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A recently developed efficient recursive approach for analytically calculating the short-time evolution
of the one-particle propagator to extremely high orders is applied here for numerically studying the
thermodynamical and dynamical properties of a rotating ideal Bose gas of 87Rb atoms in an anharmonic
trap. At first, the one-particle energy spectrum of the system is obtained by diagonalizing the discretized
short-time propagator. Using this, many-boson properties such as the condensation temperature, the
ground-state occupancy, density profiles, and time-of-flight absorption pictures are calculated for varying
rotation frequencies. The obtained results improve previous semiclassical calculations, in particular for
smaller particle numbers. Furthermore, we find that typical time scales for a free expansion are increased
by an order of magnitude for the delicate regime of both critical and overcritical rotation.
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1. Introduction

Bose–Einstein condensation (BEC) represents a macroscopic
quantum phenomenon of recent broad research interest [1–4].
Since its first experimental realization in 1995, it has been ex-
tensively studied experimentally, analytically, and numerically. The
two main research directions are weakly-interacting dilute gases
in magneto-optical traps and strongly-interacting quantum gases
in optical lattices. The behavior of a Bose–Einstein condensate un-
der rotation is essential for understanding many fundamental BEC
phenomena. For instance, its response to rotation represents one
of the seminal hallmarks of superfluidity [5]. However, once a har-
monically trapped Bose–Einstein condensate is rotated critically,
i.e. the rotation frequency becomes so large that it compensates
the radially confining harmonic frequency, the system turns out
to be radially no longer trapped. In the absence of additional po-
tential terms the condensate would start to expand perpendicular
to the rotation axis. For an overcritical rotation, this expansion
would even be accelerated by the presence of a residual centrifu-
gal force. In order to reach experimentally this delicate regime of
critical or overcritical rotation, Fetter suggested in Ref. [6] to add
an additional quartic term to the harmonic trap potential. Using a
Gaussian laser beam propagating in the z-direction, this has been
realized experimentally in Paris by Dalibard and co-workers for a
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BEC of 3 · 105 atoms of 87Rb [7,8]. The resulting axially-symmetric
trap with a small quartic anharmonicity in the xy-plane, seen by
individual atoms, has the form

V BEC = MRb

2

(
ω2⊥ − Ω2)r2⊥ + MRb

2
ω2

z z2 + k

4
r4⊥, (1)

with the perpendicular radius r⊥ = √
x2 + y2, as well as the trap

frequencies ω⊥ = 2π × 64.8 Hz, ωz = 2π × 11.0 Hz, and the trap
anharmonicity k = kBEC = 2.6 × 10−11 J m−4. Furthermore, the ro-
tation frequency Ω , which is measured in units of ω⊥ , i.e. it is
expressed by the ratio r = Ω/ω⊥ , represents the tunable control
parameter which could be experimentally increased up to r = 1.04.
This highest possible rotation frequency seems to coincide with
an instability which follows from a Thomas–Fermi solution of the
Gross–Pitaevskii equation [9].

As long as we can ignore the presence of two-particle interac-
tions and approximately describe the system with the ideal Bose
gas, its many-particle properties in the grand-canonical ensemble
are exclusively derivable from one-particle states. When consider-
ing the thermodynamic limit, usually the semiclassical approxima-
tion is applied, where the one-particle ground state E0 is retained
and treated quantum mechanically, while all one-particles states
above E0 are approximately treated as a continuum [10]. This
semiclassical approximation remains reasonable good irrespective
of the rotation frequency Ω once the total particle number N is
large enough and the trap anharmonicity k small enough. The lat-
ter condition implies that the underlying one-particle potential (1)
has a small curvature around its minimum. However, in this con-
text the question arises for which system parameters such a semi-

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:antun@ipb.ac.rs
http://www.scl.rs/
http://dx.doi.org/10.1016/j.physleta.2010.01.034


1540 A. Balaž et al. / Physics Letters A 374 (2010) 1539–1549
classical approximation is not sufficient for a precise description of
BEC phenomena, as well as when it finally breaks down, requiring
a full quantum mechanical treatment of the system.

In order to analyze this fundamental problem more quantita-
tively, it is mandatory to determine the one-particle energy eigen-
values and eigenfunctions fully quantum mechanically. To this end
we apply a recently developed ultra-fast converging path-integral
approach for calculating the imaginary-time evolution amplitude
of general non-relativistic many-body systems [11–15]. In this ap-
proach a hierarchy of discretized effective actions is introduced
where higher terms, compared to the naive action, substantially
reduce errors in calculations of transition amplitudes. In particular,
this allows a systematic derivation of discretized effective actions
of level p, which lead to a 1/N p-convergence of discretized time-
sliced transition amplitudes within the continuum limit N → ∞
of infinitely-many time slices. In addition, the improved conver-
gence of transition amplitudes, calculated with the level p effective
action, can be used to construct higher-order analytic approxima-
tions for short-time propagators. Furthermore, the N = 1 time-slice
approximation turns out to be valid for short imaginary times
and useful for small values of the inverse temperature in applica-
tions in quantum statistical physics. The recent references [16,17]
demonstrate that this path-integral approach allows to determine
a huge number of both eigenvalues and eigenfunctions of quantum
systems with very high accuracy using exact numerical diagonal-
ization.

In this Letter we show how this path-integral approach is ap-
plied for studying both global and local properties of fast-rotating
Bose–Einstein condensates. To this end we proceed as follows: Sec-
tion 2 briefly reviews the main ingredients of the path-integral
approach in the general context of ideal Bose–Einstein conden-
sates. Then we calculate in Section 3 a large number of energy
eigenvalues and eigenfunctions for the anharmonic one-particle
potential (1). Afterwards, Section 4 discusses how a finite number
of numerically available energy eigenvalues affects the results and
how they can be improved by introducing systematic semiclassical
corrections. On the basis of this precise numerical one-particle in-
formation, Section 5 studies global properties of a rotating conden-
sate, for instance the condensation temperature Tc as a function
of rotation frequency Ω and the ground-state occupancy N0/N
as a function of temperature T . Finally, Section 6 is devoted to
the calculation of local properties of the condensate, such as den-
sity profiles and time-of-flight absorption pictures. Section 7 briefly
summarizes the main results presented in this Letter.

