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Shell-shaped Bose-Einstein condensates based on dual-species mixtures
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Ultracold quantum gases confined in three-dimensional bubble traps are promising tools for exploring many-
body effects on curved manifolds. As an alternative to the conventional technique of radio-frequency dressing,
we propose to create such shell-shaped Bose-Einstein condensates in microgravity based on dual-species atomic
mixtures, and we analyze their properties as well as the feasibility of realizing symmetrically filled shells. Beyond
similarities with the radio-frequency dressing method, as in the collective excitation spectrum, our approach has
several natural advantages like the robustness of the created quantum bubbles and the possibility of magnifying
shell effects through an interaction-driven expansion.
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I. INTRODUCTION

Motivated by the launch of NASA’s Cold Atom Lab [1,2]
to the International Space Station and subsequent first
experiments towards shell-shaped quantum gases in mi-
crogravity [3,4], the field of many-body physics on shell
topologies has recently experienced huge progress also from
the theoretical side. Indeed, investigating ultracold quantum
gases on a shell leads to new insights into a broad range
of nontrivial quantum phenomena, such as Bose-Einstein
condensation [5–9], atom lasers [10,11], superfluidity [12],
vortices [13–16], and the Berezinskii-Kosterlitz-Thouless
transition [17,18]. In particular, quantum gases confined to
the surface of a sphere show lower condensation tempera-
tures than their filled counterparts and the thin-shell transition
between a three-dimensional and quasi-two-dimensional ge-
ometry drastically changes the collective excitations [19,20]
and the dynamics of vortex-antivortex pairs [15,16].

So far, radio-frequency (rf) dressing is the primary tech-
nique being considered to experimentally realize shell-shaped
Bose-Einstein condensates (BECs) in microgravity. This
method, originally proposed by Zobay and Garraway [21–25],
relies on the adiabatic deformation of a typically anisotropic
static magnetic trap by applying an rf field and has been
successful in creating a number of novel topologies and
applications for BECs [26–38] on Earth. However, a three-
dimensional hollow sphere of atoms is beyond the capabilities
of Earth-based laboratories due to gravity pulling the atoms
towards the bottom of the trap [26]. Although first results from
microgravity experiments [4] promise to make shell-shaped
BECs experimentally feasible, fully symmetric shells are still
a very challenging task, because any inhomogeneity of the rf
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field and nonperfect spatial alignment with respect to the static
field potentially open the shell up, similar to gravity on Earth.

Therefore, as an alternative to rf dressing, we propose to
realize shell-shaped BECs employing a mixture of two atomic
species. If the repulsive interspecies interaction outweighs
the repulsive intraspecies one, the mixture separates into two
domains, each containing solely one type of atoms [39,40].
Confining such a mixture in a three-dimensional harmonic
trap leads to a regime where one species forms a shell around
the other one [41–43]. The scheme can be realized with an
optical dipole trap [44] to confine the atoms and a homoge-
neous magnetic field to tune the atom-atom interaction via
Feshbach resonances [45,46]. This realization has several ad-
vantages: (i) the atoms condense into the shell-shaped ground
state instead of being adiabatically deformed into it, (ii) a
homogeneous Feshbach field is much easier realized than
combining multiple magnetic fields for rf dressing, (iii) spher-
ical symmetry of the atom cloud can be straightforwardly
achieved by combining three optical trapping beams, (iv) an
implementation on Earth is in principle feasible by optically
compensating the gravitational sag, and (v) expanding shells
are created by simply turning off the common trap because
an inwards expansion of the outer species is prevented by the
core one.

In this article we show that the mixture-based scheme is a
viable alternative by finding both similarities with key prop-
erties of rf-dressed shells and a promising robustness against
shell opening due to gravity. We identify the parameters re-
quired to realize shell-shaped ground states and investigate the
collective excitation spectrum to give evidence that there is
indeed a transition from a filled sphere to a shell-shaped BEC.
The free expansion dynamics is also studied here to highlight
an important difference between the two approaches, namely
the presence of an inner core, which enables one to choose
between two distinct scenarios depending on the interspecies
interaction.
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In Sec. II we present our scheme in detail and quantify
conditions for the realization of an ideal spherically sym-
metric shell-shaped BEC based on a dual-species mixture.
Section III addresses the behavior of the collective excita-
tion frequencies as a function of the interspecies interaction.
In Sec. IV, we explore two free expansion scenarios which
arise due to changing the interspecies interaction. Here we
find a novel regime where the shell structure is conserved
during dynamics, offering in principle a way to create a
shell of any desirable radius. Section V deals with the ro-
bustness of our scheme against shell-opening induced by a
residual gravitational acceleration. Several already existing
experimental platforms are compared and the influence of
the trap frequency and atom number on the robustness is
investigated. We conclude in Sec. VI by summarizing our
results and discussing potential applications of our scheme in
related research areas. To keep our article self-contained, but
focused on the central ideas, we consider the Bogoliubov–de
Gennes equations and provide description of the numerical
simulations in Appendix A. Moreover, in Appendix B we
compare the mixture-based scheme with the rf-dressed one, by
extending our study of the ground state, collective excitation
spectrum, free expansion, and feasibility.

