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Nonsingular black hole
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We present a completely integrable deformation of the CGHS dilaton gravity model in two dimensions. The
solution is a singularity free black hole that at large distances asymptotically joins to the CGHS solution.

PACS number~s!: 04.60.Kz, 04.70.Bw
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I. INTRODUCTION

One of the fundamental unsolved problems in theoret
physics is the unification of quantum theory and gravi
Many reasons why this has proved so difficult stem from
complicated nonlinear structure of the equations of gen
relativity. Gravitational equations are much simpler in low
dimensions. This is the reason why there has been so m
activity related to the quantization of gravity in two and thr
dimensions@1–12#. One of the most important results in 2
was the exactly solvable dilaton gravity model construc
by Callan, Giddings, Harvey and Strominger~CGHS!. The
CGHS model has 2D black hole solutions that are rema
ably similar to the Schwarzschild solution of general relat
ity.

Of the four fundamental interactions in nature, gravity
by far the weakest. For this reason, we can hope to see q
tum effects only in the vicinity of classical singularities. Pe
rose and Hawking@13–15# have shown that these singular
ties are endemic in general relativity. The general belie
that quantization will rid gravitation of singularities, just a
in atomic physics it got rid of the singularity of the Coulom
potential. If this is indeed the case, then there must exi
non-singular gravitational effective action whose classi
equations encode the full quantum theory. This effective
tion must have the Planck lengthLPlanck in it as an input
parameter. ForL@LPlanck the effective model must be indis
tinguishable from the classical gravity action. In an intere
ing series of papers@16–19# Brandenberger, Mukhanov an
their collaborators initiated a search for such effective m
els of 2D dilaton gravity. They investigated a procedure
which one could make models free of singularities. This p
allels Landau’s treatment of phase transitions in ferrom
nets. Landau chose~the simplest! effective action~Gibbs po-
tential in statistical mechanics parlance! that led to a
qualitatively correct description of phase transitions.

We should mention also some problems with ‘‘limite
curvature hypothesis’’ which are especially bad in high
dimensions. For example in four dimensions non-singu
curvature does not imply that all curvature invariants
non-singular and it has proven very difficult to keep all
them finite. Further, we can have singular plane waves
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~311!-dimensional general relativity that have curvature
variants zero~null singularities!. In general, finite curvature
is a necessary but not sufficient condition for the space-t
to be either non-singular or geodesically complete.

A recent success in the field of 2D dilaton gravity h
been the work of Louis-Martinez and Kunstatter@20#, who
reduced the solution of the general dilaton gravity mode
the solution of two ordinary integrals, i.e. to two quadratur
In this paper we will use their result to construct an exac
solvable class of models—modified CGHS models. ForL
@LPlanck these models go over into the CGHS model. Li
CGHS, the modified models are exactly solvable~the two
quadrature integrals can be calculated in closed form! and
have black hole solutions~solutions with event horizons!.
Unlike CGHS, the modified models are non-singular a
geodesically complete. As we shall see, the maximal cur
ture is proportional to 1/LPlanck.

II. CGHS MODEL

The action of all dilaton gravity models can be put in
the general form

S5E d2xA2gF1

2
gab]af]bf2V~f!1D~f!RG . ~1!

The potentialsV(f) andD(f) classify all the possible mod
els. Let us perform a conformal scaling of the metric

g̃ab5e22F(f)gab , ~2!

where the scaling factorF(f) satisfies

dF

df
52

1

4S dD

df D 21

. ~3!

This puts the action into the simplified form

S5E d2xA2g̃@f̃R̃2Ṽ~f̃ !#, ~4!

whereR̃ is the scalar curvature corresponding tog̃ab , and
we have introduced the new dilaton field and potential
cording to

f̃5D~f! ~5!
©2000 The American Physical Society11-1
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Ṽ~f̃ !5e2F(f)V~f!. ~6!

This form of the dilaton gravity action is obviously muc
easier to work with since we have lost the kinetic term
the dilaton field.

A well known property of two dimensional manifolds a
lows us to locally, i.e. patch by patch, choose conforma
flat coordinates for which

g̃ab5e2rhab . ~7!

Louis-Martinez and Kunstatter@20# have shown that we ca
choose a coordinate system in which the solution of the g
eral dilaton model is static and given by

x522E df̃

W~f̃ !1C
~8!

e2r52
C1W~f̃ !

