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Abstract

A newly developed method for systematically improving the convergence of path integrals for transition amplitudes [A. Bogojević, A. Balaž,
A. Belić, Phys. Rev. Lett. 94 (2005) 180403, A. Bogojević, A. Balaž, A. Belić, Phys. Rev. B 72 (2005) 064302, A. Bogojević, A. Balaž, A. Belić,
Phys. Lett. A 344 (2005) 84] and expectation values [J. Grujić, A. Bogojević, A. Balaž, Phys. Lett. A 360 (2006) 217] is here applied to the
efficient calculation of energy spectra. We show how the derived hierarchies of effective actions lead to substantial speedup of the standard path
integral Monte Carlo evaluation of energy levels. The general results and the ensuing increase in efficiency of several orders of magnitude are
shown using explicit Monte Carlo simulations of several distinct models.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Feynman’s path integrals [5,6] provide the general math-
ematical framework for dealing with quantum and statistical
systems. The formalism has been successfully applied in gener-
alizing the quantization procedure from the archetypical quan-
tum mechanical problem of the dynamics of a single particle
moving in one dimension, to more particles, more dimensions,
as well as to more complicated objects such as fields, strings [7],
etc. Symmetries of physical systems can be more easily treated
and applied in this formalism, since it gives a simple and nat-
ural setup for their use [8]. Various approximation techniques
are more easily derived within the framework of this formalism,
and it has been successfully used for deriving non-perturbative
results. The parallel application of this formalism in both high
energy and condensed matter physics makes it an important
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general tool [9,10]. The analytical and numerical approaches
to path integrals have by now become central to the develop-
ment of many other areas of physics, chemistry and materials
science, as well as to the mathematics and finance [11–14]. In
particular, general numerical approaches such as the path inte-
gral Monte Carlo method have made possible the treatment of
a wealth of non-trivial and previously inaccessible models.

The key impediment to the development of the path in-
tegral formalism is a lack of complete understanding of the
general mathematical properties of these objects. In numeri-
cal approaches limited analytical input generally translates into
lower efficiency of employed algorithms. The best path gen-
erating algorithms, for example, are efficient precisely because
they have built into them the kinematic consequences of the sto-
chastic self-similarity of paths [15]. A recent series of papers
[1–3] has for this reason focused on the dynamical implications
of stochastic self-similarity by studying the relation between
path integral discretizations of different coarseness. This has
resulted in a systematic analytical construction of a hierarchy
of N -fold discretized effective actions S

(p)
N labeled by a whole

number p and built up from the naively discretized action in
the mid-point ordering prescription (corresponding to p = 1).
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The level p effective actions lead to discretized transition am-
plitudes and expectation values differing from the continuum
limit by a term of order 1/Np .

In this Letter we extend the applicability of the above
method for improving the efficiency of path integral calcu-
lations to the evaluation of energy spectra. We show how
the increased convergence of path integrals translates into the
speedup in the numerical calculation of energy levels. Through-
out the Letter we present and comment on the Monte Carlo
simulations conducted using the hierarchy of effective actions
for the case of several different models including anharmonic
oscillator, Pöschl–Teller potential, and Morse potential. All the
numerical simulations presented were done using Grid-adapted
Monte Carlo code and were run on EGEE-II and SEE-GRID-2
infrastructure [16,17]. The effective actions and the codes used
can be found on our web site [18].

2. Partition function and energy spectra

The partition function is the central object in statistical me-
chanics. The path integral formalism gives us an elegant frame-
work for calculating partition functions which can be used
either for deriving analytical approximation techniques or for
carrying out numerical evaluation. The starting point is the ex-
pression for the partition function in the coordinate basis,

(1)Z(β) =
∞∫

−∞
da A(a, a;β),

where A(a,b;β) = 〈b|e−βĤ |a〉 is the quantum mechanical
transition amplitude for going from a to b in (Euclidean)
time β . In the path integral formalism transition amplitudes are
given as the N → ∞ limit of the (N − 1)-fold integral expres-
sion

(2)AN(a, b;β) =
(

1

2πεN

)N/2 ∫
dq1 · · ·dqN−1 e−SN .

SN is the naively discretized action of the theory, εN = β/N

the discrete time step. For the physical models that we consider
the action is of the form

(3)S =
β∫

0

dt

(
1

2
q̇2 + V (q)

)
,

and its naive discretization equals

(4)SN =
N−1∑
n=0

(
δ2
n

2εN

+ εNV (q̄n)

)
,

where δn = qn+1 − qn, and q̄n = 1
2 (qn+1 + qn). Note that we

are using units in which the particle mass and h̄ have been set
to unity and that we are evaluating path integrals in the so-called
mid-point ordering prescription.