2. Many-versus one-particle physics

At first we demonstrate that a precise numerical access to one-
particle eigenstates allows the calculation of the condensation tem-
perature and other thermodynamic properties of an ideal Bose gas.
Afterwards, we briefly review details of the path-integral effective
action approach for a numerical study of a 87Rb BEC in the anhar-
monic trap (1).

2.1. Ideal Bose gas

The grand-canonical partition function of an ideal Bose gas is
given by

Z =
∑
ν

e−β(Eν−μNν ), (2)

where ν enumerates all possible configurations of the system,
β = 1/kB T represents the inverse temperature, and μ denotes the
chemical potential. As the ideal bosons do not interact, the sys-
tem energy Eν can be expressed in terms of single-particle energy
eigenvalues

Eν =
∑

n

Nν(n)En, (3)

where n counts single-particle energy states, while Nν(n) = 0,1,

2, . . . and En stand for the occupancy and the energy eigenvalue
of level n, respectively. Correspondingly, the number of particles in
the system reads

Nν =
∑

n

Nν(n). (4)

Thus, the grand-canonical free energy F = −(ln Z)/β results to be

F = 1

β

∑
n

ln
[
1 − e−β(En−μ)

]
, (5)

where a subsequent Taylor expansion of the logarithm yields

F = − 1

β

∞∑
m=1

emβμ

m
Z1(mβ), (6)

usually denoted as the cumulant expansion. Thus, the many-body
thermodynamic potential (6) of an ideal Bose gas is exclusively
determined by single-particle states via the one-particle partition
function:

Z1(β) =
∑

n

e−βEn . (7)

In principle, the above outlined exact calculation of the many-
body free energy allows a full numerical description of ideal Bose
gases, and can be also applied for studies of dilute Bose gases
in the case when interactions are negligible. However, it becomes
numerically very involved even for simple trapping potentials at
low temperatures. In addition to this, the BEC phase transition is
achieved only in the thermodynamic limit of an infinite number
of atoms, thus making numerical studies of the condensation in-
creasingly difficult. Usually, this problem is solved by fixing the
chemical potential μ at the low temperatures of the condensate
phase to the ground-state energy, i.e. by setting μ = E0, and to
treat the ground state separately, by explicitly taking into account
its macroscopic occupation N0. Thus, for low enough temperatures
the grand-canonical free energy (6) is modified to

F = − 1

β

∞∑
m=1

emβμ

m

[
Z1(mβ) − e−mβE0

] + N0(E0 − μ). (8)

In order to avoid any double-counting, we have subtracted in the
first line the contribution of the ground state within the one-
particle partition function, whereas the second line takes into ac-
count a possible macroscopic occupation of the ground state. The
resulting total number of particles N = −∂F /∂μ follows to be

N = N0 +
∞∑

m=1

emβμ
[

Z1(mβ) − e−mβE0
]
. (9)

This particle number equation serves different purposes in the re-
spective phases. Within the gas phase, where the macroscopic oc-
cupation of the ground-state vanishes, i.e. we have N0 = 0, Eq. (9)
determines the temperature dependence of the chemical poten-
tial μ. On the other hand, within the BEC phase the chemical
potential μ coincides with its minimal value, i.e. the ground-
state energy E0, so Eq. (9) yields the temperature dependence
of N0. Therefore, the value of βc = 1/kB Tc, which characterizes
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the boundary between both phases, follows from Eq. (9) by set-
ting N0 = 0 and μ = E0:

N =
∞∑

m=1

[
emβc E0 Z1(mβc) − 1

]
. (10)

We conclude that, for a given number N of ideal bosons, the con-
densation temperature can be exactly calculated only if both the
single-particle ground-state energy E0 and the full temperature de-
pendence of the one-particle partition function (7) are known.

2.2. Path-integral approach

The recently developed path-integral approach [11–15] allows
an efficient and fast-converging numerical calculation of all one-
particle properties of quantum systems [16,17]. Note that this gen-
eral numerical approach is suitable to treat arbitrarily-shaped trap
potentials and is also applicable for exact studies of many-body
problems. In this Letter we consider BEC experiments performed
by Jean Dalibard’s group [7,8], where a trapping potential with a
quartic anharmonicity was realized. For this reason, we will spe-
cialize our numerical approach in the following to such potentials
in order to quantitatively analyze this seminal experiment.

The quantum statistical imaginary-time transition amplitude
A(a,b; t) = 〈b|e−t Ĥ/h̄|a〉 follows in the continuum limit N → ∞ of
infinitely-many time slices

A(a,b; t) = lim
N→∞ AN(a,b; t). (11)

Here the time-sliced amplitude AN (a,b; t) is a product of short-
time amplitudes corresponding to the introduced time steps, and
is expressed as a multiple integral of the function e−SN /h̄ , where
SN is usually called discretized (Euclidean) action [18]. For the
simplest one-particle theory with the Euclidean Lagrangian L =
q̇2/2 + V (q), where the coordinates are rescaled so that the mass
is equal to unity, the naive discretized action is given by

SN =
N−1∑
n=0

[
δ2

n

2ε
+ εV (q̄n)

]
, (12)

with the abbreviations ε = t/N , δn = qn+1 − qn , q̄n = (qn+1 + qn)/2
and boundary conditions q0 = a, qN = b. Using the naive dis-
cretized action leads to the convergence of the transition ampli-
tudes to the continuum as slow as 1/N .

Starting from the one-particle Schrödinger equation in d spatial
dimensions, we have derived a hierarchy of discretized effective
actions S(p)

N with a systematically improved convergence to the
continuum result. The general short-time amplitude is first writ-
ten in the form

A(qn,qn+1;ε) = 1

(2π h̄ε)d/2
e− δ2

n
2h̄ε − ε

h̄ W (q̄n,δn;ε), (13)

were W (q̄n, δn;ε) stands for the ideal discretized effective action,
giving exact transition amplitudes in any discretization. In fact, the
above equation is valid for any propagation time t , not just for
short times, and if we were able to calculate exactly the ideal
effective potential W , we could use it directly to calculate the
long-time transition amplitude A(a,b; t). This is practically possi-
ble only for a limited number of exactly solvable models. However,
we have derived a recursive approach which allows for an efficient
analytical calculation of a high-order short-time expansion of the
effective potential [15]. If we insert the expansion W (p−1) calcu-
lated to order εp−1 into Eq. (13), we get the short-time amplitude

