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Abstract 

Recently introduced analytical method for systematic improvement of the 
convergence of path integrals of a generic N -fold discretized theory [1.2] 
is presented and an Euler summation formula for path integrals is derived. 
The approximation made by the using of the first p terms of this formula 
greatly speed-up convergence of path integrals to the continuum limit: 
from standard 1/N behavior, the convergence is improved to 1/N7'. 

1 Introduction 

Feynman's path integrals have, since their inception [3], represented an ex­
tremely compact and rich formalism for dealing with quantum theories. They 
have been powerful tools for dealing with symmetries (including gauge sym­
metry), for deriving non-perturbative results, for showing connections between 
different theories or different sectors of theories [4,5]. Their flexibility and in­
tuitive appeal have allowed us to generalize quantization to ever more compli­
cated systems. As a result, path integrals have led to a rich cross fertilization 
of ideas between high energy and condensed matter physics [6]. Today, they 
are used both analytically and numerically [7,8] in many other areas of physics, 
chemistry and materials science. An extensive review of path integrals and their 
applications can be found in [9]. 

The bad news is that we still have very little knowledge of the precise math­
ematical properties of path integrals. In addition, a very small number of path 
integrals can be solved exactly. The definition of path integrals as a limit of 
multiple integrals makes their numerical evaluation quite natural. The most all­
around applicable numerical method for such calculations is based on Monte 
Carlo simulations. 

Several research groups have in the past focused on improving the conver­
gence of path integrals. The best available result for a generic theory (valid 
only for partition functions and not for general amplitudes) is the convergence 
of N -fold discretized expressions as 1/N4 [10, 11]. 
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In order to further significantly speed up numerical procedures for calculat­
ing path integrals for a generic theory it is necessary to add new analytical input. 
We present and comment on the systematic investigation of the relation between 
different discretizations of a given theory derived in [1,2]. A result of this inves­
tigation is a procedure for constructing a series of effective actions S (p) having 
the same continuum limit as the starting action S, but which approach that limit 
as 11NP. Using this procedure we have obtained explicit expressions for these 
effective actions for p S 10. In the current paper we cast the new analytical 
input in the form of a Euler summation formula for path integrals. 

2 Ordinary Integrals 

The current status of the development of the path integral formalism is quite 
similar to that of ordinary integrals before the setting up of integration theory by 
Riemann. In those days integrals were calculated directly from the defining for­
mula, i.e. one looked at a specific discretization of the integral (Darboux sum), 
attempted to do the sum explicitly, and finally tried to calculate the continuum 
limit. For example, 

T N 

1[1] == 1 f(t)dt = ~~oo IN [1) , where I N[1] = ~ f(tn)fN, (1) 

fN = TIN and tn = nfN. The last great step in the development of integration 
before Riemann was made by Euler. Let us briefly state Euler's summation 
formula that we will generalize to path integrals in the following sections. 

Discretization is not unique. This makes it possible to change f(t) to some 
other function (adding terms proportional to f N, f1., etc.) without changing the 
integra\. Let us assume that r (t) is such an equivalent function with the added 
property that the sums I N[1*] do not depend on N. Then it follows that 

rT N N 2 N
io f(t)dt = L f(tn)fN- f; L !,(tn)fN- 2; L !"(tn)fN+... . (2) 
o n=l n=l n=l 

This is the well-known Euler summation formula. We may also write it more 
compactly as 

1[1] = I N[1(p)] + O(f~), (3) 

where f(p) is the truncation of r to the first p terms. The Euler formula gives 
the analytical relation between integrals and their discretized sums. Looked at 
numerically, this formula allows us to increase the speed of convergence of dis­
cretized expressions to the continuum limit: in the defining relation the dis­
cretized expressions differ from the continuum by a term of order 0(1/N); by 
using the Euler sum formula with p terms we can reduce that error to 0(11N P). 