II. SHELL-SHAPED GROUND STATES

For a BEC well below the critical temperature, its proper-
ties can be described by a mean-field approach, leading to the
Gross-Pitaevskii equation (GPE) [12,47] for the condensate
wave function ψ . In the case of BECs containing multiple
components α = 1, 2, . . . (e.g., different atomic species), the
GPE for component α reads [39]

ih̄
∂ψα (x, t )

∂t
=

[
hα (x) +

∑
β

gαβ |ψβ (x, t )|2
]
ψα (x, t ). (1)

Here hα (x) = −h̄2∇2
x/(2mα ) + Vα (x) is the single-particle

Hamiltonian of an atom with mass mα and Vα (x) is the
component-dependent external potential. The sum over all
components in Eq. (1) contains the self-interaction of the com-
ponent (β = α) and the interaction between two components
(β �= α). The interaction parameters gαβ = 2π h̄2aαβ (mα +
mβ )/(mαmβ ) are determined by the s-wave scattering lengths
aαβ = aβα . The condensate wave function ψα is normalized
to the number of particles Nα = ∫

d3x|ψα (x, t )|2.
To create a shell-shaped BEC, we propose to use a two-

component BEC mixture in a spherically symmetric harmonic
confinement Vα (x) = mαω2

0,αx2/2 with the trap frequency
ω0,α , created by an optical dipole trap [44]. Using magnetic

TABLE I. Parameters of our reference case, based on an optically
trapped 87Rb-41K BEC mixture with laser wavelength of 1064 nm
and exploiting a Feshbach resonance at 78.9 G to tune the inter-
species interaction. Here a0 = 5.29 × 10−11 m is the Bohr radius.

Species Nα ω0,α (Hz) aαα (units of a0) aRb,K (units of a0)

41K 105 2π × 70.0 60
87Rb 106 2π × 51.3 100

85

FIG. 1. Shell-shaped ground-state density distribution |ψα|2 of a
spherically symmetric 87Rb-41K BEC mixture for the parameters pre-
sented in Table I. (a) Cut-open three-dimensional density plot (color
bar units in μm−3). (b) Density profiles (solid lines) along the radial
direction and corresponding trapping potentials Vα (dashed lines).
The interplay between the harmonic confinement and the interspecies
repulsion, due to a positive s-wave scattering length aRb,K, leads to
41K (orange) forming a shell around 87Rb (blue).

Feshbach resonances [45,46], we require that g12 � √
g11g22

with gαα > 0. In this phase-separation regime the intercompo-
nent repulsion outweighs the intracomponent repulsion. The
system therefore favors a separation of the components and
reduces their overlap [40]. Combined with the harmonic con-
finements, the ground state of the coupled GPEs (1) is given
by one component forming a shell with the other one as its
core [41–43].

Here we consider the parameters listed in Table I as the
reference case of our analysis. Choosing 87Rb and 41K is
inspired by the upcoming BECCAL (Bose-Einstein Conden-
sate and Cold Atom Lab) apparatus [48], which will provide
optically trapped BEC mixtures of these species in micrograv-
ity on board the International Space Station. For 87Rb-41K
mixtures, there is a magnetic Feshbach resonance at 78.9 G
[49], around which the intercomponent scattering length aRb,K

can be tuned to a great extent whereas the intracomponent
scattering lengths aRb,Rb and aK,K are kept constant at their
background values [46,50]. Thus, aRb,K is a single and well-
controlled parameter to obtain a large variety of ground states.
To create shell-shaped ground states, there are lower amin

Rb,K
and upper amax

Rb,K limits for aRb,K. Indeed, the phase-separation
regime only occurs for g12 � √

g11g22, giving rise to amin
Rb,K ≈

72a0.1 However, for g12 � √
g11g12, any contact surfaces be-

come energetically unfavorable, resulting in a different type
of ground state with side-by-side components [51]. Using
the parameters of our reference case and performing three-
dimensional simulations [52,53] of the coupled GPEs (1) for
increasing aRb,K, we have located this transition to asymmet-
ric ground states at amax

Rb,K ≈ 118a0. Thus, for 72a0 � aRb,K �
118a0, a shell-shaped mixture is realized as displayed in
Fig. 1, where potassium (orange) forms a shell around ru-
bidium (blue). Moreover, interspecies losses at the core-shell

1This lower bound is only approximate. For aRb,K < amin
Rb,K the

ground state is shell-shaped but the components increasingly overlap.
Nevertheless, the inequality for the phase-separation regime is a good
tool to estimate a lower threshold as it depends only on the masses
and scattering lengths.
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boundary are negligible due to two factors: (i) small overlap
between |ψRb|2 and |ψK|2, and (ii) the relatively small value
of aRb,K.