A(p)(qn,qn+1;ε) = 1
d/2

e− δ2
n

2h̄ε − ε
h̄ W (p−1)(q̄n,δn;ε), (14)
(2π h̄ε)
which is designated by p due to the fact that W (p−1) is multi-
plied by an additional factor of ε in the exponent. This yields a
result for the exponent which is correct up to order εp , i.e. its er-
ror is proportional to εp+1. If we take into account the pre-factor
1/(2π h̄ε)d/2, the above expression for the short-time amplitude
A(p) gives overall errors proportional to εp+1/2 in d = 1. Conse-
quently, in d = 2 spatial dimensions, which is the case relevant
here, the errors of short-time transition amplitudes would be of
the order εp . However, if we consider the N dependence of the
above expression, the errors are always proportional to 1/N p+1,
since the pre-factor 1/(2π h̄ε)d/2 will be absorbed in the normal-
ization of the amplitude A(a,b; t). When used to calculate a long-
time transition amplitude, the product of N short-time amplitudes
will subsequently lead to errors proportional to 1/N p , as demon-
strated conclusively earlier in Refs. [11–14].

Typical values of the inverse temperature β in BEC experiments
are quite small compared to the typical energy scale which is de-
fined by the harmonic trap frequencies. For example, in the Paris
experiment [7] the dimensionless value of h̄βω⊥ ranges between
10−3 and 10−1. Therefore, one can immediately use the above
formula for the amplitude A(p) and calculate the corresponding
one-particle partition function by numerically integrating the diag-
onal amplitude A(a,a, β) over the coordinate a. For small enough
β the above formula converges rapidly, and the amplitudes can be
calculated exactly for all practical purposes. We refer to this ap-
proximation as the N = 1 approximation, since it corresponds to
having only one time-slice in the standard definition of the transi-
tion amplitude in the path-integral formalism.

However, the direct use of this approach has several disadvan-
tages. First of all, one still has to perform an integral over the
diagonal coordinate a in order to calculate the partition function.
Second, this has to be done repeatedly for each value of the in-
verse temperature β . And most importantly, one has also to extract
the value of the ground-state energy in view of the particle num-
ber equation (9). In principle, this is done by studying the high-β
regime, where the short-time expansion (14) is not valid. Although
this procedure works also for lower values of β [19], it requires
the numerical calculation of the one-particle partition function and
a detailed study of its dependence on the inverse temperature in
order to obtain the ground-state energy with sufficient precision.
For this reason, the algorithm becomes numerically complex and
difficult to use, especially in cases where the ground state is de-
generate.

The approach based on a numerical diagonalization of the
space-discretized evolution operator [16,17] effectively resolves all
of the above issues. It allows the precise numerical calculation of a
large number of energy eigenvalues and eigenstates of the single-
particle Hamiltonian. Once calculated in the low-β regime, these
data can be used to obtain the one-particle partition function for
any value of the inverse temperature β in a numerically inexpen-
sive way. Calculations based on this approach do not have restric-
tions in the high-β regime, where, in fact, they turn out to yield
results with even better precision. In addition, the one-particle
energy eigenfunctions obtained by the exact diagonalization will
allow us to calculate local properties of Bose–Einstein condensates
with very high accuracy.

3. Numerical calculation of energy eigenvalues and eigenstates

The most efficient method for calculating properties of few-
body quantum systems is the direct diagonalization of the space-
discretized propagator in imaginary time Û (t) = exp(−t Ĥ/h̄) [16,
17,20–23]. Here t represents the appropriately chosen propagation
time, for which we can calculate the matrix elements of the evolu-
tion operator analytically within our path-integral approach in the
N = 1 approximation.
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Table 1
Lowest energy levels of the xy-part of the BEC potential (1) for non-rotating (r = 0)
and critically-rotating (r = 1) condensate with the quartic anharmonicity k = kBEC

(top) and k = 103kBEC (bottom). They are obtained by using level p = 21 effective
action with the discretization parameters of Table 3. The spacing 	 was always
chosen so that L/	 = 100, and the propagation time was t = 0.2 for k = kBEC and
t = 0.05 for k = 103kBEC. Errors are given by the precision of the last digit, typically
10−12 to 10−13, and are estimated by comparing the numerical results obtained
with different discretization parameters.

n En/h̄ω⊥ , k = kBEC

r = 0 r = 1

0 1.0009731351803 0.1162667164134
1 2.0029165834022 0.2674689968905
2 2.0029165834022 0.2674689968905
3 3.0058275442161 0.4426927375269
4 3.0058275442161 0.4426927375270
5 3.0067964582067 0.4725275724941
6 4.0097032385903 0.6368178804983
7 4.0097032385903 0.6368178804984
8 4.0116368851078 0.6848142470356
9 4.0116368851078 0.6848142470357

n En/h̄ω⊥ , k = 103kBEC

r = 0 r = 1

0 1.468486725893 1.162667164134
1 3.213056378201 2.674689968905
2 3.213056378201 2.674689968905
3 5.163819069871 4.426927375269
4 5.163819069871 4.426927375270
5 5.406908088225 4.725275724941
6 7.282930987460 6.368178804982
7 7.282930987460 6.368178804982
8 7.690584058915 6.848142470357
9 7.690584058915 6.848142470357

On a given real-space grid defined by a set of coordinates
xj = j	, where 	 denotes the spacing, j ∈ [−L/	, L/	]d is a
d-dimensional vector of integers, and L denotes the spatial cutoff,
matrix elements of the propagator are just short-time transition
amplitudes

U ij(t) = 〈i	|Û (t)|j	〉. (15)

Note that throughout the Letter we use dimensionless units, in
which any energy is expressed in terms of h̄ω⊥ , while the length
unit is the corresponding harmonic oscillator length

√
h̄/MRbω⊥ .

The eigenvectors ψn(j	) of such a discretized evolution opera-
tor matrix correspond to the space-discretized eigenfunctions of
the original Hamiltonian, and the corresponding eigenvalues En

are related to the eigenvalues of the single-particle Hamiltonian by
e−t En/h̄ . A detailed analysis of discretization errors of this method
is given in Ref. [16]. It provides a practical algorithm for choosing
optimal discretization parameters which minimizes the associated
errors.

