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Nonsingular black hole
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We present a completely integrable deformation of the CGHS dilaton gravity model in two dimensions. The
solution is a singularity free black hole that at large distances asymptotically joins to the CGHS solution.

PACS numbeg(s): 04.60.Kz, 04.70.Bw

[. INTRODUCTION (3+1)-dimensional general relativity that have curvature in-
variants zerdnull singularities. In general, finite curvature
One of the fundamental unsolved problems in theoreticals a necessary but not sufficient condition for the space-time
physics is the unification of quantum theory and gravity.to be either non-singular or geodesically complete.
Many reasons why this has proved so difficult stem from the A recent success in the field of 2D dilaton gravity has
complicated nonlinear structure of the equations of generdpeen the work of Louis-Martinez and Kunstatf@0], who
relativity. Gravitational equations are much simpler in lowerreduced the solution of the general dilaton gravity model to
dimensions. This is the reason why there has been so mudhe solution of two ordinary integrals, i.e. to two quadratures.
activity related to the quantization of gravity in two and threeln this paper we will use their result to construct an exactly
dimensiong1—-12]. One of the most important results in 2D solvable class of models—modified CGHS models. Eor
was the exactly solvable dilaton gravity model constructed™ L pianck these models go over into the CGHS model. Like
by Callan, Giddings, Harvey and Stroming@GHS. The CGHS, the modified models are exactly solvattiee two
CGHS model has 2D black hole solutions that are remarkgquadrature integrals can be calculated in closed fcad
ably similar to the Schwarzschild solution of general relativ-have black hole solutiongsolutions with event horizons
ity. Unlike CGHS, the modified models are non-singular and
Of the four fundamental interactions in nature, gravity isgeodesically complete. As we shall see, the maximal curva-
by far the weakest. For this reason, we can hope to see quae is proportional to Lpjanck-
tum effects only in the vicinity of classical singularities. Pen-
rose and Hawking13—15 have shown that these singulari- Il. CGHS MODEL
ties are endemic in general relativity. The general belief is
that quantization will rid gravitation of singularities, just as
in atomic physics it got rid of the singularity of the Coulomb
potential. If this is indeed the case, then there must exist a
non-singular gravitational effective action whose classical  S= f d?x\—g
equations encode the full quantum theory. This effective ac-

tion must have the Planck lengllpinc in it as an input g yotentiala/(4) andD(4) classify all the possible mod-
parameter. FOL> Lpianqcthe effective model must be indis- gq ) o g perform a conformal scaling of the metric
tinguishable from the classical gravity action. In an interest-

ing series of papergl6—19 Brandenberger, Mukhanov and a —e 2F(#)g )
their collaborators initiated a search for such effective mod- ap ap:

els of 2D dilaton gravity. They investigated a procedure bywhere the scaling factdf(¢) satisfies
which one could make models free of singularities. This par-

The action of all dilaton gravity models can be put into
the general form

1
59"%0.bdpp=V(d)+D($)R|. (1)

allels Landau’s treatment of phase transitions in ferromag- dF 1/dD\ !
nets. Landau chodghe simplesteffective actionGibbs po- @ =" Z(@) ()
tential in statistical mechanics parlancthat led to a
qualitatively correct description of phase transitions. This puts the action into the simplified form
We should mention also some problems with “limited
curvature hypothesis” which are especially bad in higher ~ o~~~
dimensions. For example in four dimensions non-singular S:f dZX\/__9[¢R_V(¢)]' )

curvature does not imply that all curvature invariants are ~ B

non-singular and it has proven very difficult to keep all of whereR is the scalar curvature correspondingd,, and

them finite. Further, we can have singular plane waves iwe have introduced the new dilaton field and potential ac-
cording to
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V() =e*V(g). () o= f x\—g

This form of the dilaton gravity action is obviously much

easier to work with since we have lost the kinetic term forThe CGHS model is completely integrable. In our notation

the dilaton field. this means that the second quadrati@®ecan also be solved
A well known property of two dimensional manifolds al- in closed form. A trivial integration gives

lows us to locally, i.e. patch by patch, choose conformally

flat coordinates for which

. (15

TRE 22
PR+ 3

4 (1
XZF”’I E)\ gb—C . (16)