From the above we have obtained a path integral represen-
tation for the partition function that is directly amenable to
numerical evaluation. On the other hand, by evaluating the trace
Fig. 1. The curves depict the exact solution of the discretized free energies
FN(β) for the harmonic oscillator in the left ordering prescription given in
Eq. (7) for various values of N . The data points give the results and error bars
of the corresponding numerical calculations, used to verify the code. Parameters
are ω = 1 and NMC = 107.

in Eq. (1) in the energy basis we find

(5)Z(β) ≡ e−βF(β) =
∞∑

n=0

e−βEn.

As we can see, the partition function, or equivalently the free
energy F(β), completely determines the energy spectrum and
vice-versa. For example, if we define a series of auxiliary func-
tions as

(6)Fn(β) = − 1

β
ln

(
e−βF −

n−1∑
i=0

e−βEi

)
,

then it immediately follows that Fn(β) → En for large β . It
would be ideal, therefore, if we could calculate the free energy
(and the other auxiliary functions) for arbitrarily large values
of β . This is not possible in numerical calculations. First of all
the calculations become much more demanding with growth
of “time of propagation” β (just as the physics becomes more
interesting). More importantly, when doing numerical calcu-
lations we evaluate discretized quantities such as FN , and the
N → ∞ and β → ∞ limits that one would need to perform do
not commute. The best way to see this is to look at the free en-
ergy of an exactly solvable model—the harmonic oscillator. In
this case the N -fold discretized free energy (in the left ordering
prescription) equals [14]

(7)FN(β) = 1

β
ln

(
2 sinh(ω̃β)

)
,

where ω̃ = (2/εN) arcsinh(ωεN/2). This solution is illustrated
in Fig. 1. It follows that, unlike its continuum limit F(β), the
discretized free energy FN(β) does not tend to a constant value
for large β . Said another way, the discretized energy levels
themselves depend on εN and thus on β . For example, for the
harmonic oscillator we have EN,n(εN) = ω̃(n + 1/2).

In the case of a general theory the free energy is related to
its discretized value as F(β) − FN(β) = O(εN). We see that
FN(β) slowly converges to its continuum limit, i.e. that we
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Fig. 2. The dependance of F
(p)
N

(β) on N for different levels p. The plot is
for the anharmonic oscillator with quartic coupling g = 1, inverse temperature
β = 1 and NMC = 107 Monte Carlo samples. The same kind of behavior is
seen for other parameters as well as for other potentials.

need a large number of discretization points N to approach that
value. In addition, the larger the value of β we want, the larger
N must be in order to achieve a given accuracy. The price we
pay is in the computer time which grows linearly with N .

A recent series of papers [1–3] analytically studied the rela-
tion between path integral discretizations of different coarse-
ness for the case of a general theory. This work resulted in
a systematic construction of a hierarchy of N -fold discretized
effective actions S

(p)
N labeled by a whole number p and built up

from the naively discretized action in the mid-point prescription
(corresponding to p = 1). The level p effective action leads to
discretized transition amplitudes and expectation values differ-
ing from the continuum limit by a term of order 1/Np . Thus,
moving up the hierarchy we are guaranteed to get expressions
which converge ever faster to the continuum limit. The direct
application of these results to the free energy gives

(8)F(β) − F
(p)
N (β) = O

(
ε
p
N

)
.

For a given inverse temperature β , and for εN � 1 the dis-
cretized free energy F

(p)
N (β) converges faster to the continuum

as we increase the hierarchy level p. This is illustrated in Fig. 2.
When using the path integral Monte Carlo method to calcu-

late the free energy F(β) there are two sources of errors. The
first comes from the limited number of Monte Carlo samples
NMC and is proportional to N