Another source of errors is related to the fact that for non-
trivial potentials it is not possible to calculate exactly evolution
operator matrix elements. Higher-order effective actions minimize
the errors for a given propagation time t and allow an optimal
choice of this parameter as well by taking into account other dis-
cretization errors, as was shown in Ref. [17]. This approach is able
to give very accurate energy eigenvalues even for moderate val-
ues of the propagation time t of the order 0.1. Table 1 presents
the first several energy eigenvalues for the two-dimensional (xy-)
part of the BEC potential (1) for the non-rotating case (r = 0), as
well as for the critically-rotating condensate (r = 1). The top table
gives the energy spectrum of the potential with the anharmonicity
k = kBEC used in the experiment [7], while the bottom table shows
the spectrum for the much larger anharmonicity k = 103kBEC. The
degeneracies of numerically obtained eigenstates in all cases cor-
respond to the expected structure of the spectrum, which can be
Table 2
Lowest energy levels of the xy-part of the BEC potential (1) for over-critically rotat-
ing (r = 1.04) condensate with the quartic anharmonicity k = kBEC and k = 103kBEC

according to the same numerical procedure as in Table 1.

n En/h̄ω⊥ , r = 1.04

kBEC 103kBEC

0 −0.6617041825660 1.135693826206
1 −0.6465857464220 2.628129903790
2 −0.6465857464220 2.628129903790
3 −0.6032113415949 4.363876633929
4 −0.6032113415948 4.363876633929
5 −0.5349860004310 4.667653582963
6 −0.5349860004309 6.290444734007
7 −0.4451224795419 6.290444734007
8 −0.4451224795419 6.777210773169
9 −0.3362724309903 6.777210773169

deduced from the symmetry of the problem. In addition to this,
the interesting case of critical rotation (r = 1) allows a further ver-
ification of the numerical results. To this end we recall that the
energy eigenvalues of a pure quartic oscillator, to which V BEC re-
duces in this case, are proportional to k1/3 due to a spatial rescal-
ing in the underlying Schrödinger equation. Therefore, we expect
that the energy eigenvalues for k = 103kBEC are precisely 10 times
larger than the corresponding eigenvalues for k = kBEC. Compar-
ing the rightmost columns in Table 1 we see exactly this scaling.
This demonstrates conclusively that the presented method can be
successfully applied also in this deeply non-perturbative parame-
ter regime. Furthermore, Table 2 gives the energy spectrum of an
over-critically rotating (r = 1.04) condensate, illustrating that the
same approach can be used in this delicate regime as well.

With these results single-particle partition functions Z1(β) can
now be calculated according to Eq. (7). This is especially suitable
for the low-temperature regime, when higher energy levels give
a negligible contribution. Although the above described approach
is able to accurately give several thousands of energy eigenval-
ues, their number is always necessarily limited. This is easily seen
from Fig. 1, where we compare the density of states for a critically-
rotating condensate with the corresponding semiclassical approx-
imation for the density of states [17]. This comparison allows to
estimate the maximal reliable two-dimensional energy eigenvalue
Emax which can be obtained numerically for a given set of dis-
cretization parameters. For example, from Fig. 1 we can estimate
Emax ≈ 90 for r = 1 with the discretization parameters L = 22.3,
L/	 = 100, and t = 0.2. Table 3 gives estimates for the maximal
reliable energy eigenvalue for the anharmonicities k = kBEC and
k = 103kBEC for several values of rotation frequencies. These re-
sults are obtained from numerical calculations using the SPEEDUP
codes [24]. This table gives also an overview over those discretiza-
tion parameters which were used for a numerical diagonalization
of the BEC potential (1) in order to calculate both global and local
properties of the condensate throughout the whole Letter.

In the low-temperature limit the finiteness of the number of
known energy eigenstates does not present a problem. In fact, a
precise knowledge of a large number of energy eigenvalues makes
this approach a preferred method for a numerically exact treat-
ment of low-temperature phenomena. On the other hand, the
high-temperature regime, where thermal contributions of higher
energy states play a significant role, is not treatable in the same
way. This regime is usually not relevant for studies of BEC exper-
iments, but we consider it for the sake of completeness. Further-
more, we want to demonstrate that the effective action approach
can even be successfully used for studying this parameter range.
In the case that the temperature is high enough, so that effects
of higher energy eigenstates cannot be neglected, the inverse tem-
perature β becomes a small parameter. Thus, it becomes possible
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Fig. 1. Numerically calculated density of states for xy-part of the BEC potential with
k = kBEC for a critically-rotating condensate, obtained by using level p = 21 effec-
tive action. The discretization parameters are L = 22.3, L/	 = 100, and t = 0.2.
The dashed line is the corresponding semiclassical approximation for the density of
states.

Table 3
Maximal reliable numerically calculated energy eigenvalue Emax of the xy-part of
the BEC potential (1) for different values of r = Ω/ω⊥ , estimated from comparing
the numerically obtained density of states ρ(E) with the semiclassical approxima-
tion. The numerical diagonalization was done using level p = 21 effective action.
The spacing 	 was always chosen so that L/	 = 100, and the propagation time
was t = 0.2 for k = kBEC and t = 0.05 for k = 103kBEC. The total number of reliable
energy eigenstates is in all cases of the order of 104.

r k = kBEC k = 103kBEC

Emax/h̄ω⊥ L Emax/h̄ω⊥ L

0.0 140 14.2 190 3.90
0.2 140 14.4 190 3.90
0.4 140 15.0 180 3.91
0.6 140 16.3 180 3.92
0.8 130 18.6 180 3.94
1.0 90 22.3 170 3.96
1.04 90 23.2 170 3.96

to calculate numerically the single-particle partition function as a
sum of diagonal amplitudes, i.e.

Z1(β) =
∑

j

U jj(β)	d, (16)

where 	 represents the spacing and, as before, the values of j
are defined by j ∈ [−L/	, L/	]d , with the spatial cutoff L chosen
in such a way to ensure the localization of the evolution matrix
within the interval [−L, L]d . Note that this can be verified, since
the evolution operator matrix elements are calculated using the
analytic approximation (14) with level p effective potential

U (p)

jj (β) = 1

(2π h̄2β)d/2
e−βW (p−1)(j	,0;h̄β), (17)

where h̄β plays now the role of the imaginary time, and the in-
fluence of the kinetic term is not present since U jj is a diagonal
transition amplitude (δ = 0).