III. HOLLOWING TRANSITION AND COLLECTIVE
EXCITATION SPECTRUM

Decreasing the scattering length aRb,K below 72a0 leads to
an increasing overlap between the two components. In other
words, the repulsion between 87Rb and 41K atoms becomes
insufficient for 87Rb to push 41K out of the center of the
system, resulting in a nonvanishing particle density of 41K
at the center. We call this transition of 41K between a filled
and a hollow ground state the hollowing transition, in analogy
to rf-dressed BECs [19,20]. It is a simple realization of a
topological transition, resulting from the appearance of an
inner surface in the 41K density.

We expect signatures of the hollowing transition when
monitoring the dynamics of the mixture and therefore study
its response to perturbations of the ground state. If perturbed
in a sufficiently small manner, a BEC reacts linearly and oscil-
lates in the trap with different low-lying collective excitation
modes [12,47]. To obtain the corresponding spectrum, we
solve the Bogoliubov–de Gennes equations [5,54–56] and per-
form complementary simulations of the GPEs (1) as discussed
in Appendix A.

A key signature of a BEC changing its ground state topol-
ogy from a filled to a hollow sphere has been identified in
the spherically symmetric (l = 0) collective excitations of an
rf-dressed BEC [19,20]. The corresponding frequencies show
a minimum at a certain detuning related to the point of the
hollowing transition. The excitation spectrum of a BEC mix-
ture displays a similar feature. Using our reference case, for
which the hollowing transition is driven by a change of the
intercomponent scattering length aRb,K, we see a significant
fraction of mode frequencies having a minimum at aRb,K ≈
60a0, as shown in Fig. 2. This value coincides with the critical
value at which the 41K ground state vanishes in the center of
the system (vertical dotted line). The excitation spectrum of
the mixture helps therefore to identify a key signature of the
hollowing transition and a subsequent regime of shell-shaped
ground states.

As discussed in Appendix B, a striking difference between
an rf-dressed BEC and the mixture is the presence of avoided
crossings in the spectrum shown in Fig. 2, which can be
traced back to the collective excitations of the inner core
component. In our reference case, the disparity of the particle
numbers leads to the ground state of 87Rb barely chang-
ing when increasing the interaction between the components.
Consequently, we see excitation frequencies which are almost
independent of aRb,K as well as those which tend towards or
away from the minimum. At each avoided crossing, the modes
exchange the dominant component in the corresponding den-
sity oscillations [56] and thus the behavior of their frequency
as a function of aRb,K.

IV. FREE EXPANSION

A special feature of mixture-realized shells is exhibited in
their free expansion after the confinement is switched off.

FIG. 2. Mode frequency ω of the lowest-lying spherically sym-
metric (l = 0) collective excitations of the whole system as a
function of the interspecies scattering length aRb,K. The solid lines
and dots are determined by the solutions of the Bogoliubov–de
Gennes equations and numerical simulations of the GPEs (1), re-
spectively, as discussed in Appendix A. The common minimum of
the frequencies is a clear sign of the hollowing transition marked by
the dotted vertical line, where |ψK(0)|2/max|ψK(x)|2 drops below
10−2. Top: Two-dimensional cuts of the ground-state density |ψK|2
corresponding to the marked values of aRb,K (color map scaled to
respective peak density) illustrating the hollowing transition. The
surface of 87Rb, where |ψRb|2 drops below 10−2 of its peak density,
is indicated by the dashed blue lines.

Two very distinct expansion scenarios are possible due to
the freedom of controlling the intercomponent interaction.
Taking a shell-shaped ground state and solely switching off
the harmonic confinement for both components leads to an
expanding shell as displayed in Fig. 3(a). Here the persisting

FIG. 3. Time evolution of the spherically symmetric density dis-
tribution |ψK|2 along the x direction for different free expansion
scenarios using the initial shell-shaped state of Fig. 1. (a) Solely
switching off the external confinement leads to an expanding shell
with its size being proportional to the edge of the expanding inner
rubidium core RRb defined by |ψRb|2 dropping below 10−2 of its peak
value. (b) By additionally switching off the interaction between the
two species at t = 0, the shell can expand inwards until it reaches the
center and shows a self-interference pattern.
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repulsive intercomponent interaction leads to the outwards
expansion of the inner component (87Rb), preventing an in-
wards expansion of the outer component (41K) and therefore
the shell structure is conserved. A second scenario occurs, if
the inter-component scattering length can be tuned to zero at
t = 0. In this case, the two components evolve independently
and the outer component can expand inwards until it reaches
the center and a self-interference pattern emerges, as shown in
Fig. 3(b).