4
, ~9!

where the pre-potentialW(f̃) is given bydW/df̃5Ṽ(f̃),
andC is an invariant. As we can see, the solution is given
terms of two quadratures: Eqs.~3! and ~8!, determining
F(f) and f̃(x) respectively. A given model is completel
integrable only if we can calculate both quadratures in clo
form.

The CGHS model is an example of a completely in
grable dilaton gravity model. The standard form of t
CGHS action is

S5E d2xA2ge22w~R14gab]aw]bw14l2!. ~10!

The simple field redefinitionf5A8e2w puts this into the
general form for dilaton gravity actions given in Eq.~1!. We
find

S5E d2xA2gS 1

2
gab]af]bf1

1

2
l2f21

1

8
Rf2D ,

~11!

hence

V~f!52
1

2
l2f2 ~12!

D~f!5
1

8
f2. ~13!

The first quadrature is easily integrated and we get

F~f!52 lnf. ~14!

Using this,f̃5D(f), as well as the definition ofṼ(f̃) we

immediately find thatṼ(f̃)52 1
2 l2, and thus the pre-

potential is W̃(f̃)52 1
2 l2f̃. The simplified form of the

CGHS action is therefore
08401
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S5E d2xA2g̃S f̃R̃1
1

2
l2D . ~15!

The CGHS model is completely integrable. In our notati
this means that the second quadrature~8! can also be solved
in closed form. A trivial integration gives

x5
4

l2 lnS 1

2
l2f̃2CD . ~16!

Inverting this we find

f̃~x!5
2

l2~e(l2/4)x1C!. ~17!

According to the general prescription this gives

r~x!52 ln21
l2

8
x, ~18!

f~x!5
4

l
~e(l2/4)x1C!1/2. ~19!

This, along with the expression forF(f), gives us

F~x!52 ln
4

l
2

1

2
ln~e(l2/4)x1C!. ~20!

The scalar curvature of the general model can be given
terms ofr(x) andF(x). We find

R522e22(F1r)
d2

dx2 ~F1r!. ~21!

For the CGHS model this gives

R5
4l2C

e(l2/4)x1C
. ~22!

Obviously R has a singularity forC,0. This is the CGHS
black hole solution. In fact, it can be shown that2C is
proportional to the mass, and henceC must be negative.
From now on we will chooseC521, thus putting the sin-
gularity atx50.

For later convenience we write the curvature as

R52
32

A
, ~23!

where we have introduced

A5
8

l2 ~e(l2/4)x21!. ~24!

The metric for the general dilaton model, given in term
of F andr, is simply

ds25e2(F1r)~2dt21dx2!. ~25!

In the case of CGHS we get
1-2
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e2(F1r)5
l2

64

e(l2/4)x

e(l2/4)x21
, ~26!

which vanishes forx52`. For stationary metrics the equa
tion g0050 determines the horizon. Therefore, in these
ordinates the CGHS black hole has a horizon atx52`. The
curvature, on the other hand, is well behaved at this point
with the Schwarzschild black hole one can find coordina
which are well behaved at the horizon. In this way one
nally obtains information about the global character of
manifold ~Sec. IV!.

III. MODIFIED CGHS MODEL

In this section we will construct a new dilaton gravi
model that satisfies the following requirements:

~1! It is completely integrable, i.e. both quadratures can
solved in closed form.

~2! For x→` it goes over into the CGHS model.
~3! It is singularity free.
As we have seen, dilaton gravity models are specified

giving the two potentialsD(f) andV(f). It is very difficult
to see how one should deform these potentials from t
CGHS form in order to satisfy the above criteria. Note, ho
ever, that the models are also uniquely determined by giv
F(f) and Ṽ(f̃). This is much better for us since we hav
now untangled the two integrability requirements:F(f) de-
termines the first quadrature andṼ(f̃) the second. Deforma
tions of a given model correspond to changes of both
these functions. In this paper we will look at a simpler pro
lem. We shall keepṼ(f̃) fixed, i.e. it will have the same
value as in the CGHS model

Ṽ~f̃ !52
1

2
l2. ~27!

We will only deformF(f). By doing this we are guarantee
that the second~and more difficult! quadrature is automati
cally solved. Because of thisf̃(x) andr(x) are the same a
in the CGHS model. Using the value forr(x) we may write
the scalar curvature for all the remaining models solely
terms ofF(x). We have

R528e2(l2/4)xS e22F
d2F

dx2 D . ~28!