−1/2
MC . The second type of error

comes from discretization—in our case from approximating the
free energy with F

(p)
N (β) for some N and p. As we have seen,

for a given β this discretization error is proportional to N−p .
These two types of errors should optimally be of the same or-
der, e.g. there is no point in decreasing the discretization error
bellow the Monte Carlo error as this would not decrease the
overall error. In practice we fix the precision we want by choos-
ing the number of Monte Carlo samples and then decrease the
discretization error to match this either by increasing N or the
hierarch level p. The second choice is far better; however, since
computation times grow linearly with N , but are almost inde-
pendent of p (at least for p � 9, the hierarchy levels studied
in [1,2]). As a consequence of this, the speedup coming from
using higher values of p at fixed precision δ is proportional to
δ−1+1/p . Therefore, by using p = 9 we are in fact quite near to
the point of optimal benefit for which the speedup of the new
method is inversely proportional to the precision. As an illustra-
tion, for two decimal precision the new method gives a hundred
fold speedup over the defining algorithm, for four decimal pre-
cision the speedup is ten thousand fold, etc. It is important to
note that the greatest utility of the new evaluation scheme is,
therefore, when calculating quantities with high precision. We
stress that all of this holds for εN � 1, i.e. as long as N � β is
satisfied.

3. Numerical results

As we have seen in the previous section, F(β) can be eval-
uated with arbitrary precision on any interval of inverse tem-
peratures [0, βmax] for any given potential by appropriately in-
creasing and adjusting N , p, and NMC. Let us now numerically
compare the quality of different discretizations of the free en-
ergy F

(p)
N with F ∗, the most accurate one that may be calculated

on a given set {βi}. To do this we use the standard χ2 function,

(9)χ2(N,p) = 1

M

∑
{βi }

(F
(p)
N (βi) − F ∗(βi))

2

(�F
(p)
N (βi))2 + (�F ∗(βi))2

,

where M is the number of points in the set {βi}, and �F is
the Monte Carlo error. By including the Monte Carlo error of
F ∗ into the χ2 weights we took into account the fact that it is
also calculated numerically. χ2 should be around one for well
optimized N and p. Note that χ2 � 1 if the exact value of F ∗
is not within the error bars of F

(p)
N , while χ2 	 1 if the Monte

Carlo error is too large.
We conducted this test on the anharmonic oscillator with

quartic coupling V (q) = 1
2q2 + g

4!q
4. The discretized free en-

ergies were calculated for β ∈ [0.5,8] with step 0.5, N � 1024
and p = 1,2, . . . ,9. The number of Monte Carlo samples used
was 106. The comparisons were done for a range of coupling
constants g ∈ {0,0.1,1,10,100,1000}. Taking F

(9)
1024 as the ex-

act result, we calculated χ2 for each pair of parameters (N,p)

and coupling g, and looked for (N,p) pairs with approximately
the same values of χ2. These pairs are given in Fig. 3. As we
can see, the relation 1/ log2 N ∝ p that is implicit in Eq. (8)
actually holds, i.e. the error indeed scales as N−p .

We now turn to calculating the energy spectrum using the
outlined efficient procedure for evaluating the free energy of
a general theory. For the range of inverse temperatures β that
will be used for numerical calculations of the energies we
choose βmax so that FN(β) = F(β) within the error bars on
the whole [0, βmax] interval. We also need to ensure that all the
assumptions mentioned above hold (εN � 1, βmax fixed). The
free energy F(β) and all its auxiliary functions can be written
as

(10)Fn(β) = En − 1

β
ln

(
1 +

∞∑
i=n+1

e−β(Ei−En)

)
.
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Fig. 3. Pairs of N and p which give similar values of χ2. The plot gives
1/ log2 N on y axis as a function of p. The general behavior is illustrated on
the case of the anharmonic oscillator with quartic coupling g = 1, βmax = 8,
NMC = 106, χ2 ≈ 2–4.

Fig. 4. Dependance of the free energy F and the associated auxiliary functions
F1 and F2 on β for the anharmonic oscillator with quartic coupling g = 1. The
solid lines are the fits to curves of the form given in Eq. (11). The horizontal
lines in black correspond to the energy levels En determined from these fits (see
Table 1). Numerical simulations were performed with p = 9 level improved
actions, N = 256, and NMC = 107.