~ 5
9ap=€" " Nap- (7)
g g Inverting this we find

Louis-Martinez and Kunstatt¢20] have shown that we can

choose a coordinate system in which the solution of the gen- ~ 2 (\214)x
eral dilaton model is static and given by ¢(x) F(e +C). (7
f do According to the general prescription this gives
=—- — = 8
W(¢)+C ® \?
p(X)=—In2+ EX’ (18)
C+W(¢

¢(X) — X(e()\Z/A)X'f‘ C)1/2‘ (19)

where the pre-potentiaN(¢) is given by dW/dd=V(),
andC is an invariant. As we can see, the solution is given inThis, along with the expression f&1( ), gives us
terms of two quadratures: Eq$3) and (8), determining
F(¢) and ¢(x) _respectively. A given model is completely F(x)= _|ni_ £|n(e(le4)x+ C). (20)
integrable only if we can calculate both quadratures in closed N2
form.
The CGHS model is an example of a completely inte-The scalar curvature of the general model can be given in
grable dilaton gravity model. The standard form of thet€ms ofp(x) andF(x). We find
CGHS action is 2

d
R=—2e’2(F+p)W(F+p). (22)

szf d?x\—ge ?(R+4g9*#d,pdge+4N?). (10)
For the CGHS model this gives

The simple field redefinitionp=/8e ¢ puts this into the 5
general form for dilaton gravity actions given in Hd). We R 4N“C 22
find e\Iaxy o

Obviously R has a singularity folC<0. This is the CGHS

black hole solution. In fact, it can be shown thatC is
(11 proportional to the mass, and hen€emust be negative.

From now on we will choos€= —1, thus putting the sin-

1 1 1
S:f dZXV_9<§9a35a¢5B¢+§7\2¢2+ §R¢>2 :

hence gularity atx=0.
1 For later convenience we write the curvature as
=—S\?¢? 12
V(¢)=—35\"¢ (12 o .
1 - X! ( )
_ T2
D(¢)= 8 ¢*. (13 where we have introduced
The first quadrature is easily integrated and we get A F(e“z"‘)x— 1). (24

F(¢)=—Ing. (14
The metric for the general dilaton model, given in terms
Using this,$=D(¢), as well as the definition o¥($) we  of F andp, is simply
immediately find thatV($)=— 2 A%, and thus the pre-
potential is W($)=— i\%¢. The simplified form of the
CGHS action is therefore In the case of CGHS we get

ds?=e?FT)(—dt®+dx?). (25)
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A2 e()\2/4)x

1
2F+p) = F(¢)=——l
=62 ot (26) (¢) an(

1+B¢“) | 30

B

. . . . with a>0. The « and B values parametrize our class of
which vanishes fox= — . For stationary metrics the equa- deformations. The first quadrature now gives
tion goo=0 determines the horizon. Therefore, in these co- '

ordinates the CGHS black hole has a horizor=at- . The 1 1

curvature, on the other hand, is well behaved at this point. As §¢2+ 4—In¢ for a=2

with the Schwarzschild black hole one can find coordinates D(¢)= B (31)
which are well behaved at the horizon. In this way one fi-
nally obtains information about the global character of the
manifold (Sec. V).

Ly 1 e for a#2
8 T ap—w? are

On the other hand, the potentM(¢) is now simply

a\ 2/a
. . . . . __ L o1tBS
In this section we will construct a new dilaton gravity V(g)=—3r B -
model that satisfies the following requirements:

(1) Itis completely integrable, i.e. both quadratures can beé The choice ofa corresponds to a choice of explicit

solved in closed form. _ model, while3 just sets a scale for the dilaton field. Rather
(2) For x— it goes over into the CGHS model. than work here with the general modified model we will now
(3) Itis singularity free. _ . concentrate on the simplest model in this class; the one cor-
As we have seen, dilaton gravity models are specified byagn4nding to the choice=4. The action for this model is

giving the two potential® () andV(¢). It is very difficult

to see how one should deform these potentials from their 1 1

CGHS form in order to satisfy the above criteria. Note, how- Szf d?x\—g 59“ﬁ0a¢05¢+ E)\Z(

ever, that the models are also uniquely determined by giving

F(¢) and V(). This is much better for us since we have 1,

now untangled the two integrability requiremerfg:¢p) de- + 8 "= W RJ. (33

termines the first quadrature alWg#) the second. Deforma-

tions of a given model correspond to changes of both of Note that for3—oo this goes over into the action of the

these functions. In this paper we will look at a simpler prob-CGHS model. As we have seep, is just a scale forg,

lem. We shall keep/(¢) fixed, i.e. it will have the same hence, this is just a re-statement of our second requirement.