Conserving the shell structure during the expansion is an
important feature of the mixture compared to rf-dressed shells,
where the typical expansion scenario is similar to the one
presented in Fig. 3(b) [8,57]. In the case of Fig. 3(a), after
t = 20 ms, the shell has a radius 〈r〉K ≈ 80 μm and a width√

〈r2〉K − 〈r〉2
K ≈ 8 μm. The natural occurrence of expanding

shells presents a clear advantage of our proposed scheme,
as they offer the possibility of magnifying dynamical effects
like vortex formation and collective excitations on the shell
surface.

V. FEASIBILITY OF GENERATING SHELL-SHAPED BECS

Having discussed properties of mixture-based shells in
ideal circumstances, we conclude by analyzing the influ-
ence of gravity on the mixture. In general, the resulting
gravitational sag deforms the shell-creating potential due to
the inner species being displaced differently than the outer
one. Although small deformations can be compensated by
intraspecies repulsion, if the relative displacement becomes
too large, the outer species no longer forms a closed shell.
Here we want to assess the robustness of the mixture against
gravitational sag, which is the most important shell-opening
effect for this approach, and point out mitigation strategies.

An ideal shell-shaped BEC is point symmetric with respect
to its center. Consequently, we asses the influence of shell-
opening effects by comparing the density maxima nmax(θ, ϕ)
and nmax(π − θ, ϕ + π ) of the 41K ground state |ψK (x)|2
along two opposing directions, characterized by the spherical
angles θ and ϕ. Maximizing the difference along all possible
directions gives the asymmetry

A = max
{θ,ϕ}

∣∣∣∣nmax(θ, ϕ) − nmax(π − θ, ϕ + π )

nmax(θ, ϕ) + nmax(π − θ, ϕ + π )

∣∣∣∣, (2)

which is a measure of how far the shell deviates from the ideal
case. A perfect shell yields A = 0, whereas the opposite case
of a completely opened-up shell gives rise to A = 1 because
there is at least one direction along which nmax(θ, ϕ) = 0.

We model gravity by including an additional potential
Vg,α (z) = mαgz into the single-particle Hamiltonian hα of
each component, where g denotes the gravitational acceler-
ation. As a result, each total single-particle potential retains
its harmonic form, but has its minimum shifted by z0,α =
−g/ω2

0,α along the z axis. A nonzero differential shift δz0 =
g|1/ω2

0,α − 1/ω2
0,β | displaces the two components from each

other, thereby deforming the shell. Three solutions offer
themselves: (i) realizing equal trap frequencies for both com-
ponents to achieve equal potential shifts, (ii) working in a
microgravity environment to reduce g, or (iii) increasing the
trap frequencies, i.e., the laser power. In Earth-based labora-

FIG. 4. Asymmetry A, Eq. (2), of a shell-shaped BEC mixture for
different gravitational accelerations g (gE = 9.81 m/s2) and varying
(a) numbers of potassium atoms NK or (b) trap frequencies ω0,K,
while keeping the ratio ω0,K/ω0,Rb ≈ 1.363. The cases A = 0 (dark
blue) and A = 1 (yellow) correspond to symmetrically filled and
opened-up shells, respectively. Existing experimental platforms are
marked on the right. The robustness of the shell increases with the
particle number due to deformations being compensated by inter-
atomic repulsion within the shell (a) as well as by increasing the trap
frequencies at the expense of the overall size of the system (b).

tories and following option (i), one could realize shell-shaped
BECs by carefully choosing the laser wavelength of the op-
tical trap [58–63]. This is a promising perspective to create
quantum bubbles made possible by the method presented in
this article. Here, we briefly explore the latter two options and
study the degree of microgravity required for closed shells as
we vary both the trap frequency and the particle number of the
outer species. Figure 4 shows that our reference case indeed
requires microgravity conditions to form a closed shell-shaped
BEC. On the right-hand side of Fig. 4(a) we mark typical
gravitational accelerations provided by available experimental
platforms. As indicated by the yellow color, Earth-based labo-
ratories and zero-g planes [64,65] are not suitable, and only for
considerably smaller gravitational accelerations, g � 10−5gE,
like on the International Space Station (ISS) [2,66] or in a
drop tower [67,68] does the system form an almost ideal
shell (dark blue). Depending on the number of particles in
the outer species, this threshold varies, potentially allowing
an implementation in sounding rockets [69] as well.

