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Abstract
We analytically and numerically study nonlinear dynamics in Bose–Einstein condensates
(BECs) induced either by a harmonic modulation of the interaction or by the geometry of the
trapping potential. To analytically describe BEC dynamics, we use a perturbative expansion
based on the Poincaré–Lindstedt analysis of a Gaussian variational ansatz, whereas in the
numerical approach we use numerical solutions of both a variational system of equations and
the full time-dependent Gross–Pitaevskii equation. The harmonic modulation of the atomic
s-wave scattering length of a BEC of 7Li was achieved recently via Feshbach resonance, and
such a modulation leads to a number of nonlinear effects, which we describe within our
approach: mode coupling, higher harmonics generation and significant shifts in the
frequencies of collective modes. In addition to the strength of atomic interactions, the
geometry of the trapping potential is another key factor for the dynamics of the condensate, as
well as for its collective modes. The asymmetry of the confining potential leads to important
nonlinear effects, including resonances in the frequencies of collective modes of the
condensate. We study in detail such geometric resonances and derive explicit analytic results
for frequency shifts for the case of an axially symmetric condensate with two- and three-body
interactions. Analytically obtained results are verified by extensive numerical simulations.

PACS numbers: 03.75.Kk, 03.75.Nt, 67.85.De

(Some figures may appear in colour only in the online journal)

1. Introduction

Collective oscillation modes of various physical systems
provide important insights into their behavior and represent
a valuable source of information about their properties.
Collective modes are usually easily accessible experimentally,
and a comparison of the measured values of their frequencies
with corresponding analytical results obtained from a linear
stability analysis provides an essential tool for quantitative
assessment of the theoretical description of a given physical
system. In Bose–Einstein condensate (BEC) systems [1, 2],
collective oscillation modes were among the first properties

to be measured [3, 4] and compared with theoretical
results [5–9]. However, the prominent nonlinear features
of BECs open up a rich variety of phenomena, such as
solitons [10] or Faraday waves [11–15] that arise in different
experimental setups. This is most dramatically seen through a
resonant behavior, but a number of other phenomena are also
observed. For instance, mode coupling due to nonlinearities
is always present, and even when we excite only one given
collective oscillation mode, in the realistic experimental setup
other modes will also be excited eventually. Furthermore,
resonances and pronounced nonlinear effects can also be
caused purely by the geometry of the trapping potential, thus
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making the study of nonlinear effects quite important even
for the design of BEC experiments. Therefore, a detailed
theoretical and numerical description of nonlinear phenomena
is of significant interest and analytic results, which we derive
from the Poincaré–Lindstedt analysis, can contribute to a
better understanding of them.

In this paper, following the approach introduced in [16],
we study nonlinear effects in a BEC due to the harmonic
modulation of the s-wave scattering length [17], as well as
due to the geometry of the trap, where geometric resonances
emerge. In section 2, we briefly introduce the mean-field
description and the Gaussian variational approach for BEC
with two- and three-body contact interactions. We present in
section 3 our results on frequency shifts due to the modulation
of two-body interactions and due to the geometry of the trap,
whereas in section 4, we summarize our main results and give
a brief outlook for future research on this topic.

2. Variational approach

If we take into account two- and three-body contact
interactions, the dynamics of a BEC at zero temperature is
described by the generalized Gross–Pitaevskii equation [18]

ih̄
∂
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−
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2m
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where 9(r, t) is a condensate wave function, the trapping
potential is considered to be axially symmetric V (r)=
1
2 mω2

ρ

(
ρ2 + λ2z2

)
with anisotropy λ, while g2 and g3 are two-

and three-body interaction strengths, respectively.
In order to obtain analytic results on the low-lying

collective modes of a BEC, we use the Gaussian variational
ansatz for the ground state [7, 8]
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with the normalization factor N (t)= (π
3
2 u2
ρuz)

−1/2. Here
uρ(t), uz(t), φz(t) and φρ(t) are variational parameters with
a straightforward interpretation: uρ(t) and uz(t) correspond
to the radial and the axial condensate width, while φρ(t) and
φz(t) represent the corresponding phases. After minimization
of the Lagrangian corresponding to the Gross–Pitaevskii
equation, we arrive at the following nonlinear system of
ordinary differential equations for condensate widths, which
is our variational description of a BEC:
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where
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g2 N

(2π)3/2h̄ωρ`3
and k =

2g3 N 2

9
√

3π3ωρ h̄`6

are dimensionless two- and three-body interaction strengths
and `=

√
h̄/mωρ denotes the harmonic oscillator length.

Through extensive numeric simulations in [16], it was shown
that the above Gaussian variational ansatz can be successfully
used for describing the real-time dynamics of BEC systems
with parameters similar to the experimental ones from [17].

3. Results

Nonlinear terms in the underlying Gross–Pitaevskii
equation (1) and consequently in the variational system
of equations (3) and (4) lead to a number of interesting effects
in the properties of collective modes of a BEC. First we
consider the important case of a harmonic modulation of the
two-body interaction [17],

p(t)= p0 + q cos�t, (5)

and neglect three-body effects. As we can see from figure 1(a)
for a spherically symmetric trap, i.e. λ= 1, when the
two-body interaction strength is harmonically modulated with
the external driving frequency �, collective modes exhibit
a resonant behavior. The resonant frequencies correspond to
collective modes calculated from the linear stability analysis
and their higher harmonics. Close to resonances, frequencies
of collective modes exhibit shifts from the corresponding
linear stability results. By performing a Poincaré–Lindstedt
perturbative expansion [19, 20] in the small modulation
amplitude q, we can calculate this shift, which stems from
secular terms in solving the hierarchy of equations obtained in
the perturbation theory. It turns out that the first correction to
the linear stability frequencies is quadratic in the modulation
amplitude q and reads for the quadrupole mode

