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Interference of small and of large quantum particles behind an asymmetric grating
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Quantum theory of interference phenomena does not take the diameter of the particle into account, since
particles were much smaller than the width of the slits before the rise of molecular interferometry. In the
experiments with large molecules, the diameter of the particle has approached the width of the slits. Therefore,
an analytical description of these cases should include a finite particle size. An asymmetric double-slit grating
seems to be very suitable for the study of the influence of a particle’s size on the interference pattern. We
identify three characteristic cases for the ratio of slit width&nd &, and the particle diamet&: D < §; and
D<6,, 6,>D>6, andD>§,> 8, Taking into account the influence of both slits on the particle wave
function, regardless of through which slit the particle passed, we treat the particle-wall interaction in a simple
fashion, such that if the particle size is greater than the slit opening there is no transmission. The transverse
momentum distribution is independent of the distance from the slits and the particle size, while the space
distribution strongly depends on this distance and the particle size. We found that the interference is absent
only when the particle’s diameter is larger than both slit widids; 5, > 6,.
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[. INTRODUCTION In the frame of quantum optics and quantum electrody-
namics there is no place for a notion of the diameter of a
photon, but it is worth mentioning that Hunter and Wadlinger
[8] studied this problem and planned a single-slit transmis-
sion experiment in order to verify their assertion that the
photon diameter is equal o/ 7, where\ is photon’s wave-
fength.
With the advent of atomic interferomet{®], the ratio of
e size of a particle with respect to its de Broglie wave-
ngth has been changed significantly. The atomic fadyj,
etermined from ionic crystal atomic data, show periodicity
with respect to atomic number and take values in the interval
0.06 nm-0.28 nm. But atoms in Rydberg states are much
larger, as shown by Fabret al. [11] by measuring their
transmission through micrometer size slits. “The extension
df an n-state wavefunction—of the order oh2a, wherea,
is the Bohr radius—falls in the micrometer range for
=100 and corresponding Rydberg atom has the dimension
of a biological cell or even of a manufactured objécire,
slit ..)” [11].

It was demonstrated in molecular interference experi-
ments of Schmiedmayet al. [12] and Chapmaret al. [13]
that interference fringes can be observed when the size of a
particle (~0.6 nm for Na moleculg is considerably larger
than both its de Broglie wavelengt.016 nm and its co-
herence lengtlitypically 0.1 nm. Based on these results the
‘Following fundamental question was raised by Schmied-
mayeret al.[14]: “What limits do the size and complexity of
particles place on the ability of their center-of-mass motion
to exhibit interference effects?” This and related questions
[15,14 stimulated Arndet al.[17], Nairzet al.[18], Brezger
et al. [19], and Hackermulleet al. [20] to perform experi-
ments with objects of larger mass and diameter, including

Prior to the advent of atomic interferometry, quantum in-
terference experiments were conducted with objéptso-
tons, electrons, neutrons, protons, etf.size much smaller
than their(de Broglie wavelength and also much smaller
than the characteristic dimensions of the diffraction structure
First, we recall data for the electron, neutron, and photon.

The value of the electron radiug has not been precisely th
established yefl]. But, there is an agreement that it was le
much less than the Compton wavelength of the electroraj
Ace=h/m,c=3.86x 1072 m. The de Broglie wavelengtkg,
of a nonrelativistic electron is much larger thag. since
Age=h/Mw = Kk\ce Wherek is the ratiok=c/v. For nonrel-
ativistic electrons« is much greater than one. Electron dif-

and wavelengths having the following values: Davisson
Germer experimenf2] on nickel crystal, lattice constaut
=0.215 nm, Age=0.167 nm; Jonsson’s double-slit electron
experiment[3], d=500 nm, A\g,=0.005 36 nm; Mollenstedt
[4], d=100 nm, Age=0.2 nm; Tonomuraet al. [5], d
=90 nm,Age=0.1 nm.

