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Abstract
In order to evaluate electromagnetic energy flow (EME) lines behind a circular disc illuminated
by monochromatic laser light, the Rayleigh–Sommerfeld integral is transformed to a simpler
form. EME flow lines, interpreted as photon trajectories, explain the change of the intensity
pattern with the distance from a circular disc very well, including the Poisson–Arago spot in the
center. Possible applications of these results on the study of Poisson–Arago spot experiments
with matter beams, are indicated and explained.

Keywords: Poisson–Arago spot, electromagnetic energy flow lines, Rayleigh–Sommerfeld
integral, Poisson’s spot with molecules

1. Introduction

In recent years there has been a renewed interest in the study,
both theoretically and experimentally, of the diffraction of light
[1–4] on a circular disc. The famous Poisson–Arago spot [5]
from the 19th century discussion about the nature of light, has
again attracted the attention of researchers. But during this
renewed interest and investigation, researchers are using laser
beams, the concepts of the photon [6] and photon wave
function [7, 8], and electromagnetic flow lines as possible
average photon trajectories [2, 3, 9, 10]. By numerically
evaluating electromagnetic energy flow lines behind a circular

opaque disc (of radius = ⋅ −R m5 10 6 ), illuminated with a
monochromatic light (with wavelength λ = =R nm10 500 ),
MGondran and A Gondran [2] found that these lines can reach
the bright Poisson–Arago spot that appears at the center of the
shadow region generated by such a disc. These authors then
argued that for a monochromatic wave in a vacuum, the
electromagnetic energy (EME) flow lines correspond to the
diffracted rays of Newton’s Opticks, thus concluding that, after
all, Fresnel’s wave theory may not be in contradiction with the
corpuscular interpretation.

Davidović et al [3] evaluated EME flow lines with a

larger disk radius ( = ⋅ −R m5 10 4 , λ = −R 10 3) than that used
in the work of Gondrans, because larger radii are of practical

interest. Namely, Newton used a coin of = −R m10 2 , Arago

used metallic disc of = −R m10 3 . In physics textbooks,

photos of the diffraction pattern behind a ball of about

= ⋅ −R m1.5 10 3 [11] have been shown. Davidović et al [3]
also determined the histogram of end points along the axis
parallel to the disc at the distance z= 15 mm= 30 R. This
histogram agrees very well with the corresponding graph of
light intensity as a function of x for given z. This agreement is
a new argument supporting the conclusions of M. Gondran
and A. Gondran.

Plotting EME flow lines requires a lot of computer time,
especially if one wants to use them in explaining experiments

in which λ < −R 10 1. Such experiments are of practical
interest, both in photon optics (as above) as well as in matter
wave optics. In the Poisson spot experiments with matter
waves, which have been possible in recent years [12–17], the

ratio of λ ≪ −R 10 1. In the experiments with deuterium

molecules, [16] λ = −R 10 6. In the planned experiment [17]

with C70, λ = ⋅ −R 0.44 10 6. The computer time also increa-
ses if one wants to determine EME flow lines up to distance z
where the width of the Poisson spot increases so much that
the distribution of light intensity becomes flat.

For this reason, in section 2 we simplify the expression
for the EM field behind a disc by reducing the well known
Rayleigh–Sommerfeld two-fold integral to a one-fold inte-
gral. Section 3 is devoted to EME flow lines. Graphs of
relative light intensity as functions of transverse coordinates
for six distances from the disc of radius R= 0.5 mm are given,
using the expression for the EM field derived in section 2.
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The Poisson spot exists in the Fresnel zone. With increasing
distance from the disc, the width of the Poisson spot increases
so much that in the Fraunhofer region the graphs of light
intensity are flat curves. An analysis of the form of trajectories
leads to a clear explanation of this change of the intensity
curves with the distance from the disc. In section 4, the
possible applications of the results from sections 2 and 3, on
the study of Poisson–Arago spot experiments with matter
beams [12, 16, 17], are indicated and discussed.