4. Finite number of energy eigenvalues and semiclassical
corrections

In the previous section we have described a numerical approach
which is capable of providing a large number of accurate energy
eigenvalues for a general quantum system. Its major application
Fig. 2. Number of thermally excited atoms N − N0 as a function of the cutoff M in
the cumulant expansion (19). The results are given for a non-rotating condensate at
T = 105.18 nK and for a critically-rotating condensate at T = 63.30 nK. The results
are obtained by level p = 21 effective action, and all available numerical eigen-
states are used to calculate N − N0. The discretization parameters were L = 14.2
for r = 0 and L = 22.3 for r = 1. In both cases the spacing was chosen according to
L/	 = 100, and the propagation time was t = 0.2.

is for few-body systems, where the complexity of the algorithm is
very low. For instance, we are able to calculate typically 104 energy
eigenvalues for the considered BEC potential (1). In this section we
discuss in more detail how the finiteness of numerically available
energy eigenstates affects the calculation of thermodynamic prop-
erties of Bose–Einstein condensates.

As outlined in Section 2, the information on single-particle
eigenvalues is sufficient for calculating the condensation temper-
ature according to Eq. (10). Below the condensation temperature,
the ground-state occupancy follows from solving the equation

N = N0 +
∞∑

m=1

[
emβE0 Z1(mβ) − 1

]
. (18)

In practical calculations, however, one is inevitably forced to re-
strict the sum over m in the cumulant expansion (18) to some
finite cutoff M , resulting in the following approximation for the
number of thermal atoms

N − N0 =
M∑

m=1

∞∑
n=1

e−mβ(En−E0). (19)

Thus the ground-state occupancy N0 depends for each particle
number N and temperature T also on this cutoff M . In particular,
solving (19) for the (inverse) condensation temperature, obtained
by demanding N0 = 0, will yield βc(M) with an explicit depen-
dence on M . The exact condensation temperature βc is only ob-
tained in the limit M → ∞.

Fig. 2 illustrates the M-dependence resulting from Eq. (19) for
both a non-rotating and a critically-rotating condensate. As ex-
pected, the sum saturates for high values of M to some finite
number N − N0. By tuning the temperature in such a way that the
sum saturates at the desired value of the total number of atoms N
in the system, which implies N0 = 0, one is, in principle, able to
extract the condensation temperature Tc.

Although the results in Fig. 2 suggest that this approach can be
applied straightforwardly, a closer look at the results for numeri-
cally calculated values of N −N0 reveals several problems that have
to be addressed. At first we have to investigate how the results
depend on the number of energy eigenstates used in the numeri-
cal calculation. Fig. 3 gives this dependence for a critically-rotating
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Fig. 3. Number of thermally excited atoms N − N0 calculated as a function of the
maximal available two-dimensional energy eigenvalue Emax at T = 63.30 nK. The
results are given for two different values of the cumulant cutoff M for a critically-
rotating condensate, with the same parameters as in Fig. 2. The horizontal line
corresponds to the number of atoms N = 3 · 105 in the experiment [7].

condensate at its critical temperature Tc = 63.30 nK. We can see
that the dependence on the maximal available two-dimensional
energy eigenvalue Emax is quite significant. The inset of this figure
reveals another problem: the value to which number N0 − N satu-
rates depends in addition on the cumulant cutoff M , as explained
earlier. While the M-dependence can be dealt with by using a very
large value of the cumulant cutoff in numerical calculations, the
dependence on the maximal energy eigenvalue Emax must be elim-
inated by taking into account a proper semiclassical correction to
the single-particle partition functions.

Namely, the finite number of energy eigenstates implies that
the single-particle partition functions are only estimated by

Z1(β) ≈
nmax∑
n=0

e−βEn , (20)

where nmax corresponds to the value Emax of the numerically
available maximal energy eigenvalue. A semiclassical correction to
this value, can be calculated according to Ref. [10] as

	Z1(β, Emax) =
∫

d3x d3p

(2π h̄)3
e−βH(x,p)Θ

(
H(x,p) − Emax

)
, (21)

where H(x,p) represents the classical Hamiltonian of the system,
while Θ denotes the Heaviside step-function.

For the trap potential (1) we have in z-direction a pure har-
monic potential which can be treated exactly. Therefore, we focus
only on the two-dimensional problem in the xy-plane. In this case,
the semiclassical correction for the single-particle partition func-
tion (21) can be expressed in terms of the complementary error
function:

	Z (2)
1 (β, Emax)

= 1

2β

{
e−βEmax

k

[−(
1 − r2) +

√(
1 − r2

)2 + 4kEmax
]

+
√

π

kβ
e

β(1−r2)2

4k Erfc

(√
βEmax + β(1 − r2)2

4k

)}
. (22)

When this semiclassical correction is taken into account, the
numerical results show almost no dependence on Emax, as can be
seen from Fig. 4. Here we have used an excessively large value of
the cumulant cutoff M = 104 in order to completely eliminate any
Fig. 4. Number of thermally excited atoms N − N0 calculated as a function of Emax

with and without semiclassical corrections, calculated with any large cumulant cut-
off M = 104 to eliminate the M-dependence. The results correspond to a critically-
rotating condensate with the same parameters as in Fig. 2. The horizontal line
corresponds to N = 301 834 which represents the exact value at Tc = 63.30 nK.

M-dependence. From the inset in this graph we also see that Emax
must be chosen in accordance with the value estimated in the pre-
vious section for the maximal reliable energy eigenvalue obtained
by numerical diagonalization. If we use a value Emax larger than
this, we will be underestimating the higher part of the energy
spectra, and obtain incorrect results. For a critically-rotating con-
densate with the anharmonicity k = kBEC the estimated value of
Emax from Table 3 is around 90 h̄ω⊥ , which agrees with the re-
sults from the inset of Fig. 4. If we use this value for Emax and
calculate properties of the condensate using numerically obtained
eigenstates below Emax with semiclassical corrections according to
Eq. (22), we will obtain the exact results with very high accuracy.

5. Global properties of rotating Bose–Einstein condensates

In this section we will apply this approach to calculate different
global properties of rotating Bose–Einstein condensates.

5.1. Condensation temperature

If we take into account semiclassical corrections as explained in
the previous section, we can calculate, for instance, the condensa-
tion temperature of the condensate for different rotation frequen-
cies. This implies that we have to find the temperature for which
the number of thermal atoms N − N0 saturates precisely at the
total number of atoms N . In practice, this works the other way
around: for a given condensation temperature Tc we numerically
calculate the particle number in the system using Eq. (19), which
gives the number of atoms in the system required for a condensa-
tion temperature to be equal to Tc. This procedure is implemented
in Fig. 5 for several values of the rotation frequency Ω in units of
r = Ω/ω⊥ . For example, for Tc = 63.14 nK we see that the corre-
sponding number of particles is N = 3 · 105, which coincides with
the value for a critically-rotating condensate in the experiment of
Dalibard and co-workers [7].