The neutron radius ig,=0.7x10m, its Compton
wavelength equals\c,=1.319x10®*m, and de Broglie
wavelength for thermal neutrongsk=c/v~10) is \g,
=khcp=0.1319 nm. The slit widthdattice constantsin per-
fect crystal neutron interferometers for thermal neutrons ar
of the order of 1um (Rauch and Wern€fi6]). In the single-
and double-slit interferometer of Zeilingeat al. [7] with
cold neutrons, the values wekg,=2 nm and slit widthsé
were in the range 20—100m.
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"Email address: arsenovic@phy.bg.ac.yu Arndt et al. [17] demonstrated that aggmolecule inter-
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de Broglie wave interference ofggmolecules by diffraction W(X,y,zt) = e—iwt(p(x,y,z) (1)

at a material absorption grating having 50-nm-wide slits with

100-nm period and stated: “This molecule is the most mascan be written in another forf21-23 which has some ad-
sive and complex object in which wave behavior has beeiyantages in comparison to the Fresnel-Kirchhoff form. In
observed. Of particular interest is the fact that & almost ~ order to encompass more general cases the solutions of the
a classical body, because of its many excited internal degreddree-dimensional Schrddinger equation are considered.
of freedom ...”[17]. In addition, de Broglie wavelength of With approximations valid for small diffraction angles the
the interfering fullereneshg=2.5 pm, is already smaller function¢(x,y,2) can be written in the form

than their diamete(~1 nm) by a factor of almost 400 and o i

Arndt et al. [17] pointed out that “it would be certainly in- @(X,Y,2) = 1 ikyf f dkdk,c(k,,k,)

teresting to investigate the interference of objects the size of 2m - J o

which is equal or even bigger than the diffraction structure.”

In the standard quantum theory particles are implicitly
e e Tl P, 0 el sie 1 ot Do Slherect, ) i he double Fourier ransior o he func-
square of a wave function. However, in light of the molecu—tlon ¢(x,y,2) on the apertureg(x,0,2).
lar interference experiments, it is necessary to clarify the 1 [~ +o0 ‘ _
notion of the size of a quantum particle, as well as to recon- c(Keky) = —f dxf dzp(x,0,2)e7 e kZ (3)
sider the quantum theory of interference by taking into ac- 2m) -

count the size of a particle. A full quantum description of t,o o4 tion given in Eq(2) is equivalent to the Fresnel-
interference assuming that the characteristic sizes of the d'kirchhoff solution, if the functionc(k,.k,) is determined
1 X 1

fracﬂon structure are of the order of thg dlamet_er of a p.art'defrom the same boundary conditions at the grating as are the
is rather complex. It requires that particle-wall interaction be

. NN ones used in deriving the Fresnel-Kirchhoff integral. This
taken into account. However, the work presented in this pa: " . .
; : S o equivalence was first shown numericallgl-23 and later
per treats the p_artlcle-wall mterqcnon ina S|mpI|f|§d way. At nalytically[27]. The proof of the analogous equivalence for
the same time it takes properly into account the influence ogn infinite periodic grating was given by Dubetsky and Ber-
both slits on a particle wave function, regardless of throughman[zs]
Wh\'/(\:lz s;ltlhéhetﬁzrggee%%sesnecde. of the interference pattern o The time-dependent wave function of the transverse mo-
. idy the dep ; P Oflon is then defined by substitutingunder the integral sign
particle size using a theoretical gpproach developed earlle"r1 Eq. (2) by vt. Here,v denotes the initial velocity of the
[21-23. The approach that explains interference phenomen article. assumed to f)e along thexis. The usual justifica-
as a process of accumulation of individual particle arrivals t ' i

the screen is briefly summarized in Secs. II-IV. An asymmet_t|on for such a substitution is that in reality the motion of the

ric double-slit interferometer with slit widthg, and 6, is the partigle anng. the longitudinal axis looks like th_e mption ofa
eneric case for this studiz4l. One ma considzer three classical particle, whereas the transverse motion is quantum.
gen . : 52. 1. Y With this substitution, and using the de Broglie relation
options for the ratio of slit widths to the diameter of a par- f d d ials in th
ticle, D. In Sec. V we discuss the following case3:is . , two exponents of twg-dependent exponentials in the
negI’igib'Ie with réspect to the widths, and 8, & >D>S integral are transformed into the following time-dependent
2: U1 21

; expressions:
andD > §,> 6. In Sec. VI we discuss results for all three P

) ) ) 2
X elkxxelkzze—lkxy/2ke—|kzy/2k’ (2)

cases. h h
ey L oy L
2k 2m 2k 2m
II. WAVE FUNCTION OF A PARTICLE BEHIND AN ®, ®, (4)