By varying the trap frequencies, Fig. 4(b), we find that
going from ω0,K = 2π × 70 Hz to ω0,K = 2π × 250 Hz the
shell gains robustness against a gravitational acceleration g
one order of magnitude larger. This results from a decrease of
the absolute gravitational displacement of both components.
However, tightening the trap reduces the overall size of the
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shell from 〈r〉K ≈ 12.7 μm down to 〈r〉K ≈ 7.6 μm in this
frequency range. Nevertheless, even weaker trap frequencies
(ω0,K = 2π × 10 Hz) and therefore larger initial shells with
a size of 〈r〉K ≈ 27.4 μm can be achieved under optimal
microgravity conditions.

Our study shows that mixtures are excellent tools to create
shell-shaped BECs with good spherical symmetry when us-
ing drop towers or the International Space Station for which
mixture-capable setups such as BECCAL [48] are planned.
Depending on the available particle numbers, the trap frequen-
cies may have to be increased to guarantee a good enough
symmetry. In future setups special care can be taken about the
choice of the laser wavelength and atomic species to achieve
equal trap frequencies and allow the generation of shells with
perfect symmetry in Earth-based laboratories.

We emphasize that gravity is the only major shell-opening
effect in the mixture-based scheme. In contrast, the rf-dressed
shell BECs do not only require microgravity [26], but are also
very sensitive to an inhomogeneity of the rf field and non-
perfect alignment with the static magnetic field. Both issues
result in a spatially dependent Rabi frequency that tilts the
shell-creating potential. Recent modeling of the CAL atom-
chip potential reports a tilt equivalent to 10−3gE [3] which
would be crippling for the formation of shells made of pure
BECs. The big advantage of our proposal is to circumvent
this problem entirely while at the same time achieving a
similar robustness against gravitational sag alone, as shown
in Appendix B.

VI. SUMMARY

We have proposed an alternative method to create spheri-
cally symmetric shell-shaped BECs with dual-species atomic
mixtures in a microgravity environment. Similar to the con-
ventional rf-dressing scheme, both the ground state and the
collective excitations identify the topological transition from
a filled sphere to a shell-shaped BEC. Moreover, the shell
structure of our mixture is conserved by the repulsive in-
terspecies interaction during free expansion, allowing for a
magnification of the dynamics on the shell. Additionally, we
have quantified the effects of gravity on the feasibility of
achieving symmetrically filled shells and pointed out mitiga-
tion strategies.

We emphasize that our scheme based on dual-species
mixtures has straightforward applications to related research
areas, e.g., few-body physics in mixed dimensions [70,71],
ultracold chemistry [72], as well as Bose-Fermi mix-
tures [73,74] and dipolar BECs [75–77] on curved manifolds.
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APPENDIX A: NUMERICAL SIMULATIONS OF THE
GROSS-PITAEVSKII AND BOGOLIUBOV–de

GENNES EQUATIONS

To describe collective excitations and to obtain the cor-
responding spectrum, we use the Bogoliubov–de Gennes
equations (BdGEs). Both the GPE (1) and the BdGEs

Euα = Lαuα +
∑

β

gαβ[|ψβ |2uα + |ψα||ψβ |(uβ + vβ )],

−Evα = L∗
αvα +

∑
β

gαβ [|ψβ |2vα + |ψα||ψβ |(uβ + vβ )]

(A1)

for component α of a multicomponent BEC can be derived
by extending the calculation presented in Ref. [47]. Here we
have suppressed the spatial arguments in the ground state
solution ψα (x) = |ψα (x)|eiSα (x) of Eq. (1), the quasiparticle
mode functions uα (x), vα (x), as well as the linear operator

Lα (x) = − h̄2

2mα

[∇x + i∇xSα (x)]2 + Vα (x) − μα. (A2)

The chemical potential μα is obtained together with the
ground state by solving the time-independent GPE numeri-
cally. Since the wave functions of the ground states considered
throughout this article are real, Sα are constants, ∇xSα (x) = 0,
and L∗

α = Lα .
The BdGEs (A1) are an eigenvalue problem for the

quasiparticle mode functions {uα, vα} and the corresponding
energies E = h̄ω. The low-frequency modes of the BdGEs
describe collective excitations [5], with ω being the frequency
of the corresponding density oscillations. In the appendices
we suppress mode indices. For more details on the BdGEs we
refer to Refs. [5,47].