2. Photon fields behind the disc

Let us consider the diffraction of the laser light, described by
the monochromatic EM field

˜ ⃗ ⃗ = ⃗ ⃗ ˜ ⃗ ⃗ = ⃗ ⃗ω ω− −{ }( ) ( ) ( ) ( )[ ] [ ]E r t E r e B r t B r t e, Re , , Re , ,i t i t

with an incident perpendicular to the opaque circular disc
with radius R, lying in the xy plane, with its center located at

= = =( )x y z0, 0, 0 (figure 1). The field behind the disc

satisfies Maxwell’s free field equations, with the boundary
conditions described below. Taking into account the study
and arguments of Bialincki-Birula [7], and Raymer and Smith
[8] we may consider this Maxwell field as the wave function
of a photon from the laser beam diffracted at the disc.

From Maxwell’s equations it follows that each compo-
nent of the space dependent parts of the EM field vectors
satisfies [6] the Helmholtz equation

 ⃗ + ⃗ =( ) ( )A r k A r 0, (1)2 2

where by ⃗( )A r we denoted an arbitrary component of these

two vectors ⃗ ⃗( )E r and ⃗ ⃗( )B r and π λ ω= =k c2 . For <z 0

we have =A A eikz
0 , and for >z 0 the solution is given by

[1, 2, 5].
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where = + >{ }S x y x y R( , )m m m m
2 2 2 . Integration is over the

=z 0 plane outside the disk where A x y( , )m m0 is determined

by the input field, i.e. = =
=

A x y A e A( , )m m
ikz

z
0 0

0
0. In addi-

tion, =A x y( , ) 0m m0 for + <x y Rm m
2 2 2, because the disc is

opaque.
We may now apply the Babinet principle [5]. The field is

equal to the difference between a field of a free plane wave,
and the one created by illuminating a hole in the =z 0 plane.
Let us denote the latter by A x y z( , , )h , so

= −A x y z A e A x y z( , , ) ( , , ). (4)ikz
h0

Therefore, it is sufficient to calculate the integral

∫λ
ϑ= − −⎜ ⎟⎛

⎝
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r ikr
dx dy( , , ) 1

1
cos , (5)h

S

ikr
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0
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with = + <{ }S x y x y R( , )h m m m m
2 2 2 . Since the problem pos-

sesses cylindrical symmetry, we may choose the point of
observation P to be in the xz plane, i.e. to have =y 0. The
two-fold integral in (5) may be reduced to a one-fold integral,
as we are going to show. For this reason let us introduce
cylindrical coordinates (figure 2) of point M (xm, ym, 0) in the
plane xy:

ρ φ
ρ φ

= −
=

x x

y

cos

sin . (6)
m m m

m m m

In terms of cylindrical coordinates, the variables r, ϑ and

field ( )A x z, 0,h read:

ρ ϑ= + =r z
z

r
, cos (7)

m
2 2
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Figure 1. The schematic of the experiment in which monochromatic
laser light is scattered on the circular disc. Figure 2. Illustration associated with the derivation of equation (9).



∫λ
ϑρ ρ φ= − −⎜ ⎟⎛

⎝
⎞
⎠

( )A x z

iA e

r ikr
d d

, 0,

1
1

cos . (8)

h

S

ikr

m m m
0

h

Limits of integration are determined by the area Sh. For a
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m
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The cases >X 1 and <X 1 correspond to combinations
of the coordinate x and point ρ φ( , )

m m
when the two circles do

not intersect.
The integrand in (8) does not depend on φ

m
, so we have
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where r and ϑ depend on ρ
m
by virtue of (7).

Since our problem has cylindrical symmetry, it is con-

venient to write vectors ⃗ ⃗( )E r and ⃗ ⃗( )B r in cylindrical coor-

dinates. We may assume [2] these vectors in the form

ρ ρ ρ⃗ = ρ{ }E z e z e z( , ) ( , ), 0 , ( , )z

and

ρ ρ⃗ = φ{ }B z b z( , ) 0, ( , ) , 0 .

From Maxwell’s fourth equation

 ε μ× ˜ ⃗ ⃗ = ∂ ˜ ⃗ ⃗ ∂( ) ( )B r t E r t t, , ,0 0

applied to the monochromatic wave, it follows that

ρ ρ⃗ = − ∂ ∂ ∂ ∂φ φ
⎡⎣ ⎤⎦( ) ( ) ( )E z ic k z b b( , ) , 0, .