N-SLITS GRATING
. . . With the aid of the latter substitution the wave function
By measuring the time of arrival of atoms on a screen alp(x,y,z,t) takes the form of a product of two time-
the distancey behind amn-slit grating, Kurtsiefert al. [25] * gependent functions. The first function is the stationary plane

found good agreement of their experimental results with the, o\ o along they axis with the initial energyiw. The second
modulus square of the time-dependent wave funcifont)  fnction has the form of the nonstationary solution of the

of atomic transversgalongx axis) motion. The function was  yo-dimensional Schradinger equation in the plane:
evaluated numerically from the space-dependent patty)

of the stationary solution of the two-dimensional 1 v ciot R

Schrédinger equation. The functiop(x,y) satisfies the Yixy.zt) =€ f f dkdk,Clky, ky)
Helmholtz equation and is written in the form of the Fresnel- D

Kirchhoff integral [26]. Then, the following two important ><eikxxeikzze—ikfﬁt/2me—ik§ht/2m, (5)

assumptions were madgt) the longitudinal motion of par-

ticles behind the slits was classical-like, satisfying the relawhere w,=k3%/2m, w,=k:/2m. The latter function is de-

tion y=vt; (2) the time-dependent transverse wave functionnoted byy(x,z,t) and is called the transverse wave function

is independent of the initial longitudinal velocity of an atom. or the time-dependent wave function of the transverse mo-
The space-dependent paitx,y,z) of the wave function  tion:
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1 e} +00 ) ) ) .
WXz = f f dk dk.c(k,, k) ekgkaeriodgrion o
(6) >
The wave functior’(x,y,z,t) from Eqgs.(1) and (5) is ex- :_,—‘_, 4_,
pressed throughi(x,z,t) as 5, 3, 3, .
W(x,y,zt) = eWelly(x,z,1). (7) ® Source

From Eq.(6) we see that Kurtsiefegt al. [25] were right in
assuming that the transverse wave funCuMN’Z,t) is inde- FIG. 1. lllustration of a grating with slits of various widths.
pendent of the particle’s initial momentupxzk.

Equation(5) has an important property. One can directly  Using the approximate Eq9) and having in mind the
verify that it satisfies exactly the time-dependent free particlalefinition (6) of the transverse wave function, we may write
Schrodinger equatioriThis looks curious and unexpected if the approximate form of this function which is valid in the
one has in mind that E@5) was obtained by substituting the far field. It is
relationy=uvt into the approximate solution of the stationary
Schradinger equatiohAs such, it could be a wave function
of a particle behind a grating, if it were to satisfy the bound- m . .
ary conditions at the grating. But, it satisfies the boundary ~ #¥(X.zt) = P i(nl2) gl (M2 MZ 200 o (it mzht)
conditions aty=0 only fort=0. This could be remedied by
substituting the plane wave along tieaxis (in the initial (10
wave function as well as in the wave function behind a grat-
ing) by a wave packet with a well-defined wave front. Such
a wave packet was constructed by Gottfr[@d. The wave function/(x, z,t) is proportional to the probability

From Eq.(3) it is evident that the probability amplitude of amplitudec(mx/%t,mz/#it), wheremx/At andmz/#it play the
transverse momenta&(p,, p,) =c(k, k) /A=c(p,/%,p,/h)/n  role ofk, andk,, respectively.
is determined by the boundary conditions at the grating. It is
independent of the initial longitudinal momentum as well. In
addition, it is independent of time. Its modulus squared de-Ill. WAVE FUNCTION AND PROBABILITY AMPLITUDE
termines the distribution of the particle’s momenta. So, one  OF THE PARTICLE TRANSVERSE MOMENTUM
is forced to conclude that particles with zero component of BEHIND VARIOUS ONE-DIMENSIONAL GRATINGS
transverse momentum acquire a small component of trans-
verse momentum in passing through the grating. The distri- We shall look for a transverse wave function behind a
bution of momenta acquired at the grating does not changene-dimensional gratinf22],
during the free evolution behind the grating.