In principle, such a procedure is only applicable for low-
accuracy calculations of the critical temperature, since otherwise
one has to use very large values of the cutoff M which would
practically slow-down numerical calculations. If one is interested
in more precise results, a suitable M-dependence must be prop-
erly taken into account. In order to be able to efficiently extract
the correct value of βc, we will derive an analytical estimate of
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Fig. 5. Number of thermally excited atoms N − N0 as a function of the tempera-
ture T for different values of the rotation frequency and the quartic anharmonicity
k = kBEC. The discretization parameters are given in Table 3, and the results are
calculated by taking into account semiclassical corrections. The dashed line corre-
sponds to the number of atoms N = 3 · 105 in the experiment [7]. For comparison,
the full lines depict the semiclassical results from Ref. [10].

the asymptotic error 	βc = βc − βc(M) which is introduced by the
cutoff M . Note that always 	βc > 0, since βc(M) < βc compensates
the missing terms in the sum (19).

If we insert βc = βc(M) + 	βc into Eq. (19), the error 	βc can
considered to be small for sufficiently large value of the cutoff M .
By comparing Eq. (19) with the exact expression (10) we obtain

∞∑
m=M+1

∞∑
n=1

e−mβc(En−E0)

≈ 	βc

M∑
m=1

∞∑
n=1

m(En − E0)e−mβc(En−E0). (23)

The term m(En − E0) within the sum can be obtained by setting
N0 = 0 and applying the partial derivative ∂/∂βc to Eq. (19):

−	βc
∂N

∂βc
≈

[
1 − 	βc

∂

∂βc

] ∞∑
m=M+1

∞∑
n=1

e−mβc(En−E0). (24)

Note that the derivative of the particle number N with respect to
βc is not equal to zero, since N is here effectively defined by the
sum (10). Therefore, we have instead

∂N

∂βc
= −

∞∑
m=1

∞∑
n=1

m(En − E0)e−mβc(En−E0). (25)

Clearly, the right-hand side is a negative quantity which does not
depend on M . However, it does depend on βc and the energy spec-
trum of the system.

If the system is close to a d-dimensional harmonic oscillator,
which is the case for the potential (1) with the small anharmonic-
ity relevant for the experiment, for large values of M we have
approximately

∞∑
m=M+1

∞∑
n=1

e−mβc(En−E0) ≈ d
e−(M+1)βch̄ω

1 − e−βch̄ω
, (26)

where ω denotes an effective harmonic frequency. For the case of a
large anharmonicity, the effective frequency ω would depend on k,
representing the harmonic expansion of the potential around its
minimum. With such an estimate, Eq. (24) reduces to
Fig. 6. Dependence of βc on the cumulant cutoff M for an over-critically (r = 1.04)
rotating condensate of N = 3 · 105 atoms of 87Rb with the quartic anharmonicity of
the trap k = kBEC. The discretization parameters are given in Table 3. The dashed
line corresponds to a value of βc obtained by fitting the numerical results to the
function (29), while the full line gives the fitted function f (M).

	βc ≈ − d

1 − e−βch̄ω

× e−(M+1)βch̄ω

∂N/∂βc + (M + 1)e−(M+1)βch̄ω dh̄ω
1−e−βch̄ω

. (27)

The term (M + 1)e−(M+1)βch̄ω in the denominator of the second
factor can be neglected for large enough values of the cutoff M ,
yielding as a simplified version of the above expression:

	βc ≈ − de−(M+1)βch̄ω

∂N/∂βc(1 − e−βch̄ω)
. (28)

In order to use the derived estimates for 	βc, apparently one
would already have to know the sought-after value of βc as well as
the difficult derivative ∂N/∂βc. However, in practical applications
this obstacle can be circumvented as follows. The expressions (27)
and (28) can be used for fitting the numerical data for βc(M) =
βc − 	βc, as is illustrated in Fig. 6. In this standard approach, all
unknown values are fit parameters, obtained numerically by the
least-square method. Note that not only βc is obtained by such a
fitting procedure, but also other parameters, such as ∂N/∂βc, or
the effective harmonic frequency ω. The important point here is
to capture the correct M-dependence, while all other parameters
do not depend on it, so that they can be extracted by fitting. For
example, in Fig. 6 we have used the fitting function

f (M) = βc − c1e−c2(M+1)

1 + c3(M + 1)e−c4(M+1)
, (29)

which reproduces the numerical data quite accurately and gives
high-precision results for the condensation temperature Tc. The
virtue of the derived estimates lies in the fact that they can be
used to extract the information on the condensation tempera-
ture even for moderate values of M , when a saturation is not yet
achieved. This substantially speeds up the numerical calculation of
condensation temperatures, especially when it has to be done for
different values of potential parameters, such as the frequency ra-
tio r = Ω/ω⊥ .

Fig. 7 summarizes the numerical results for the condensation
temperature Tc for the anharmonicity k = kBEC as well as the par-
ticle numbers N = 3 · 105 and N = 1 · 104. If we compare the
obtained numerical results with the semiclassical approximation
from Ref. [10], we see that the agreement turns out to be rela-
tively good for the undercritical regime, but it becomes worse for
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Fig. 7. The condensation temperature as a function of the rotation frequency for the
condensate of N = 3 · 105 and N = 1 · 104 atoms of 87Rb, with the quartic anhar-
monicity of the trap k = kBEC. The discretization parameters are given in Table 3.
The full lines correspond to the semiclassical approximation for Tc from Ref. [10].

an overcritical rotation of the condensate. After presenting results
for the ground-state occupancy, which were obtained from this ap-
proach in the next section, we will compare our numerically exact
results with the semiclassical approximation in more detail, and
identify the parameter ranges where a full numerical treatment
becomes necessary.

5.2. Ground-state occupancy

The ground-state occupancy is the next important global prop-
erty of Bose–Einstein condensates we will look into. Below the
condensation temperature a non-trivial fraction of atoms is in the
ground state, thus yielding a macroscopic value of the occupancy
ratio N0/N .