For our consideration of collective excitations, all poten-
tials and ground states are spherically symmetric. This enables
us to perform a separation of variables in the BdGEs by
expanding the angular parts in terms of spherical harmonics.
The BdGEs thus reduce to a system of linear one-dimensional
differential equations with respect to the radial coordinate
r, including a centrifugal potential h̄2l (l + 1)/(2mαr2) with
l = 0, 1, 2, . . .. In Fig. 2 (solid lines) we show the first few
(positive) mode frequencies ω corresponding to l = 0, with
the parameters given in Table I and excluding Goldstone
modes.

Now we discuss methods for solving Eqs. (1) and (A1).
In this article we have performed three different types of
numerical simulations: (i) finding the ground state solution of
the GPE, (ii) propagating the ground state wave function in
time, and (iii) solving the BdGEs. To find the ground states
in either one or three dimensions on a discretized grid, we
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have used the imaginary-time and split-step methods, giving
rise to the results presented in Figs. 1 and 4 [52,53]. A sim-
ilar simulation but with real time can be used to propagate
the ground state wave function in time, which enables us to
consider the free expansion scenarios shown in Fig. 3. Addi-
tionally, the collective excitation frequencies can be accessed
by direct simulation of the GPE (1) and performing a Fourier
transformation of a quantity such as the expectation value and
variance of the radial coordinate over time. These results are
presented by dots in Fig. 2. Finally, for solving the BdGEs we
use an eigensolver based on the finite element method.

APPENDIX B: COMPARISON WITH
rf-DRESSING APPROACH

In this Appendix we extend our study of the ground state,
collective excitation spectrum, free expansion and feasibility
to the rf-dressed scheme. We employ the rf-dressed poten-
tial [21,23]

Vrf(x) = MF gF

|gF |

√(
mω2

0,rf

2F
x2 − h̄�

)2

+ (h̄�0)2, (B1)

where MF denotes the projection of the total momentum F
of a dressed state in the hyperfine manifold with correspond-
ing Landé factor gF . The trap frequency ω0,rf of the static
magnetic trap is chosen such that the potential of the highest
trapped bare state is given by Vst(x) = mω2

0,rfx
2/2. Moreover,

� is the detuning of the rf field with respect to the transition
between neighboring bare states at the center of the trap, and
�0 is the corresponding Rabi frequency. Here we only con-
sider single-component BECs in rf-dressed traps and therefore
drop all component-related indices.

1. Ground states

In order to have a fair comparison between the shells
created in both systems, we simulate the rf-dressed scheme
with the same amount of 41K atoms as in the mixture case.
A shell-shaped BEC in the mixture-based approach results
from the combination of the harmonic trapping potential and
the repulsion provided by the inner 87Rb core, giving rise to
an effective potential Veff(x) = gRb,K|ψRb(x)|2 + mKω2

0,Kx2/2
for 41K. To have an rf-dressed shell with the same geometrical
parameters, we fit the potential Vrf, Eq. (B1), to Veff(x) and
thereby obtain the corresponding values for � and ω0,rf. All
other parameters are chosen beforehand and the complete set
of parameters is listed in Table II.

Figure 5 presents the ground states of both systems for
the parameters given in Table II and clearly shows that the
ground-state density distributions of 41K (orange) in the BEC
mixture, Fig. 5(b), and the rf-dressed BEC, Fig. 5(d), are
almost identical.

2. Collective excitation spectrum

In Fig. 6 we show the collective excitation frequencies for
the first few l = 0 modes as a function of aRb,K, (a), or �,
(b). In the rf-dressed case, this spectrum has a minimum at
a certain � corresponding to the transition between a filled
sphere and a hollow sphere [19,20]. In the mixture case, this

TABLE II. Parameters for the comparison of the two schemes
resulting in shells of the same species and with the same geometrical
sizes. Note that the parameters for the BEC mixture are the same as
in Table I.

ω0/(2π ) aRb,K �/(2π ) �0/(2π )Species N
(Hz) (units of a0) (kHz) (kHz)

rf-dressed 41Ka,b 105 152.3 3.78 2.5
BEC

BEC 41Kb 105 70.0
85

mixture 87Rbc 106 51.3

aThe atoms are prepared in the |F = 2, MF = 2〉 dressed state which
has a positive Landé factor gF = |gF |.
baK,K = 60a0.
caRb,Rb = 100a0.

spectrum displays a similar feature albeit at a certain value of
aRb,K.