For large values of the functione(x,y,2z) in Eq. (2) is

approximated by22] 1 [+ '
P(x,t) = o c(kye®xaddk,, (12)
o(X,y,2) = Le—i(wlz)eikyeikxz/zyeikzz/zy N ==
Y, 2my
% J (P(X”1 O,Zn)e—ikx%’/ye—ikzi'/yd)(rdzn . (8) where
A
where A is the union of point$x”,z’) at the apertures. Tak- 1 (* i
ing Eq. (3) into account, Eq(8) takes the form c(ky) = \T—Trf_ dxyr(x,0)e", (12

o(X,Y,2) = eikyl_(e—i(wlz)eikx2/2yeik22/2yc(kxly, kzy). (9)
y From Eq.(12) we see that the probability amglitude of trans-
We see that the variabldé,=kx/y and K,=kz/y play the ~verse momentumc(p,) =c(k,)/i=c(p,/f)/\% behind a
role of k, andk,. one-dimensional gratingsee Fig. 1 is determined by the
SinceK, andK, are proportional tox/y andz/y, respec- function ¢(x,y)=€"y(x,y/v) at y=0 (boundary condi-
tively, functions|e(x,y,z)|=const are a family of functions tions). We are choosing the simplest onegtx,y=0)
of x andz spreading along the andz axis asy increases. In  =const forx at the openingsy(x,y=0)=0 for x outside the
fact, for each value ofg|, in the far field there exists the openings. The constant has to be determined from the nor-
straight line with origin at the center of the grating along malization conditionf % |#(x,0)|?dx=1. So the boundary
which this particular value ofp| propagates. conditions are
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1 S
, , Xe A, A:U(xj——l,x]+—l>
(X0 =y VO + &+ -+ + 6, 2 (13
0, X& A.
[
For the grating with one slit of widtla;, centered at point kS,
X, the probability amplitude of transverse momentum is _ 2 sin——
given by Vhe(fiky) = c(ky) = —— gk«(d/2) (18
\r”7751 kx
5 sinkx—51 and forn=2
Vhclhk) = (k) = —=———e4.  (14) ks
Vs K SIS
Viictiky) = (k) = — cos>. (19
For the grating withn slits of widths éy, 65, ... ,5, centered Vs K 2
atXy,X;, ... Xn, We found The momentum distribution behind one slit, and asym-
- metric and symmetric double slits are given by, forl,
— V2 1 ke
VAiC(fik,) = c(k) = ———=""3 sin— e
X) a8 K 2 5 SinZ%
(15) Alettk) [ =[e(k)l*= —— 57—, (20
1
For a grating with even number of slits of equal width, X
6;=9, centered at pointx;=—(n/2)d-(d/2)+jd, where j and forn=2 andé, # 6,,
=1,... n, the latter expression reduces to _ ) )
hC(fik)|* = |c(ky)|
k 2 1 kS k,o.
E sinﬁ :—(5+5)F|: i "21+sin2X72
i / . T
itk = olk,) = ”=5 ” 5 ik 1+ 6)) K
van ko . k6.
) +2 sinx—lsinx—zcos(kxd)} , (21)
- ky k.dn 2 2
= sin— sin—/—
- 2 2 for n=2 ands,=5,,
— . (16)
\Vno kx . kxd
SIn—/—— k 51
2 Sire—
2 _ 2 _— +
In order to understand how a one-slit wave function changes Alelik) = le(k)| mo K [1+codkd)]. (22

with the increase of the width of the second slit, and how the

size of particles might influence the interference patterns, iffhese distributions are graphically represented in Fig. 2 for a
was proposed recently to study interference behind an asynghosen set of parameters. By comparing E48)—(20), as
metric double-slit interferometei24]. Young’'s double-slit well as the curves in Fig. 2, we may understand how the
grating is symmetric since the widths of both slits are equaincrease of the width of the second slit influences the one-slit
(6,=6,). The transverse wave function in the momentumcurve. The effect of increasing the second slit width leads to
representation behind a grating with two slits of widis  Fig. 2(c), which corresponds to a symmetric double slit. The
and &, centered ak;=-d/2 andx,=d/2 is second slit induces oscillations of the one-slit curve. The
period of oscillations is determined by the mutual distance of
slits d. By applying an elementary trigonometric formula,

vhe(tiky) = c(ky) one easily shows that the oscillations are bounded by two

~ \;’5 1 iean KOl i am . K envelopes, the upper and the lower one, which are deter-
= \Jmk_ e 5'”7*'9 s - mined by the following expressions:
/ 1 2) X
(17) le(kdI” < le(k)|3
8 k(61 + 6. K (81— &,