Using the same approach as above, we can calculate the
ground-state occupancy from Eq. (18). After determining the
ground-state energy E0 from an exact diagonalization of the evo-
lution operator, we obtain

N0

N
= 1 − 1

N

∞∑
m=1

[
emβE0 Z1(mβ) − 1

]
. (30)

In order to calculate N0/N , we need the full single-particle en-
ergy spectrum. For low temperatures, the large number of energy
eigenstates obtained within the exact diagonalization is sufficient.
In the sum of Eq. (30) we have again to introduce a cutoff M and
to eliminate it by applying the methods described in previous sec-
tions. To this end one uses either a very large value for the cutoff
or one derives the appropriate finite correction term, and fits the
results to the derived function.

Fig. 8 presents numerical results for the ground-state occupancy
of the condensate. The quartic anharmonicity of the trap is chosen
to be k = 103kBEC, and the results are given for the non-rotating
case with the total number of atoms N = 1 · 104 and for critically-
rotating codensate with N = 5 · 104 atoms. A comparison with the
semiclassical results derived in Ref. [10] shows that the deviations
increase with larger temperatures and smaller particle numbers.

5.3. Comparison with semiclassical approximation

Fig. 9 depicts the errors of the semiclassically calculated con-
densation temperature, where the exact values are obtained by
using the presented numerical approach. As we can see, the agree-
Fig. 8. Ground-state occupancy N0/N as a function of the temperature T for non-
rotating and critically-rotating condensate for different values of the total number of
atoms. The quartic anharmonicity is k = 103kBEC, and the discretization parameters
are given in Table 3. The full lines depict the semiclassical results from Ref. [10].

Fig. 9. Relative error of semiclassical results for the condensation temperature [10]
as a function of the rotation frequency Ω in units of r = Ω/ω⊥ for N = 3 · 105 (top)
and N = 1 · 104 (bottom). The quartic anharmonicity is k = kBEC, and the discretiza-
tion parameters are given in Table 3. The insets in both plots give the corresponding
results for the large anharmonicity k = 103kBEC.
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ment is relatively good for large particle numbers and small an-
harmonicity if the condensate rotates under-critically. The error in
this case is of the order of 1% to 1.5%, and turns out to be minimal
for a critical rotation. However, the error significantly increases for
an overcritical rotation up to almost 3.5% for r = 1.1. Therefore,
while the semiclassical approximation is acceptable for undercrit-
ical rotation, in the overcritical regime a numerical treatment be-
comes necessary. This is even more pronounced if we decrease the
particle number to 104, which is quite typical for many BEC exper-
iments. In that case, semiclassical results already have an error of
the order of 20%. For large anharmonicity the rotation effect is not
so important, as we can see from insets on both graphs in Fig. 9.
However, increasing the particle number to 104 makes a numer-
ical treatment indispensable, since the errors of the semiclassical
results amount up to 5%.

6. Local properties of rotating Bose–Einstein condensates

Local properties of ultra-cold quantum gases are ubiquitously
used to observe and study the phenomenon of Bose–Einstein con-
densation. The prominent peak in time-of-flight absorption pic-
tures, which appear suddenly when the temperature is decreased
below Tc, is a clear signature for the occurrence of a BEC phase
transition. It is experimentally used to measure the thermody-
namic properties of the condensate. In this section we will show
how the presented numerical approach can be applied to calculate
both the density profiles and the time-of-flight absorption imaging
profiles.

6.1. Density profiles

The two-point propagator ρ(x1,x2) = 〈Ψ̂ †(x1)Ψ̂ (x2)〉 defines
via its diagonal element, i.e. n(x) = ρ(x,x), the density profile of
atoms in a trap. For the ideal Bose gas, the density profile can be
written as

n(x) = N0
∣∣ψ0(x)

∣∣2 +
∑
n�1

Nn
∣∣ψn(x)

∣∣2
, (31)

where the second term represents the thermal contribution to the
density profile. Furthermore, the quantities ψn represent single-
particle eigenstates, while the occupancies Nn with n � 1 are given
by the Bose–Einstein distribution

Nn = 1

eβ(En−E0) − 1
. (32)

Having at our disposal numerically calculated energy eigenval-
ues and eigenfunctions, we can calculate the density profile of the
condensate. In order to do so, we first have to obtain the ground-
state occupancy number N0 using the approach described in the
previous section. Once this is done, Eq. (31) allows to calculate
the density profile. In view of a comparison with absorption imag-
ing, which always produces two-dimensional profiles, we have to
integrate our numerically determined three-dimensional particle
density n(x) along the imaging axis. Fig. 10 presents typical results
for the resulting density profiles of Bose–Einstein condensates for
both the non-rotating and the critically-rotating cases. Obviously, a
rotation of the condensate leads to an effective spreading due to
the appearance of a centrifugal potential.

Although this approach is sufficient for treating the low-
temperature regime, where the condensate is present, we em-
phasize that the same method can also be used to deal with the
thermal regime, when the temperature is increased beyond Tc.
For even higher temperatures, when the number of energy eigen-
states, that need to be taken into account, exceeds the number of
numerically accessible eigenstates, the presented approach can be
extended in a similar way as the partition function was calculated
Fig. 10. Density profile in xy-plane for a non-rotating (top) and a critically-rotating
(bottom) condensate of N = 3 · 105 atoms of 87Rb with the anharmonicity k = kBEC

at T = 30 nK. The dimensionless unit length on both graphs corresponds to 1.34 μm,
i.e. the linear size of the profile is approximately 16.1 μm (top) and 32.2 μm (bot-
tom). The discretization parameters are given in Table 3.

previously as a sum of diagonal transition amplitudes. Using the
cumulant expansion of occupancies and the spectral decomposi-
tion of thermal transition amplitudes, the density profile can be
written for high enough temperatures as

n(x) = N0
∣∣ψ0(x)

∣∣2

+
∑
m�1

[
emβE0 A(x,0;x,mβh̄) − ∣∣ψ0(x)

∣∣2]
. (33)

Here A(x,0;x,mβh̄) represents the imaginary-time amplitude for
a single-particle transition from the position x in the initial imag-
inary time t = 0 to the position x in the final imaginary time
t = mβh̄.