Further similarities can be seen in the limit of the harmoni-
cally trapped single-component BEC. In the mixture scheme,
this limit corresponds to aRb,K = 0, where both components
are completely decoupled, and are reduced to the well-studied
case of a BEC in a spherically symmetric harmonic trap. The
collective excitation spectrum

ωα = ω0,α

√
2n2 + 2nl + 3n + l (B2)

FIG. 5. Spherically-symmetric shell-shaped ground-state density
distributions |ψα|2 of a 87Rb-41K BEC mixture (a),(b) and an rf-
dressed 41K BEC (c),(d) using the parameters presented in Table II.
(a),(c) Cut-open three-dimensional density plots (color bar units in
μm−3). (b),(d) Density profiles (solid lines) along the radial direc-
tion and corresponding trapping potentials (dashed lines) Vα (x) =
mαω

2
0,αx2/2 and Vrf(x), Eq. (B1). The mixture forms a shell due to

the interplay between the harmonic confinements and a repulsive in-
terspecies interaction governed by the s-wave scattering length aRb,K.
In contrast, the rf-dressed shell-shaped BEC relies on the trapping
potential being a double-well in all directions.
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FIG. 6. Mode frequency ω of the lowest-lying l = 0 collective
excitations for a 87Rb-41K BEC mixture (a) and an rf-dressed 41K
BEC (b) as a function of the interspecies scattering length aRb,K and
detuning �, respectively. The solid lines and dots are determined by
the solutions of the BdGEs (A1) and numerical simulations of the
GPEs (1), accordingly. In both systems the common minimum of the
frequencies is a clear sign of the hollowing transition marked by the
dotted vertical lines, where |ψK(0)|2/max|ψK(x)|2 drops below 10−2.
Moreover, in the respective harmonic limit, where both systems re-
duce to single-component BECs in spherically symmetric harmonic
traps, the excitation frequencies are given by Eq. (B2) and the lowest
frequencies are marked accordingly.

can be obtained analytically using the Thomas-Fermi approx-
imation [47].

Hence, the spectrum depends on the two numbers n =
0, 1, 2, . . . and l = 0, 1, 2, . . . as well as the corresponding
harmonic trap frequency ω0,α . In Fig. 6(a) we mark the first
nonzero excitation frequency for 41K and 87Rb, respectively.
At aRb,K = 0 all shown excitation frequencies agree with
Eq. (B2) and can be matched to either of the components.

In the rf-dressed scheme, the harmonic limit corresponds to
� < 0 with �0/|�| 
 1, where the potential Vrf(x), Eq. (B1),
reduces to a harmonic one with an offset

Vrf(x) ≈ −MF gF

|gF | h̄� + MF gF

|gF |
mω2

0,rf

2F
x2 + O

(
�2

0

�

)
. (B3)

In this limit, the collective excitations of the highest trapped
state with MF gF = |gF |F are thus also described by Eq. (B2).
Due to the scaling in the respective trap frequency in Fig. 6,
the excitation frequencies of the rf-dressed BEC, Fig. 6(b),
start at the same value as the excitation frequencies of 41K in
the mixture, Fig. 6(a).

Let us now consider the behavior as we move away from
the respective harmonic limit by looking at the lowest excita-

FIG. 7. Free expansion of the spherically symmetric density dis-
tributions |ψK|2, which are initially prepared in the form presented in
Fig. 5, along the x direction for a 87Rb-41K BEC mixture (a),(b) and
an rf-dressed 41K BEC (c) (color bar units in μm−3). (a) By switching
off both the confinement and the interaction between the two species,
the shell can expand inwards until it reaches the center and shows a
self-interference pattern. (b) Leaving the interaction at aRb,K = 85a0

leads to an expanding shell with its size being proportional to the
edge of the expanding inner rubidium core RRb defined by |ψRb|2
dropping below 10−2 of its peak value. (c) Switching off all magnetic
fields in the rf-dressed BEC results in a similar free expansion as the
mixture case in (a). (d) Tracking the expectation value 〈r〉K over time
reveals the similarity between (a) and (c) as well as the increasing
radius of the expanding shell in (b).

tion frequencies, as marked in Fig. 6. In the mixture scheme,
increasing the interaction between the components leads to
an immediate decrease of the frequencies belonging to 41K.
In contrast, the excitation frequencies of 87Rb stay almost
constant. This can be explained by the fact that the ground
state of 87Rb barely changes while 41K ultimately transforms
into a shell which in turn is due to the large disparity between
the particle numbers of both components. A consequence of
these two different behaviors of the excitation frequencies is
the display of avoided crossings. In the rf-dressed scheme,
a second component is absent. Furthermore, the behavior of
the excitation frequencies is different to those of 41K in the
mixture scheme, as they start to decrease only slowly. This
is due to the fact that the potential is deformed away from
its harmonic form rather slowly and it is only obtaining a
double-well-like structure for � > 0.