It is easy to see that in the cas&s=0, §,>0, x;=-d/2 and =y sir? A 14 2)0052 A 14 2),
8=0;, X1=—-d/2, x,=d/2, Eq. (15) reduces to the expres- m(k) (81 + &)
sions valid[21-23 for n=1, (23
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of the second slit from zero té;. The time and space par-
le(pz)|* [1077%) ticle distribution behind an asymmetric double-slit grating is
shown in Fig. 3. By comparing this distribution with the
9. distributions behind a one-slit grating and behind a two-slit
symmetric grating21-23, one sees how the presence of the
second slit and the increase of its width influence and change
14 the one-slit distribution.
As in the case of momentum distribution, the effect of the
\, very narrow second slit is to induce oscillations of the one-
, , , slit [y(x,t)|? curve. With increasing width of the second slit,
-1 0 b pe [107 2] these oscillations would become larger, and the main peaks
(a) would move towards the places corresponding to the sym-
metric double slit.

le(pa)I? [10773]
IV. STATISTICAL EXPLANATION OF THE SPACE
DISTRIBUTION USING TRANSVERSE MOMENTUM
DISTRIBUTION

21 Based on the above factorization of the wave function
WP (x,y,t) and the properties of its factors summarized above,
we proposed22] the new expression for the probability den-

sity I~3(x,t) for the particle’s arrival at timé to a point(x,y

-1 0 1 e [107 2] =vt), which is far from the grating:
(b) ~ ~
P(X,X> = P(x,t)
v
le(pa) > [1077%] oo +oo
=" o] aclewotueor
44 - -0
fikt
31 xd(x—x” - —X) (25)
N m
Particles emerge from different poire’, 0) at the aperture.
H That is the reason for integration owér The contribution of
each point at the aperture is proportional|#gx”,0)|%. The

-1 0 b pe [107 2] integration overk, and the functiorjc(k,)|? reflects the con-
(©) tribution of various angles/momenta in diffraction. Finally,
FIG. 2. The particle transverse momentum distribuficip,)|? the 5fun_Ction assumes straight trajectory from a p@m' 0)
behind: (a) one-slit grating(8,=1 xm), (b) asymmetric double-slit at the slits to the pointx,y) and leads to the simplified form

grating B 4o it 2
(6,=1 um, 8,=0.25um, d=8 um), and(c) symmetric double-slit P(x,t) = f dk, |C(kx)|2 z/;(x— —X,O> (26)
grating(6;=6,=1 um, d=8 um). —o0 m

By assuming that the functios(x, 0) satisfies at the grat-

le(k[? = ekl ing the boundary conditions given in EL3), Eq. (26) is
8 'n2kX(61_ ) 52kx(51+ 5) transformed into the sum af terms[P;(x,t)]. That is
= Si co :
m(K)*(y + 8,) 4 4 (mi)(x- :
(24) Bl = E ¥ dkjetk)?= S Bx.
(M/A) (x—x.) i=1
S48
From Eg.(23) one concludes that fof,< &8, the upper en- i=1

velope isvery closeto |c(k,)|? for one slit. From Eq(24) one (27)

sees that fos,= 6, the lower envelope reduces to thgaxis,
as it should be. One sees also that in this case the uppél,erex| andx are the coordinates of the left and right edges
envelope is equal to|@k,)|? for one slit. of theith slit.

A study of a wave function behind a grating with two ~ Numerical calculations for various valuesmgraphically
different slits(8; # &) is useful because one may see how aPresented in Refl23] and in Fig. 4 show that far from the
one-slit wave function changes with the increase of the widttslits (Fraunhofer regionthe functlonP(x t) is nearly equal
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FIG. 3. The particle distribution functioh(x,t)|?> behind the
asymmetric double-slit gratingd,=1 um, 8,=0.25um, d=8 um)
close to the slitga,b) and far from the slitgc,d). The initial longi-
tudinal wave vector ik=47x 1019°m™, the particle mass isn
=3.8189x 10726 kg.
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FIG. 4. The probability densitﬁ(x,t) of particle’s arrival to the
point x at timet (y=vt) behind the asymmetric double-slit grating
(6;=1 um, 6,=0.25um, d=8 um) close to the slitga,b) and far
from the slits(c,d). It is evaluated from Eq27). Particle’s diameter
D is negligible with respect to the widths of the slits. The initial
longitudinal wave vector i&k=4x 10'° m™ and the particle mass
is m=3.8189x 10726 kg.