IIl. MODIFIED CGHS MODEL

(32

1+B¢4 1/2
-~

value as in the CGHS model From our construction we see that E§3) corresponds, for
each finite value of3, to a model that satisfies our first two
o 1 requirements. All that is left is to check that the theory is
V(gp)=— E)\Z. (27) indeed free of singularities. Being in two dimensions all that

we need to check is the scalar curvature.
From Egs.(5) and(31) for a=4 we find the connection

We will only deformF(¢). By doing this we are guaranteed betweend andZ&

that the secondand more difficult quadrature is automati-

cally solved. Because of thig(x) andp(x) are the same as 1 1
in the CGHS model. Using the value fp(x) we may write = §< P>— W) (34
the scalar curvature for all the remaining models solely in

terms ofFF(x). We have ~
(x) On the other hand, as we have seé(x) is the same as in

42F the CGHS model, so that E¢17) holds. Combining with
R:_ge—(xzm)X(e—ZF_z). (28) Eq. (34) we find ¢?>—1/84%>=2A, where we have again
dx taken C=—1 [-C is still the Arnowitt-Deser-Misner
(ADM) masg[21] because the asymptotic form of the modi-
Let us now choos&. From our second requirement we seefied solution ax— is the same as the asymptotic form of
that for largex the dilaton field¢(x) must be near to its the CGHS solutioh Equivalently, ¢*—2A¢?—1/3=0.
CGHS form. Specifically,x—o corresponds tog¢—oe. This is easily solved—that is what makes the chaice4 so
Thus, our second requirement imposes that dero we  nice. We find

have
2 __ 1 2
F(¢)——Ing. (29 P =A+ VE+A , (35)

F(¢) must also be such that the first quadrat@gis ex- where we chose the solution of the quadratic equation that
actly solvable. To do this we choose allowed ¢ to go over t0gg,sin the S— o limit.
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We are now in the position of trying to interpret the
A meaning of our modified CGHS model. Obviously, one pos-
sibility is to think of Eq. (33) as the classical action of a
model with scale 1. However, it seems more natural to
2p¢ interpret our model as an effective actionBthen naturaly
comes about from quantization, whi— oo corresponds to
-3 -2 -1

the semiclassical limit. Our model should thus be the effec-
tive action corresponding to the quantization of the CGHS
model. Quantization giveS~7, and essentially dimensional
analysis(in units G=c=1) gives ¢°~#, as well as 18
~#h?2. Therefore, if we are to interpret our model as an effec-
tive action then3= k# ~2, wherex is a constant of the order
of unity. We see then that the maximal curvatygs) is
proportional to 14, i.e. represents a non-perturbative effect.
Expanding our model irk we find

-20

FIG. 1. R(x) for the CGHS modelthick line) and its deforma-
tion for =1, 3 and 5. A3 increases the deformations look more
and more like the CGHS resulfor x>0). The graphs have been

1 ~7/4 172
R= ﬁxz(EJrAz)

1
plotted fora?=1. Seft= Scghs™ ahzf d’xy—g(R—2\2) ¢ 2+ 0(h%).
now gives Teitelboim action for 2D gravity. It would be very interest-
model coupled to some matter fields. We would then have to
152t s B actly, however, we could hope to do this perturbatively and

Calculating the scalar curvature is now just a matter of (40
plugging this into Eq(28). A simple but tedious calculation The leading correction to CGHS is of the form of the Jackiw-
ing to get this result by quantizing some fundamental 2D

1, theory. To do this we would need to start from the CGHS

A+ E +A

integrate out the matter. The last step would be to calculate

16 SA—%A2+(£— %A) %+A2], the effective action. It is probably impossible to do this ex-

compare with Eq(40).