From Maxwell’s third equation

 × ˜ ⃗ ⃗ = −∂ ˜ ⃗ ⃗ ∂( ) ( )E r t B r t t, ,

applied to the monochromatic wave, it follows that ρφb z( , )

satisfies the Helmholtz equation

 + =φ φb k b 0. (12)2 2

For the incident wave we take ρ⃗ = { }B z A e( , ) 0, , 0in
ikz

0 ,

ρ⃗ = { }E z cA e( , ) , 0, 0in
ikz

0 . This implies that the boundary

condition for ρφb z( , ) is:

ρ
ρ

ρ
=

>
⩽φ

⎧⎨⎩( )b
A R

R
, 0

for
0 for

. (13)0

In the space behind the disc, the function ρφb z( , ) is just

the above given solution of the Helmholtz equation, i.e.

ρ ρ= −φ
′b z A e A z( , ) ( , ), (14)ikz
h0

where ρ ρ= =′ ( )A z A x z( , ) , 0,h h
is given in equation (11).

3. Electromagnetic energy flow lines—average
photon trajectories

We saw in the previous section that all six components of the
EM field vectors behind the disc are expressed in terms of the
function ρφb z( , ) and its derivatives. This is also the case with

the time-averaged EME density:

ε
μ

μ

⃗ = ⃗ ⃗ ⋅ ⃗ ⃗ * + ⃗ ⃗ ⋅ ⃗ ⃗ *

=
*
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2
, (15)

0

0

0

and the real part of the time-averaged complex Poynting
vector:



μ

μ
λ
π

⃗ ⃗ = ⃗ ⃗ × ⃗ ⃗ *

= *
φ φ
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1
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1

2 2
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. (16)0

0

EME density is transported through space as a flow

described by ⃗ ⃗( )S r . Formally, this can be expressed as

⃗ ⃗ = ⃗ ⃗( ) ( )S r U r V , (17)

where ⃗V is a local effective velocity vector field, namely the
ray velocity. This velocity indicates the direction of the EME
flow at each space point, and that its magnitude is equal to the
EME that crosses, in unit time, an area perpendicular to the
flow direction. Combining equations (14), (16) and (17) the
velocity field takes the form:

λ
π

⃗ =
*
*

( )
V

c A A

AA2

Re
(18)

In figure 3 we give plots of relative light intensity,

=i i A A0
2

0

2
, as a function of the transverse coordinates

for six distances from the disc of radius R= 0.5 mm.
In order to calculate the velocity field and the EME flow

lines determined by this field, we need the derivatives of A
over coordinates. From (11) and (4), and taking into account
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Figure 3. Relative intensity of monochromatic light (λ = nm500 ) behind a disk of radius = ⋅ −R m5 10 4 as a function of transversal
coordinate x, at six distances z from the disk: (a) z= 0.0005 m, (b) z = 0.01 m, (c) z = 0.1 m, (d) z= 0.5 m , (e) z= 2 m, (f) z= 10 m.



that r depends only on z while φ
0
depends only on x, we have
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Eight EME flow lines are drawn in figure 4 by evaluating

Ah,
∂
∂
A

x
h and ∂

∂
A

z
h numericallyfor the disc radius R = 0.5 mm

λ = −( )R 10 3 . The form of these EME flow lines is grosso

modo similar to the form of EME flow lines given for
μ=R m5 in figure 6 in [2] and in figure 4 in [3]. All these

sets of EME flow lines, interpreted as photon trajectories,
explain the change of the intensity pattern with the distance
from a circular disc very well, including the Poisson–Arago
spot in the center. The trajectories which start very near the
disc edge (figure 4), for example at

= + ⋅ =−x m i m i0.00050001 10 , 1,2,3,4,5,6,7,8,9,i
8

deflect towards the optical axis, at the distance ≅z R, giving
rise to the central maximum having the value =i i 0.50 , in
agreement with the following formula for the relative light
intensity along the axis, derived by Sommerfeld [5]:

=
+

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
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i

i

z

R
z

R
1

. (22)
0

2

2

This central maximum increases with increasing z, until it
reaches a value very close to 1 (for =z r 5, =i i 0.960 ). The

value of the maximum remains at 1 with further increases of
z, as seen on in the intensity curves in figures 3(b)–(f), in
agreement with relation (22). The deflection of trajectories
decreases with increasing distance from the disc of the initial
point. One also notes the steps in the trajectories, and the
length of steps increases with increasing distance of the initial
point. Eventually these trajectories reach the region of the
Poisson spot and contribute to the widening of the central
maximum with increasing z, in accordance with the graphs of
relative intensity, seen in figures 3(c)–(e). At very large dis-
tances, ⩾ ⋅z R 2 104, the intensity curve is almost constant
(figure 3(f)). We see that the central maximum becomes so
wide that it is not pronounced any more at the distance

λ= =z R m0.5c
2 , determined by λ≡ <N R z( / ) 1c

2 , where
N is the Fresnel number. At the distances ≫z zc the intensity
pattern looks like the unobstructed intensity pattern.

4. Matter waves and trajectories behind a
circular disk

In describing the diffraction of a matter particle on a circular
disc, one starts with the Schrodinger equation for a particle’s

wave function Ψ ψ⃗ = ⃗ω−( ) ( )r t e r, i t . One is faced again with

the problem of solving the Helmholtz equation for ψ ⃗( )r with

the same boundary and initial conditions. The only difference
is that for a particle with mass m and velocity v, the relations

ℏ =k mv and ω = ℏk m22 are applicable, instead of the
relation ω=c k, which is associated with light/photons.
Therefore, the matter field behind the disc is given by
equation (4), where Ah is given by equation (11).

The equation of the particle trajectory, the so called
Bohmian trajectory, is determined by the quantum mechanical
current, that is:

 

 

Ψ Ψ Ψ Ψ
Ψ Ψ

⃗ = ℏ * − *
*

= ℏ * − *
*

dr

dt

i

m
i

m

A A A A

A A

2

2
. (23)

Evidently, the latter equation has the same form (up to a
constant factor) as equation (18) for a photon trajectory. In
other words, the Poynting vector associated with the photon
field plays the same role as the quantum mechanical prob-
ability current density of a massive particle [9].

This implies that the simplified form (11) of the Ray-
leigh–Sommerfeld formula might be useful for the study of
analogous experiments with matter beams [12–17]. The
Poisson–Arago spot was detected recently in experiments
with deuterium molecules [16], and experiments with C70

have been planned [17]. The goal of this experiment is to
demonstrate the quantum mechanical wave nature of
increasingly larger and more massive particles [17]. In the

experiment with deuterium molecules, λ = −R 10 6. In the
planned experiment [17] with C70 this ratio would be

λ = ⋅ −R 0.44 10 6. For such small values of the ratio λ R, it is
desirable and useful to have a simpler expression for the wave
function, which we achieved by deriving expression (8).
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Figure 4. Eight EME flow lines behind the disc of radius R= 0.5 mm
(λ = −R 10 3).



The demonstration of quantum-mechanical interference of
larger molecules is motivated by, amongst others, the desire to
understand the transition from the quantum-mechanical regime
to the classic regime. From this perspective, the approach to
the Poisson spot experiment, proposed and elaborated here,
might be useful because it lies somewhere in between the
standard quantum mechanical approach and the classical
approach. In this approach, the wave field is determined, from
Schrodinger’s equation, as the basic equation of standard
quantum mechanics. In addition, the trajectories, determined
by the quantum mechanical current, are introduced. These
trajectories differ from classical trajectories because they are
determined by the wave function. So, this approach makes it
possible to study the transitions from quantum-mechanical to
classical regimes, by studying how quantum mechanical tra-
jectories, Bohmian trajectories, approach classical trajectories
with increasing mass. It is also possible to study the influence
of van der Waals’ force, using Bohmian trajectories, and to
compare the results with the calculations from [17], performed
using a formula equivalent to the original form of the Rayley-
Sommerfeld formula, with an added van der Waals phase term.
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