As a result, we have fit the numerical data to functions of the
form

(11)Fn(β) = En − 1

β
ln

(
1 + Ae−Bβ

)
,

where En, A and B are the parameters of the fit. Fig. 4 shows
the free energy F(β) (approximated by its discretization for
N = 256 and p = 9) along with the associated auxiliary func-
tions F1(β), and F2(β) for the anharmonic oscillator with quar-
tic coupling g = 1. Note that the class of functions given in
Eq. (11) gives a better fit for larger values of β . This can in-
deed be explicitly seen from Fig. 4. The data points for the free
energy F(β) were obtained directly from our Monte Carlo sim-
ulations and were used to determine the ground state energy E0.
The auxiliary functions Fn(β) were obtained recursively using
Eq. (6) and the already determined energy levels. The error bars
presented in the figure also follow directly from Eq. (6) and are
Table 1
Low lying energy levels of the anharmonic oscillator with quartic coupling g,
calculated using N = 256, p = 9, and NMC = 107

g E0 E1 E2 E3

0 0.49993(2) 1.502(2) 2.48(6) 3.6(5)

0.1 0.50301(2) 1.516(1) 2.54(5) 3.5(2)

1 0.52765(2) 1.6295(8) 2.85(2) 3.98(7)

10 0.67335(2) 2.230(1) 4.12(2)

100 1.16247(4) 4.058(6)

1000 2.3578(2)

given by

(12)�Fn = �Fe−βF + ∑n−1
i=0 �Eie

−βEi

e−βF − ∑n−1
i=0 e−βEi

.

For large inverse temperatures β the above denominator be-
comes exponentially small, and so the error bars become very
large. Such points soon cease to give relevant contributions to
the calculations of the corresponding energy level owing to the
fact that we use a weighted fit. Note that, in fact, the lack of
exponential growth of error bars with β is an indication of bad
data points!

This effect of growing error bars becomes more pronounced
for higher energy levels. In addition, from Eq. (12) we see that
there is an accumulation of errors associated with all the lower
energy levels. Both of these effects taken together give practi-
cal limits to the number of energy levels we can calculate. The
precise depth to which we can probe the energy spectrum de-
pends on the number of Monte Carlo samples used as well as
the number of points βi selected within the range of inverse
temperatures available to us. As an illustration, Table 1 gives
the low lying energy levels of the anharmonic oscillator for sev-
eral values of coupling g. For all of these calculations we use
the same range of β . The ground state energy level was calcu-
lated to five significant digits for all values of g. As we have
already noted the errors increase as we go to higher energy lev-
els. In fact, this increase is faster for larger couplings since then
the energies themselves become higher and so the e−βEn terms
become much smaller.

We have conducted explicit Monte Carlo calculations of the
spectra of the Pöschl–Teller and Morse potentials and have ob-
tained the same qualitative behavior. In particular, we have ex-
plicitly determined that the expected speedup in convergence,
coming from using the p-level hierarchy of effective actions,
holds for all of these potentials.

Obtained low lying energy levels for several values of the
parameters of the modified Pöschl–Teller potential,

(13)V (q) = −α2

2

λ(λ − 1)

cosh2 αx
,

are given in Table 2. We considered this exactly solvable poten-
tial since it allows comparison of numerically calculated energy
levels and the exact ones, given by

Eexact
n = −α2

2
(λ − 1 − n)2, 0 � n � λ − 1, n ∈ N.
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Table 2
Low lying energy levels of the modified Pöschl–Teller potential, calculated us-
ing N = 256, p = 9, and NMC = 107

α λ E0 Eexact
0 E1 Eexact

1

0.25 5.5 −0.6329(2) −0.63281 −0.3819(7) −0.38281
0.25 15.5 −6.5704(6) −6.57031 −5.694(9) −5.69531
0.5 5.5 −2.5313(3) −2.53125 −1.530(3) −1.53125
0.5 15.5 −26.281(1) −26.2813 −22.80(3) −22.7813

α λ E2 Eexact
2 E3 Eexact

3

0.25 5.5 −0.18(2) −0.19531 −0.09(3) −0.07031
0.25 15.5 −4.92(2) −4.88281 −3.8(4) −4.13281
0.5 5.5 −0.80(2) −0.78125 −0.31(6) −0.28125
0.5 15.5 −19.6(5) −19.5313 −16.9(9) −16.5313

As can be seen from Table 2, numerical results are in excellent
agreement with the exact energy levels even for a small value
of discretization coarseness N .

As a conclusion, we have investigated a newly developed
method for increasing the convergence of path integrals to the
continuum limit. The method has previously been shown to lead
to a many order of magnitude speedup in the numerical evalua-
tion of path integrals for transition amplitudes [1–3] and expec-
tation values [4]. In this Letter we have applied that method to
the evaluation of energy spectra. We have shown that the above
stated increase in convergence leads to a significant increase of
the efficiency of path integral Monte Carlo calculations of low
lying energy levels of a generic theory. The analytical results
were checked explicitly in a series of Monte Carlo simulations
of several distinct models over a wide range of parameters.
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