Let us now chooseF. From our second requirement we s
that for largex the dilaton fieldf(x) must be near to its
CGHS form. Specifically,x→` corresponds tof→`.
Thus, our second requirement imposes that forf→` we
have

F~f!→2 lnf. ~29!

F(f) must also be such that the first quadrature~3! is ex-
actly solvable. To do this we choose
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F~f!52
1

a
lnS 11bfa

b D , ~30!

with a.0. The a and b values parametrize our class o
deformations. The first quadrature now gives

D~f!5H 1

8
f21

1

4b
lnf for a52

1

8
f21

1

4b~22a!
f22a for aÞ2.

~31!

On the other hand, the potentialV(f) is now simply

V~f!52
1

2
l2S 11bfa

b D 2/a

. ~32!

The choice ofa corresponds to a choice of explic
model, whileb just sets a scale for the dilaton field. Rath
than work here with the general modified model we will no
concentrate on the simplest model in this class; the one
responding to the choicea54. The action for this model is

S5E d2xA2gX1
2

gab]af]bf1
1

2
l2S 11bf4

b D 1/2

1
1

8 S f22
1

bf2DRC. ~33!

Note that forb→` this goes over into the action of th
CGHS model. As we have seen,b is just a scale forf,
hence, this is just a re-statement of our second requirem
From our construction we see that Eq.~33! corresponds, for
each finite value ofb, to a model that satisfies our first tw
requirements. All that is left is to check that the theory
indeed free of singularities. Being in two dimensions all th
we need to check is the scalar curvature.

From Eqs.~5! and ~31! for a54 we find the connection
betweenf and f̃

f̃5
1

8 S f22
1

bf2D . ~34!

On the other hand, as we have seen,f̃(x) is the same as in
the CGHS model, so that Eq.~17! holds. Combining with
Eq. ~34! we find f221/bf252A, where we have again
taken C521 @2C is still the Arnowitt-Deser-Misner
~ADM ! mass@21# because the asymptotic form of the mod
fied solution asx→` is the same as the asymptotic form
the CGHS solution#. Equivalently, f422Af221/b50.
This is easily solved—that is what makes the choicea54 so
nice. We find

f25A1A1

b
1A2, ~35!

where we chose the solution of the quadratic equation
allowedf to go over tofcghs in the b→` limit.
1-3
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Calculating the scalar curvature is now just a matter
plugging this into Eq.~28!. A simple but tedious calculation
now gives

R5A2l2S 1

b
1A2D 27/4S A1A1

b
1A2D 1/2

3H 16

bl2 1
3

b
A2

8

l2 A21S 1

b
2

8

l2 ADA1

b
1A2J ,

~36!

whereA(x) was given in Eq.~24!. Forb→` we indeed find
that

R→2
32

A
, ~37!

which is the CGHS result. From Eq.~36! we see that the
curvature of the modified CGHS model is indeed not sin
lar.

As may be seen in Fig. 1, the modified model has ma
mal curvature atx50. Its value is

Rmax5A2~16b1/21l2!. ~38!

At right infinity (x→1`) the modified model tends to th
CGHS result. On the other hand, at left infinity (x→2`)
both the CGHS model and its deformation tend to a de S
spaceR5L. However, for CGHS we haveL54l2, while
for the modified model the constant is a complicated funct
of b and l. Rather than writing it out let us only give th
result for largeb when we haveL52210l8b2 3/2. We have
just determined that

lim
x→2`

lim
b→`

RÞ lim
b→`

lim
x→2`

R. ~39!

Put another way: imposing that our model joins to CGHS
right infinity does not automatically guarantee a similar jo
ing at left infinity.

FIG. 1. R(x) for the CGHS model~thick line! and its deforma-
tion for b51, 3 and 5. Asb increases the deformations look mo
and more like the CGHS result~for x.0). The graphs have bee
plotted forl251.
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We are now in the position of trying to interpret th
meaning of our modified CGHS model. Obviously, one po
sibility is to think of Eq. ~33! as the classical action of
model with scale 1/b. However, it seems more natural t
interpret our model as an effective action. 1/b then naturaly
comes about from quantization, whileb→` corresponds to
the semiclassical limit. Our model should thus be the eff
tive action corresponding to the quantization of the CG
model. Quantization givesS;\, and essentially dimensiona
analysis~in units G5c51) gives f2;\, as well as 1/b
;\2. Therefore, if we are to interpret our model as an effe
tive action thenb5k\22, wherek is a constant of the orde
of unity. We see then that the maximal curvature~38! is
proportional to 1/\, i.e. represents a non-perturbative effe
Expanding our model in\ we find

Seff5Scghs2
1

8k
\2E d2xA2g~R22l2!f221o~\4!.