While both definitions (31) and (33) are mathematically equiv-
alent in the case when one is able to calculate infinitely many en-
ergy eigenstates and amplitudes for an arbitrary propagation time,
the first one is more suitable for low temperatures, when the num-
ber of relevant energy eigenstates is moderate, and the second one
is suitable for high temperatures, when the imaginary propagation
time h̄β is small, and the short-time expansion can be successfully
applied.

6.2. Time-of-flight graphs for BECs

In typical BEC experiments, a trapping potential is switched off
and the gas is allowed to expand freely during a short flight time t
which is of the order of several tens of miliseconds. Afterwards an
absorption picture is taken which maps the density profile to the
plane perpendicular to the laser beam. For the ideal Bose conden-
sate, the density profile after time t is given by

n(x, t) = N0
∣∣ψ0(x, t)

∣∣2 +
∑

Nn
∣∣ψn(x, t)

∣∣2
, (34)
n�1
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Fig. 11. Time-of-flight absorption density profiles in xy-plane for an over-critically rotating (r = 1.04) condensate of N = 3 ·105 atoms of 87Rb with the anharmonicity k = kBEC

at T = 30 nK. The flight time, designated as TOF, is given at each plot. The dimensionless unit length on all graphs corresponds to 1.34 μm and the linear size of profiles is
approximately 53.6 μm. The discretization parameters are given in Table 3.
where the density profile has to be integrated along the imag-
ing axis, and the eigenstates ψn(x, t) are propagated according to
the free Hamiltonian, containing only the kinetic term, since the
trapping potential is switched off. If the energy eigenstates are
available exactly, either analytically or numerically, their propaga-
tion time can be calculated by performing two consecutive Fourier
transformations:

ψn(x, t) =
∫

d3k d3X

(2π)3
ei[k·(r−X)−ωkt]ψn(X), (35)

where the term e−iωkt accounts for a free-particle propagation
in k-space. In practical applications, when the energy eigenstates
are calculated by a numerical diagonalization of space-discretized
transition amplitudes, the natural way to calculate the above free-
particle time evolution is to use Fast Fourier Transform (FFT) nu-
merical libraries.

For high temperatures we can use a mathematically equivalent
definition of the density profile which is derived again from using
the cumulant expansion of occupancy numbers and the spectral
decomposition of transition amplitudes:

n(x, t) = N0
∣∣ψ0(x, t)

∣∣2

+
∑
m�1

[
emβE0

∫
d3k1 d3k2 d3X1 d3X2

(2π)6

× ei[(k1−k2)·x−k1·X1+k2·X2−(ωk1
−ωk2

)t]

× A(X1,0;X2,mβh̄) − ∣∣ψ0(x, t)
∣∣2

]
. (36)
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In both approaches it is first necessary to calculate the ground-
state energy E0 and the eigenfunction ψ0(x), as well as the
ground-state occupancy N0. If we rely on Eqs. (34) and (35) to
calculate time-of-flight graphs, we have to calculate as many eigen-
states as possible by numerical diagonalization. Conversely, if it is
possible to use directly Eq. (36), we can apply the effective ac-
tion short-time expansion of thermal transition amplitudes. In both
cases FFT is ideally suited for calculating time-of-flight graphs.

6.3. Overcritical rotation

The case of critical and overcritical rotation r � 1 is realized in
the Paris experiment by introducing the anharmonic part of the
potential (1), so that the condensate is confined even when the
harmonic part of the trapping potential is completely compensated
or overcompensated by the rotation. The experimental realization
of this delicate balance was difficult to achieve, but neverthe-
less when the condensate was successfully confined while rotating
over-critically, the measurements of its properties can be done us-
ing the standard techniques, including absorption imaging. Within
the semiclassical approach one has to carefully consider this situ-
ation, since the chemical potential is defined by the minimum of
the potential, and now cannot be simply set to zero anymore [10].
In our numerical approach, however, the implementation of the
methods described in previous sections is straightforward even for
overcritical rotation. First one calculates energy eigenvalues and
eigenstates using exact diagonalization, yielding negative values for
the first several eigenstates. Table 2 shows the resulting energy
spectrum of an over-critically rotating condensate (r = 1.04) for
the experimental value of the anharmonicity kBEC, as well as for
the case of large anharmonicity 103kBEC.

Condensation temperature and other global properties as well
as local properties of over-critically rotating condensates can also
be calculated as before. Fig. 11 gives the time-of-flight absorption
imaging sequence in the xy-plane for an overcritically (r = 1.04)
rotating Bose–Einstein condensate with the anharmonicity k = kBEC
and the particle number N = 3 · 105 at T = 30 nK, exhibiting an
interesting behavior. The initial density profile has a minimum at
the origin, due to the shape of the anharmonic potential. The free
expansion of the condensate leads to an increase in the particle
density at the origin, and only afterwards the condensate density
profile expands monotonically. Fig. 12 presents the time depen-
dence of the particle density at the origin for varying rotation
frequencies, parametrized by the ratio r = Ω/ω⊥ . We read off that
approaching the critical rotation slows down the expansion of the
condensate. For overcritical rotation this is even more pronounced,
due to the appearance of the peak in the particle density for the
expansion time t > 0. This leads to an expansion which is typically
an order of magnitude slower for the rotation with r > 1.

7. Conclusions

In this Letter a new method for numerically calculating short-
time transition amplitudes based on the effective action approach
is applied to the study of ideal Bose gases. Earlier derived higher-
order discretized effective actions are used for an efficient numer-
ical calculation of both global and local properties of fast-rotating
Bose–Einstein condensates. To this end we have calculated large
numbers of single-particle eigenvalues and eigenstates using an
exact numerical diagonalization of the space-discretized evolution
operator matrix. Using this information, we have calculated the
condensation temperature and the ground-state occupancy of the
condensate, as well as density profiles and time-of-flight absorp-
tion graphs. We have also shown that a critical and an overcritical
rotation can be studied using the presented numerical approach,
Fig. 12. Condensate density at the origin of xy-plane as a function of the time of
flight (TOF) for the condensate of N = 3 ·105 atoms of 87Rb at T = 30 nK for several
rotation frequencies Ω in units of r = Ω/ω⊥ . The quartic anharmonicity is k = kBEC

and the discretization parameters are given in Table 3.

and that it leads to a substantial increase in the time scale for
the free expansion of the condensate after the trapping poten-
tial is switched off. Finally, we note that our approach can also
be used for numerical studies of properties of rotating ultra-cold
Fermi gases [25].
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