretized actionSN one obtains forS̃N an expression
that is not of the same form asSN .

Having in mind the results of the previous secti
it is best to use the effective action

(19)S∗
N =

N−1∑
n=0

(
δ2
n

2εN

+ εNW ∗(δn, q̄n; εN)

)
,

which gives the same result for both the 2N -fold and
N -fold discretizations. Therefore, in this case we g

(20)e−S∗
N =

(
2

πεN

)N/2 ∫
dx1 · · ·dxN e−S∗

2N .
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From this one easily finds

e−εNW ∗(δn,q̄n;εN )

=
(

2

πεN

)1/2 +∞∫
−∞

dy exp

(
− 2

εN

y2
)

(21)× F

(
q̄n + y; εN

2

)
,

where

− 2

εN

lnF(x; εN)

= g0

(
qn+1 + x

2
; εN

)
+ g0

(
x + qn

2
; εN

)

+ (qn+1 − x)2g1

(
qn+1 + x

2
; εN

)

(22)+ (x − qn)
2g1

(
x + qn

2
; εN

)
+ · · · .

The above integral equation can be solved for
simple cases of a free particle and a harmonic os
lator, and gives the well-known results. Note howe
that for a general case the integral in Eq.(21) is in a
form that is ideal for an asymptotic expansion[17].
The time stepεN is playing the role of small parame
ter (in complete parallel to the rolēh plays in standard
semi-classical, or loop, expansion). As is usual,
above asymptotic expansion is carried through by
Taylor expandingF(q̄n + y; εN

2 ) aroundq̄n and then
by doing the remaining Gaussian integrals. Assum
thatεN < 1 (i.e.,N > T ) we have

g0(q̄n; εN) + δ2
ng1(q̄n; εN) + δ4

ng2(q̄n; εN) + · · ·

(23)= − 1

εN

ln

[ ∞∑
m=0

F (2m)(q̄n; εN

2 )

(2m)!!
(

εN

4

)m
]
.

Note that F (2m)(x; εN) denotes the correspondin
derivative with respect tox. All that remains is to cal-
culate these expressions using Eq.(22) and to expand
all thegk ’s around the mid-point̄qn. This is a straight
forward though tedious calculation. In this paper
will illustrate the general procedure for calculatingS∗
by explicitly giving its expansion to orderε3

N :

g0(q̄n; εN)

= g0

(
q̄n; εN

)

2

+ εN

[
1

4
g1

(
q̄n; εN

2

)
+ 1

32
g′′

0

(
q̄n; εN

2

)]

+ ε2
N

[
3

16
g2

(
q̄n; εN

2

)
− 1

32
g′2

0

(
q̄n; εN

2

)

+ 1

2048
g

(4)
0

(
q̄n; εN

2

)
+ 3

128
g′′

1

(
q̄n; εN

2

)]
,

g1(q̄n; εN)

= 1

4
g1

(
q̄n; εN

2

)
+ 1

32
g′′

0

(
q̄n; εN

2

)

+ εN

[
3

8
g2

(
q̄n; εN

2

)
+ 1

1024
g

(4)
0

(
q̄n; εN

2

)

− 1

64
g′′

1

(
q̄n; εN

2

)]
,

g2(q̄n; εN)

= 1

16
g2

(
q̄n; εN

2

)
+ 1

6144
g

(4)
0

(
q̄n; εN

2

)

(24)+ 1

128
g′′

1

(
q̄n; εN

2

)
.

In the above relations we expandedg0 up toε2
N , g1

up toεN , etc. We also disregarded all the highergk ’s.
The reason for this is that the short time propagatio
any theory satisfiesδ2

n ∝ εN while thegk term enters
the action multiplied byδ2k

n . In general, if we wish to
expand the effective action toεp

N we need to evaluat

only g0 (up to ε
p−1
N ) and the remainingp − 1 func-

tionsgk (up toε
p−1−k
N ). The task of calculating the e

fective action to large powers ofεN is time-consuming
and is best done with the help of a standard pa
age for algebraic calculations such as Mathema
Using Mathematica we determined the correspond
expressions forp � 9.

Although the above system of recursive relatio
is non-linear, it is in fact quite easy to solve if w
remember that the system itself was derived via an
pansion inεN . Having this in mind we first write all the
functions as expansions in powers ofεN that are ap-
propriate to the levelp we are working at. Forp = 3,
we have

g0(q̄n; εN) = V (q̄n) + εNR1(q̄n) + ε2
NR2(q̄n),

g1(q̄n; εN) = R3(q̄n) + εNR4(q̄n),

(25)g2(q̄n; εN) = R5(q̄n).