3 General Properties of Path Integrals 

In the functional formalism the quantum mechanical amplitude A(a, b; T) = 

(ble-THla) is given in terms of a path integral which is simply the N -> 00 
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limit of the (N - 1)- fold integral e."(pression 

N 

AN(a, b; T) = (_1_) T Jdql ... dqN-l e- SN . (4)
21iEN 

The Euclidean time interval [0, T] has been subdivided into N equal time steps 
of length EN = TIN, with qo = a and qN = b. SN is the naively discretized 
action of the theory. We focus on actions of the form 

where 8n = qn+l - qn, Vn = V(qn), and qn = 4(qn+l + qn). We use units in 
which Ii and particle mass equal l. 

The calculations we present tum out to be simplest in the mid-point pre­
scription where the potential V is evaluated at qn. A more important freedom 
related to our choice of discretized action has to do with the possibility of in­
troducing additional terms that explicitly vanish in the continuum limit. Ac­
tions with such additional terms will be called effective. For example, the term 
'L~::Ol €N 8; g(qn), where 9 is regular when EN -+ 0, does not change the con­

tinuum physics since it goes over into €Jv JoT dt (? g(q), i.e. it vanishes as EJv. 
Such terms do not change the physics, but they do affect the speed of conver­
gence. A systematic study of the relation between different discretizations of 
the same path integral will alJow us to explicitly construct a series of effective 
actions with progressively faster convergence to the continuum. Before we do 
this we will briefly mention some general properties of the best effective action. 

The amplitude A(a, b; T) of some theory with action S satisfies 

for all N. This general relation is a direct consequence of the linearity of states 
in a quantum theory. In analogy with ordinary integrals let us now suppose that 
there exists an effective action S* that is equivalent to S (i.e that leads to the 
same c~ntinuum limit for all path integrals) with the additional property that its 
N-fold discretized amplitude AN(a, bj T) does not depend on N, 

N-l ( 2 )
AN(a, b; T) = A(a, b; T) , and Siv = L 8n + ENW~ (7)

2EN 
n=o 

The equivalence of Sand S* implies that W* -+ V(q) when EN and 8 go to 
zero. The final general property of W * follows from the reality of amplitudes 
in the Euclidean formalism. Using the hermiticity of the Hamiltonian we find 

A(a, b; T) = A(a, b; T)t = (ble-THla)t = (ale-THlb) = A(b, a; T). In terms 
of W* this gives us 

(8) 
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or, said another way, only even powers of 0n are present in the expansion of W *: 

W*(on, qn; EN) = 90(qn; EN) + O~ 91 (qn; EN) + O~ 92 (t1n; EN) + .... (9) 

All the functions 9k are regular in the E ---> 0 limit. The link to the starting theory 
is now simply 90(t1n; EN) ---> V(q,,) as EN goes to zero. 

4 BelationBetween Different Discretizations 

We start by studying the relation between the 2N-fold and N -fold discretizations 
of the same theory. From eq. (4) we see that we can writ~ the 2N-fold amplitude 
as an N -fold amplitude given in terms of a new action SN determined by 

N 

SN S2N e- = (:,r~N) T JdX1 ... dXN e- , (10) 

where S2N is the 2N-fold discretization of the starting action. We have written 
the 2N-fold discretized coordinates Qo, Q1,"" Q2N in terms of q's and x's in 
the following way: Q2k = qk and Q2k-1 = Xk· 

Having in mind the results of the previous section, it is best to use the ef­
fective action which gives the same result for both the 2N-fold and N -fold dis­
cretizations. Therefore, in this case we get 

SiNe-S'N = Cr:N) ~ JdX1 ... dXN e- . (11) 

From this one easily finds 

exp[-ENW*(On,q,,;EN)l = 

00 

= (1r:N) ! 1: dy exp ( - E: y2) P (qn + y; Ei) , (12) 

where 

2 (qn+1 + x ) (X + qn )- EN In P(x; EN) = 90 2 ; EN + 90 --2-; EN + 

2 (qn+1+ X ) ( )2 (X+qn )+ (q,,+l - x) 91 2 ; EN + X - qn 91 ~; EN + ... 