~40!

The leading correction to CGHS is of the form of the Jacki
Teitelboim action for 2D gravity. It would be very interes
ing to get this result by quantizing some fundamental
theory. To do this we would need to start from the CGH
model coupled to some matter fields. We would then have
integrate out the matter. The last step would be to calcu
the effective action. It is probably impossible to do this e
actly, however, we could hope to do this perturbatively a
compare with Eq.~40!.

IV. GLOBAL PROPERTIES OF THE SOLUTION

To support the claim that the solution is non-singular
are going to discuss global properties of the solution a
show that, in Kruskal coordinates, it is nonsingular eve
where and geodesically complete. For this purpose we w
the CGHS metric in the form

ds25e2(F1r)~2dt21dx2! ~41!

where

e2(F1r)5
l2

64

e(l2/4)x

e(l2/4)x21.
~42!

In the light-cone coordinatesz15x1t, z25x2t metric
~41! is

ds25
l2

64

e(l2/8)(z11z2)

e(l2/8)(z11z2)21
dz1dz2. ~43!

We define new coordinatesj6 by j6[e(l2/8)z6
in which

metric ~43! becomes

ds25
1

l2

dj1dj2

j1j221
. ~44!

We setl251. Introducing the so-called Kruskal coordinat
X andT, j15X1T andj25X2T we have
1-4
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ds25
1

X22T221
~2dT21dX2!. ~45!

The relationship between the old coordinatesx and t and
the new ones is given by

X5ex/8coshS t

8D ~46!

T5ex/8sinhS t

8D . ~47!

In Kruskal coordinatesX andT, the metric is always con
formally flat and there is no coordinate singularity at ho
zon. Figure 2 shows Kruskal extension of the CGHS mod

Photon traveling towards future reaches singularity in
nite proper time. Actually, ind52 photons do not exist bu
scalar particles moving with the speed of light can take th
role. In Kruskal coordinates horizon is not singular, so
can extend our space-time. Besides regions I and II we n
region III in order to complete the manifold in future. Now
if we want geodesically complete manifold we have to a
regions IV, V, and VI. Singularity divides the manifold i
three pieces: I, IV and the piece between them. Motivation
have them all in one picture will come from our modifie
CGHS model.

We can perform the same analysis in the modified CG
model. For this purpose we write the metric~41! in the form

ds254e2Fe(l2/4)x~2dt21dx2! ~48!

where we used Eq.~18! for r5r(x). Difference between the
modified and the original CGHS models is marely in t
factor e2F and due to the fact that this factor is always no
zero in both models~in the modified model is also non
singular!, horizon is the same for both models,x52`. In
the light-cone coordinatesz6 the metric~48! is

FIG. 2. CGHS space-time in Kruskal coordinates.
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ds254e2Fe(l2/8)(z11z2)dz1dz2. ~49!

Following the procedure done in the CGHS case, we cho
new coordinatesj6[e(l2/8)z6

which gives

ds25e2F
256

l4
dj1dj2. ~50!

We set againl251. Transformation to Kruskal coordinate
is identical as in the CGHS case,j15X1T and j25X
2T, so we write

ds25256e2F~2dT21dX2!. ~51!

Global structure of the non-singular modified CGH
model is given in Fig. 3.

Diagram is almost the same as in the CGHS case with
important difference that the whole space-time is no
singular. In the place where singularity was present~shaded
surface!, now we have a region of the strong gravitation
fields ~big space-time curvature!.

V. CONCLUSION

We have constructed a class of exactly solvable 2D gr
ity models that represent deformations of the CGHS dila
gravity model. In the semi-classical limit these effecti
theories go over into the CGHS model. The modified CG
models lead to non-singular black hole solutions—i.e. ho
zons without singularities.

It will be interesting to apply this method to non-singul
2D cosmology models. A further avenue of research is
consider modified models for dilaton gravity in the presen
of matter.

FIG. 3. Space-time of the modified non-singular CGHS mo
in Kruskal coordinates. Shaded surface is the region of the str
gravitational fields.
1-5
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