ωQ = ωQ0 + q2 CQ

2ωQ0 AQ
+ · · · . (6)

Similar results can also be obtained for the breathing mode
frequency. The coefficients AQ and CQ are calculated using
the Mathematica code5. The structure of the coefficient
AQ shows that the quadrupole mode frequency contains
poles at ωQ0, 2ωQ0, ωB0 −ωQ0, ωB0 and ωQ0 +ωB0 to
second order of perturbation theory. Higher-order calculations
would lead to additional poles, which are, indeed, observed
numerically [16]. Figure 1(b) compares the analytic result
for the frequency shift (6) for an axially symmetric BEC
at λ= 0.3 with the numerical results obtained by solving
the nonlinear variational equations (3)–(4) and performing
their Fourier analysis. As we can see, even the first
analytically calculated correction to the frequencies of
collective oscillation modes is in excellent agreement with the
full numerical results.

Next, we consider the interplay between the geometry
of the trap, which is represented by the anisotropy λ, and
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Figure 1. (a) Oscillation amplitude (umax − umin)/2 versus driving frequency � for p0 = 0.4, k = 0 for a spherically symmetric BEC. The
shape and value of a resonance occur at a driving frequency �, which differs from the linear stability frequency ω0, and depends on the
modulation amplitude q . (b) Frequency of the quadrupole mode ωQ versus driving frequency � for p0 = 1, q = 0.2 and k = 0 for an axially
symmetric BEC with anisotropy λ= 0.3.
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Figure 2. Relative frequency shift of the quadrupole oscillation mode versus the trap aspect ratio λ for values of the dimensionless
two-body interaction p = 0.01, 0.1, 0.4 and 1 and for several values of the dimensionless three-body interaction k.

nonlinearities due to interactions. In the case of two-body
interactions, this was studied within the hydrodynamic
approach of [21] and more recently in other formalisms
[22, 23]. Here we also consider three-body contact
interactions, and describe the BEC system by the variational
set of equations (3) and (4). Linear stability analysis yields the
frequencies of collective modes:
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√
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2

2
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, (7)
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3

u4
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+
2p

u2
ρ0u3

z0

+
3k

u4
ρ0u4

z0

, (10)

and uρ0 and uz0 are equilibrium widths, obtained as stationary
solutions.

To study nonlinear effects in real-time dynamics, we
consider a BEC in the initial state corresponding to the
stationary ground state with a small perturbation proportional
to the eigenvector of the quadrupole mode. This perturbation,
proportional to the small parameter ε, leads to quadrupole
mode oscillations. However, due to nonlinear effects in a
BEC, the breathing mode is also excited eventually, as well as
other, higher harmonics, which include linear combinations
of both modes. The frequency of collective modes depends
on the anisotropy λ and, as was shown in [21], exhibit
resonances for specific values of λ. For trap geometries with
anisotropies close to resonant values, frequencies of collective
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oscillation modes are significantly shifted from their linear
stability analysis values. If we take into account three-body
interactions and apply a Poincaré–Lindstedt perturbative
expansion [19, 20] in the small parameter ε, we obtain the
frequency shift of the quadrupole mode in the form

ωQ = ωQ0 + ε2 f (ωQ0, ωB0, uρ0, uz0, p, k, λ)

2ω2
Q0(ωB0 − 2ωQ0)(ωB0 + 2ωQ0)

. (11)

From this, we can immediately read off poles for the
values of λ determined by the condition ωB0 = 2ωQ0. Similar
results are obtained for the breathing mode. The frequency
shifts for the quadrupole mode are illustrated in figure 2
for various values of dimensionless two- and three-body
interaction strengths. As we can see from the graphs, for
small values of the two-body interaction, the three-body
interaction can have a significant effect on the frequency of
collective modes. Furthermore, we see that the trap anisotropy
can be fine-tuned in such a way that the frequency shift
is completely removed. However, as two-body interactions
increase, three-body interaction effects become less important
and eventually just represent a small correction to the leading
two-body behavior.

4. Conclusions

In this paper, we have studied prominent nonlinear effects
that arise in BECs due to two- and three-body contact
interactions. We have used a Gaussian variational approach
which was shown to well describe BEC systems in the
range of parameters that are relevant for current experimental
setups [16]. Using the Poincaré–Lindstedt perturbation theory,
we have calculated frequency shifts due to a harmonic
modulation of the s-wave scattering length, motivated by
a recent experiment [17]. We have also studied in detail
the delicate interplay between nonlinear effects due to
two- and three-body interactions and the trap geometry.
Within the variational approach and the Poincaré–Lindstedt
method, we have calculated frequency shifts and identified
the geometric resonances of collective modes of axially
symmetric BEC systems. We have also shown that the
observed geometric resonances can be eliminated if two- and
three-body interactions can be appropriately fine-tuned.

We plan to extend this research and further study the
interplay of two- and three-body interactions by considering
the case of attractive three-body interaction, when competing
effects between repulsive two-body and attractive three-body
interactions may give rise to interesting phenomena. We also
plan to study mode coupling and energy transfer between
quadrupole and breathing oscillation mode due to nonlinear
effects.
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Phys. Rev. A 76 063609
[12] Nicolin A I and Raportaru M C 2010 Physica A 389 4663
[13] Nicolin A I and Raportaru M C 2011 Proc. Rom. Acad. Ser. A

12 209
[14] Nicolin A I 2011 Rom. Rep. Phys. 63 1329
[15] Nicolin A I 2011 Phys. Rev. E 84 056202

Nicolin A I 2012 Physica A 391 1062
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