The above integral equation can be solved for the simple cases of a free par­
ticle and a harmonic oscillator, and gives the well known results. Note however 
that for a general case the integral in eq. (12) is in a form that is ideal for an 
asymptotic expansion. The time step EN is playing the role of small parameter 
(in complete parallel to the role nplays in standard semi-classical, or loop, ex­
pansion). As is usual, the above asymptotic expansion is carried through by first 
Taylor expanding P (iin + y; T) around qn and then by doing the remaining 
Gaussian integrals. Assuming that EN < I (i.e. N > T) we have 

90 (q" ; EN) + O~ 91 (qn; EN) + O~ 92 (qn; EN) + ... = 

= _~ In [~ p(2m) (q,,; T) (EN)m] . (13) 
EN ~ (2m)!! 4 

m=O 
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Note that F(2m) (x; fN) denotes tbe corresponding derivative with respect to x. 
All that remains is to calculate these expressions using the definition of the func­
tion F and to expand all the gk 's around the mid-point ifn. This is a straight for­
ward though tedious calculation. In general, if we wish to expand the effective 
action to fj.. we need to evaluate only go (up to f~-l) and the remaining p - 1 
functions gk (up to f~-l-k). 

Although the system of recursive relations for 9 k 's is non-linear, it is in fact 
quite easy to solve if we remember that the system itself was derived via an ex­
pansion in fN. Having this in mind we first write all the functions as expansions 
in powers of fN that are appropriate to the level p we are working at. The p = 3 
level solution equals 

V" [_ V l2 V(4)] V" V(4) V(4) 
go = V +fN 12 +f7v 24 + 240' ,91 = 24 +fN 480 ' g2 = 1920' 

Note that W* depends only on the initial potential V and its derivatives (as 
well as on fN). One can similarly calculate the effective action S* to any desired 
level p. We denote the p level truncation of the effective action as S (p). S(p) has 
the property that its N-fold amplitudes deviate from the continuum expressions 
as O(f~) 

A(a,b;T) = A~)(a)b;T) + O(f~) . (14) 

Comparing this to eq. (3) we see that we have just derived the generalization of 
the Euler summation formula to path integrals. Expressions for effective actions 
up to p = 10 can be found on our web site [12]. 
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Figure 1. Deviations from the continuum limit IA~) - AI as functions of N for 
p = 1,2,4 and 6 for an anharmonic oscillator with quartic coupling A = 10. time of 
propagation T = 1 from a = 0 to b = 1, NMC = 9.2 . 109 for p = 1,2,9.2.1010 for 
P = 4, and 3.68 . lOll for p = 6. Solid lines give the leading 1/NP behavior. 
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We analyzed in detail several models: the anharmonic oscillator with quartic 
coupling V = ~ q2 + if q4 and a particle moving in a modified Poschl-Teller 
potential over a wide range of parameters. In all cases we found agreement with 
eq. (14). Figure 1 illustrates this behavior in the case of an anharmonic oscillator. 
We see that the p level data indeed differs from the continuum amplitudes as a 
polynomial starting with IINP. 

5	 Conclusions 

We have presented an algorithm that leads to significant speedup of numerical 
procedures for calculating path integrals. The increase in speed results from 
new analytical input that comes from a systematic investigation of the relation 
between discretizations of different coarseness and that leads to a generalization 
of the Euler summation formula to path integrals. We have presented an explicit 
procedure for obtaining a set of effective actions S (p) that have the same con­
tinuum limit as the starting action S, but which approach that limit ever faster. 

Amplitudes calculated using the N -poiot discretized effective action S y;) sat­

isfy A~)(a, b; T) = A(a, b; T) +O(IINP). We have obtained and analyzed the 
effective actions for p :::: 10 and have documented the speedup up to liN 10 by 
conducting Monte Carlo simulations of several different models. 
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