Putting this into Eq.(24) we determine the function
R to R in terms of V . The p = 3 level solution
1 5
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g0 = V + εN

V ′′

12
+ ε2

N

[
−V ′2

24
+ V (4)

240

]
,

g1 = V ′′

24
+ εN

V (4)

480
,

(26)g2 = V (4)

1920
.

Note thatW ∗ depends only on the initial potenti
V and its derivatives (as well as onεN ). One can sim-
ilarly calculate the effective actionS∗ to any desired
level p. We denote thep level truncation of the effec
tive action asS(p). S(p) has the property that itsN -fold
amplitudes deviate from the continuum expression
O(ε

p
N)

(27)A(a,b;T ) = A
(p)
N (a, b;T ) + O

(
ε
p
N

)
.

Comparing this to Eq.(6) we see that we have ju
derived the generalization of the Euler summation f
mula to path integrals. Just as with the ordinary Eu
formula it gives the relation between path integrals a
their discretizations to any given precision.

It is important to note that one solves for the
fective action at levelp but once for all theories, i.e
the solution that is found holds for all initial pote
tials. The only requirement for the levelp solution
is that the starting potential is differentiable 2p − 2
times. Solutions for larger values ofp are a bit more
cumbersome, however, they are just as easy to us
simulations. We have found that the growth in co
plexity of the effective actions with increasingp has
little effect on computation time forp � 4, while sim-
ulations withp = 9 are roughly ten times slower du
to this. However, this is an extremely small price
pay for a gain of eight orders of magnitude in the sp
of convergence. Expressions for effective actions u
p = 9 can be found on our web site[16].

The analytical derivations presented work equa
well in both the Euclidean and Minkowski forma
ism (with appropriateiε regularization), i.e., they ar
directly applicable to quantum systems as well
to statistical ones. However, the Monte Carlo sim
lations used to numerically document our analyti
results necessarily needed to be done in the Eu
ean formalism. We analyzed in detail several m
els: the anharmonic oscillator with quartic coupli
V = 1

2q2 + λ
4!q

4 and a particle moving in a modifie
Pöschl–Teller potential over a wide range of param
ters. In all cases we found agreement with Eq.(27).
Fig. 1 illustrates this behavior in the case of an anh
tic
Fig. 1. Deviations from the continuum limit|A(p)
N

− A| as functions ofN for p = 1,2,4 and 6 for an anharmonic oscillator with quar

couplingλ = 10, time of propagationT = 1 from a = 0 to b = 1. NMC was 9.2× 109 for p = 1,2, 9.2× 1010 for p = 4, and 3.68× 1011 for
p = 6. Dashed lines correspond to appropriate 1/N polynomial fits to the data. Solid lines give the leading 1/N behavior. The levelp curve
has a 1/Np leading behavior.
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monic oscillator. We see that thep level data indeed
differs from the continuum amplitudes as a polynom
starting with 1/Np. The deviations from the contin
uum limit |A(p)

N − A| become exceedingly small fo
larger values ofp making it necessary to use ev
larger values ofNMC so that the MC statistical er
ror does not mask these extremely small deviatio
For p = 6 we see that although we used an extrem
large number of MC samples (NMC = 3.68×1011) the
statistical errors become of the same order as the
viations already atN � 8. Forp = 9 this is the case
even forN = 2, i.e., we already get the continuu
limit within a MC error of around 10−8.

To conclude, we have presented an algorithm
leads to significant speedup of numerical procedu
for calculating path integrals. The increase in sp
results from new analytical input that comes from
systematic investigation of the relation between d
cretizations of different coarseness and that leads
generalization of the Euler summation formula to p
integrals. We have presented an explicit procedure
obtaining a set of effective actionsS(p) that have the
same continuum limit as the starting actionS, but
which approach that limit ever faster. Amplitudes c
culated using theN -point discretized effective actio
S

(p)
N satisfy A

(p)
N (a, b;T ) = A(a,b;T ) + O(1/Np).

We have obtained and analyzed the effective act
for p � 9 and have documented the speedup
to 1/N9 by conducting Monte Carlo simulations
several different models. Several interesting proper
of this procedure follow from the fact that the sol
tions were obtained using an asymptotic expans
These additional properties will be presented and
cussed in a future publication. Extension tod > 1 is
also in progress. The derivation of higher-dimensio
analogues of integral equation(21) does not seem t
present a problem. The asymptotic expansion use
solve it is also directly generalizable. However, the
gebraic recursive relations that determineS(p) will be
more complex and may practically limit us to smal
values ofp.
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