053618-6



INTERFERENCE OF SMALL AND OF LARGE QUANTUM.. PHYSICAL REVIEW A 69, 053618(2004)

to the exact probability density¥(x,y,t)[>=|#(x,1)|?. Near  slits. The transverse wave functiof(x,t) and probability

the slits(Frenel's and Talbot's regiopd(x,t) and |(x,t)2 ~ amplitude of transverse momentdép,) are given by Egs.
qualitatively look similar but they differ numerically. (11) and (17). The momentum distributiofe(p,)[* and time

By taking into account thaP(x,t) is obtained by sum- dependence of space distributide(x,t)[? are graphically
ming the probabilities of the particle’s arrival at the point 'epresented for chosen set of parameters in Fig3.ghd 3,
(x,y) at timet along various possible trajectories, we con- respectivgly. o
clude[22] that far from the slits the functioﬁi(x,t) is equal '!'he evident dependence of transverse mome”t“”? distri-
to the probability that a particle reachésy=ut) at timet bution on the grating parameters and the close relation be-

: : : ol . tween momentum distribution and the space distribution
after passing &=0 through theith slit of then-slits grating. clearly show that the behavior of each particle is determined

Near the slitsP;(x,t) is not equal to that probability because by the superposition of all waves emerging from every slit
the particles’ trajectories near the slits are more complicategjyminated by the initial particle wave.

than further from the slits. Only far from the slits the straight

lines could approximate the particles’ trajectories.

B. The particle diameter D satisfiesd, <D < é;

V. ON THE POSSIBLE INFLUENCE OF THE PARTICLE’'S . ) )
DIAMETER ON THE INTERFERENCE PATTERN In this case we are faced with the question of how and
where to take the diameter of the particle into account. We

Up to now the size of the particles has not been taken intikcnow that the diameter of the particle is not incorporated
account in the quantum theory of interfererite6,23. This  anywhere in the Schrodinger equation. But, we expect that a
is because in the standard quantum theory the particle’s sizearticle having diameted which satisfiess; >D > 6, could
is absent from the probability interpretation of the modulusnot pass through the second slit.
square of a wave function. However, in light of molecular We foresee two possible reasonings. First, one can regard
interference experiments, it is necessary to reconsider thg(x,t) as a probability amplitude for a particle being at cer-
quantum theory of interference by taking into account thetain place at time, without any other physical reality. Then,
size of the particle. one has to conclude that particle distribution in this case

An asymmetric double-slit grating seems to be very suitshould be identical to the one-slit distributi¢no interfer-
able for the study of the influence of a particle’s size on theencg. Second, one can considéfx,t) as a real wave asso-
interference patterf24]. Its usefulness comes from the fact ciated with a particle. Then, one should conclude that the
that one can identify three characteristic cases for the ratio ofolution of the Schrodinger equation behind a grating is the
slit widths 8, and &, and the diameter of the particl®: (a) same in casé) as in casé€a) [given by Eqs(11) and(17)].
the diameteD is negligible with respect to the width% and  This is because the boundary conditions for the wave func-
9, (b) the diameteD satisfiess, <D < &y; (c) the diameter tion are the same in both cases. Consequently, the momen-
D is greater than both widths, and 5,. tum distribution |c(k,)|? of particles is given by Eq(21)

A full quantum description of interference, assuming thathecause it is determined by the values of the wave function
the characteristic sizes of the diffraction structure are of theyt the boundary.
order of the diameter of a particle, is rather complex. It re- Byt the space distribution of particles in ca® should
quires investigating the influence of particle-wall interactionpe different from the space distribution in cag because
on interference. This interaction is neglected in the standarghe particles arriving at the smaller slit cannot go through.
guantum theory of interference of particles of negligible sizeomy particles arriving at the larger slit can go through.

In this papel’ we shall treat the pal’ticle-wall interaction in Will those partic|es beha\/e C|assica”y or quantum me-
the simple fashion, such that if the particle size is greateghanically? Will those particles be influenced by waves
than the slit opening, there is no transmission. But, we shallpreading from both slits? We shall assume that those par-
take properly into account the influence of the slits on thejcles will behave as quantum particles and that their motion
wave function, as it has been necessary in the standard quagyi| be influenced by waves spreading from both slits.
tum theory of interference of particles having size negligible e found that Eq(27) is satisfied far from the slits if the

with respect to the widths of the slits. We shall especiallyparticle size is negligible with respect to the widths of the
take into account the well-established fact that the behawoglits_ P.(x,1) is equal to the probability that a particle reaches

of the photon, electron, atom, and small molecule behind th%: y=vt) at timet after passing through triéh slit att=0 of
grating depends on the number of open slits, widths, an e n-slits grating. If we go to Eq(25) from which Eq.(27)

distances. This implies that behavior of each particle is de- derived find that d imolicitly that h
termined by all slits illuminated by the initial particle wave, was gerived, we Tin al we asstimed Implicitly that eac