(36)

whereA(x) was given in Eq(24). For 8—« we indeed find IV. GLOBAL PROPERTIES OF THE SOLUTION

that To support the claim that the solution is non-singular we
are going to discuss global properties of the solution and
32 ; ; o : )
R — —2 (37) show that, in Kruskal coordinates, it is nonsingular every
A’ where and geodesically complete. For this purpose we write

the CGHS metric in the form
which is the CGHS result. From E¢36) we see that the

curvature of the modified CGHS model is indeed not singu- ds?=e?F7P)(—dt?+dx?) (41)
lar.
As may be seen in Fig. 1, the modified model has maxiwhere

mal curvature ak=0. Its value is N

2(F+p) -~
Rina= V2(168Y2+)2). (38) € 64 g(\1Ax_ 1 (42

At right infinity (x— + ) the modified model tends to the In the light-cone coordinateg"=x+t, z~=x—t metric
CGHS result. On the other hand, at left infinity—{ — ) (41) is

both the CGHS model and its deformation tend to a de Sitter

spaceR=A. However, for CGHS we hava =4\?, while N2 eMBET+Z) L

for the modified model the constant is a complicated function dg:amdz dz". (43)
of B and\. Rather than writing it out let us only give the
result for largeB when we have\ =271 88 3/2, We have

iust determined that We define new coordinates™ by £*=e**®%" in which

metric (43) becomes
lim limR# lim lim R. (39

X— — 0 B—® P—PX— —®

1 detde
=== 44
e —1 (44)

Put another way: imposing that our model joins to CGHS at
right infinity does not automatically guarantee a similar join-We set\?=1. Introducing the so-called Kruskal coordinates
ing at left infinity. XandT, é'=X+T andé =X—T we have

084011-4



NONSINGULAR BLACK HOLE PHYSICAL REVIEW D61 084011

T T

Vv 3 Y /: i\ 1T ¥l X /: :\ X
g RN 5 R
=< // \\ e // \\
\VI //// \\\\

FIG. 2. CGHS space-time in Kruskal coordinates. FIG. 3. Space-time of the modified non-singular CGHS model
in Kruskal coordinates. Shaded surface is the region of the strong
gravitational fields.

ds?=————(—dT?+dX?). (45)
X2-T2-1

ds?=4eFe*®E +2) g7 7, (49)

The relationship between the old coordinakesndt and ) )
the new ones is given by Following the procedure done in the CGHS case, we choose

new coordinateg®=e**®2" which gives

X= eX’Bcos}‘(%) (46) 556 )
dsz=e2FFd§+d§ . (50)
T=ex’85inl'<é) . 47

We set again?=1. Transformation to Kruskal coordinates

In Kruskal coordinateX andT, the metric is always con- S identical as in the CGHS cas¢, =X+T and §” =X
formally flat and there is no coordinate singularity at hori- — T, SO we write
zon. Figure 2 shows Kruskal extension of the CGHS model.

Photon traveling towards future reaches singularity in fi- ds*=256e*"(—dT?+dX?). (53)
nite proper time. Actually, id=2 photons do not exist but
scalar particles moving with the speed of light can take their Global structure of the non-singular modified CGHS
role. In Kruskal coordinates horizon is not singular, so wemodel is given in Fig. 3.
can extend our space-time. Besides regions | and Il we need Diagram is almost the same as in the CGHS case with the
region IIl in order to complete the manifold in future. Now, important difference that the whole space-time is non-
if we want geodesically complete manifold we have to adasingular. In the place where singularity was pressheded
regions IV, V, and VI. Singularity divides the manifold in Surface, now we have a region of the strong gravitational
three pieces: I, IV and the piece between them. Motivation tdields (big space-time curvatuye
have them all in one picture will come from our modified

CGHS model. V. CONCLUSION
We can perform the same analysis in the modified CGHS
model. For this purpose we write the met(rm_) in the form We have constructed a class of exaCtIy solvable 2D grav-
ity models that represent deformations of the CGHS dilaton
d32=4e2Fe(”2’4)X(—dt2+ dx?) (48) gravity model. In the semi-classical limit these effective

theories go over into the CGHS model. The modified CGHS
where we used Ed18) for p=p(x). Difference between the models lead to non-singular black hole solutions—i.e. hori-
modified and the original CGHS models is marely in thezons without singularities.
factor e®™ and due to the fact that this factor is always non- It will be interesting to apply this method to non-singular
zero in both modelgin the modified model is also non- 2D cosmology models. A further avenue of research is to
singulay, horizon is the same for both modelss —«. In  consider modified models for dilaton gravity in the presence
the light-cone coordinates" the metric(48) is of matter.
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