3. Free expansion

In Fig. 7 we compare the free expansions of both ground
states displayed in Fig. 5. This is done by switching off the
optical dipole trap in the mixture scheme and both the static
magnetic and rf field in the rf-dressed scheme. Unsurpris-
ingly, if the interaction between 87Rb and 41K is additionally
tuned to zero, aRb,K = 0, Fig. 7(a), the free expansion of the
density distribution |ψK|2 is similar to the one reported for
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FIG. 8. Asymmetry A, Eq. (2), of a BEC mixture (a), (b) and an rf-dressed BEC (c),(d) for different gravitational accelerations g (gE =
9.81 m/s2) and varying (a),(c) the numbers of potassium atoms NK, (b) the trap frequency ω0,K, while keeping the ratio ω0,K/ω0,Rb ≈ 1.363,
or (d) the linear gradient γ of the Rabi frequency. The cases A = 0 and A = 1 correspond to symmetrically filled and opened-up shells,
respectively. Existing experimental platforms are marked on the right: Earth-based laboratories, zero-g planes [64,65], sounding rockets [69],
the International Space Station [2,66], and a drop tower [67,68]. (a),(c) The robustness of the shell increases with the particle number in
a similar fashion for both systems due to deformations being compensated by interatomic repulsion within the shell. (b) Increasing the trap
frequencies makes the mixture more robust at the expense of the overall size of the system. (d) The rf-dressed shell opens up both for increasing
gravitational acceleration and Rabi frequency inhomogeneity.

the rf-dressed BEC [8,57], Fig. 7(c), due to the fact that
both ground states have almost identical shells. In contrast,
at aRb,K = 85a0, Fig. 7(b), the free expansion of |ψK|2 is
completely different and features an expanding shell. More-
over, for the expansion scenarios shown in Figs. 7(a)–7(c),
we track the time-dependent expectation value 〈r〉K(t ) =
4π

∫ ∞
0 dr r3|ψK(x, t )|2 of the radial coordinate for 41K and

present the results in Fig. 7(d). Here we see the similarity of
the two expansion dynamics displayed in Figs. 7(a) and 7(c) as
well as the much faster expanding shell scenario in Fig. 7(b).

4. Feasibility

A comparison of the robustness against shell-opening
effects is rather difficult due to the large number of pa-
rameters involved. However, a reasonable approach is to
compare the robustness against gravity by including a lin-
ear potential Vg,α (z) = mαgz in the model of both schemes.
Figures 8(a) and 8(c) show the asymmetry A, Eq. (2), of the
shells for different levels of gravitational acceleration g and
potassium particle numbers NK. Evidently, without gravity-

reducing platforms both systems cannot form closed shells
(yellow area). However, in the reference case, NK = 105, the
rf-dressed BEC is robust against one more order of magnitude
of g compared to the mixture. This is due to the difference in
the trapping frequencies ω0,rf/ω0,K ≈ 2.176, cf. Table II, as a
tighter trap generally increases the robustness. In Fig. 8(b) we
vary the trap frequency ω0,K and achieve a similar robustness
as the rf reference case when ω0,rf ≈ ω0,K = 2π × 150 Hz.
We emphasize that shell-opening due to gravity can be com-
pletely mitigated in the mixture-based scheme when using
equal trap frequencies ω0,K = ω0,Rb, whereas there is no such
option in the rf-dressed scheme.

Apart from gravitational sag, rf-dressing has an intrinsic
second major shell-opening effect, which is a problem in cur-
rent realizations. Mainly rooted in inhomogeneities of the rf
field, any spatial dependence of the Rabi frequency can open
the shell up similar to gravity due to the atoms being forced to-
wards positions of lower frequency where the shell potential is
deepest. To study the robustness of the rf-dressed BEC against
this effect, we use a simple linear gradient and replace the
Rabi frequency �0 in the rf-dressed potential Vrf(x), Eq. (B1),
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by �(x) = �0(1 + γ x/x0), where x0 =
√

2F h̄�/(mω2
0,rf ) is

the position of the minimum of Vrf(x) along the x direction.
Hence, at x = (±x0, 0, 0) the Rabi frequency has a relative
deviation of γ compared to its value �0 at x = 0, and γ >

0 tilts the potential towards negative x direction. We chose
the Rabi frequency gradient orthogonal to the gravitational
acceleration to study the two effects separately. In any other
case they may either (partially) compensate or amplify each
other.

Figure 8(d) displays how an rf-dressed shell gradually
opens up due to either gravity or a gradient in the Rabi
frequency. With respect to gravity an experimental platform
such as the International Space Station is well suited to cre-
ate perfectly symmetric shells (dark blue area). However, to
achieve this grade of symmetry, the Rabi frequency should not
additionally deviate more than approximately 10−4 between
center and surface of the shell. Current modeling of the CAL
atom-chip potential reports γexp ≈ 5 × 10−3 for a trap diame-
ter of 71 μm [3,4].
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