: : article passed through. However, the assumption is not ap-
onzt] only by the one through which the particle had passe(gropriate for slits widths smaller then the particle size. This

means that the integration in E@5) should be only ovexr”
belonging to the slit through which particles can pass. This is
A. The particle’s diameter is negligible to say that probability of a large particle reachifgy) at

If a particle diameteD is negligible with respect to the timet, Pl(x,1), is equal to the probabilitﬁl(x,t) of a particle
widths §; and &,, the particle can go through either of the reaching(x,y) at timet after passing through the larger slit:
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- - 1 (V7) (x=x)
Pl(x,0) = Py(x,t) = f '

61+ 6, lelko[*dk,. (28) Pi(z,1) [ﬁ]

() [mm] A
50 ¢ [us]
25

1.

The probabilityf’l(x,t) is graphically represented in Fig. 5

for a chosen set of parametef,(x,t) shows presence of 0.5 % L 10
interference, despite the fact that particles are not allowed tc

pass through the smaller slit. The interference is due to the J : ,

influence of wave spreading through the smaller and througr —10 0 10 z [pm]

the larger slit on the momentum distribution and motion of (a
particles going through the larger slit. The visibility in case

(b) is slightly less than in cas@), as seen by comparing Fig. =
5 with Figs. 3 and 4.

C. The diameter D is greater than both widths 8, and &,

. . . . 0.2+
In this case, transmission through both slits will be zero, 100

and consequently there will be no interference. 0.1

20 —10 0 10 20 z [um]

VI. CONCLUSION (b)

Inspired by the current efforts to perform diffraction and Pi(a,t) [J%m]
interference experiments with objects of size equal to or ever y [mm] f\NV\f\
larger than the diffraction structure, we outline an approach \ /
to investigate how the particle diameter influences the inter- |
ference pattern in an asymmetric double-slit interferometer. '
The approach is based on the use of the time-depender 250 J v\’\p
wave function of a particle’s transverse motion and the prob->%%7 "
ability amplitude of transverse momentum. We evaluated V\«
these functions using the stationary solution of the two- . -
. . . . : o -20 -10 0 10 20 z [pm]
dimensional Schrédinger equation and assuming classice
motion along the longitudinal axis. ©
Similar solutions were determined and used by Dubetsky

and Bermar{28] for infinite periodic gratings. The distribu- Pi(z,1) [%m]
tions for transverse momenta behind one slit, symmetric anc v [mm)
asymmetric double slits, and-slits grating that we deter- 400 ff‘va\/\ t [s]
mined in Refs[21-23 and in this paper are continuous since /i
these gratings are not periodic. 0.17 J\NW\
For the asymmetric double-slit grating we identify three 350 \ff f\fm
characteristic cases for the ratio of slit widthsand 8, and 0.05 \N
the diameterD of the particle:(a) D< 6, and D<6,, (b) /\M V\,\ﬁ
6,>D>6,, and(c) D> 6> 6. . , : . .
The wave function behind the grating has the same form —-20 -10 0 10 20 z [pm]

in cases(a) and (b) because it is the solution of the ()
Schrddinger equation which is not sensitive to the diameter
of the patrticle.

The space distribution of particles in ca@ is given as
usual by the modulus square of this function. Using the same FiG. 5. The probability densitP!(x,t)=P4(x,t) of large par-
wave function and assuming that a particle with diamBXer ticles reachingx,y) at timet after passing through the larger slit,
such thats; > D> &, could not pass through the second slit, near the slitga,b) and far from the slitgc,d). It is evaluated from
we determine the space distribution in c@ise We conclude Eq.(28). D is assumed to be larger th@nand smaller tha,. The
that the momentum distribution of particles behind the gratvalues of parameters are the same as in captions of Figs. 2—4.
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ing is the same in casds) and (b). As a consequence we distribution and motion of particles going through the larger
conclude that there should be interference in both cémes slit.

and(b). The interference in cagb) is due to the influence of The interference is absent only in cag because trans-
wave spreading through the smaller slit on the momentunmission should be zero in this case.
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