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Quantum theory of interference phenomena does not take the diameter of the particle into account, since
particles were much smaller than the width of the slits before the rise of molecular interferometry. In the
experiments with large molecules, the diameter of the particle has approached the width of the slits. Therefore,
an analytical description of these cases should include a finite particle size. An asymmetric double-slit grating
seems to be very suitable for the study of the influence of a particle’s size on the interference pattern. We
identify three characteristic cases for the ratio of slit widthsd1 andd2 and the particle diameterD: D!d1 and
D!d2, d1.D.d2, and D.d1.d2. Taking into account the influence of both slits on the particle wave
function, regardless of through which slit the particle passed, we treat the particle-wall interaction in a simple
fashion, such that if the particle size is greater than the slit opening there is no transmission. The transverse
momentum distribution is independent of the distance from the slits and the particle size, while the space
distribution strongly depends on this distance and the particle size. We found that the interference is absent
only when the particle’s diameter is larger than both slit widths,D.d1.d2.
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I. INTRODUCTION

Prior to the advent of atomic interferometry, quantum in-
terference experiments were conducted with objects(pho-
tons, electrons, neutrons, protons, etc.) of size much smaller
than their (de Broglie) wavelength and also much smaller
than the characteristic dimensions of the diffraction structure.
First, we recall data for the electron, neutron, and photon.

The value of the electron radiusre has not been precisely
established yet[1]. But, there is an agreement that it was
much less than the Compton wavelength of the electron
lCe=h/mec=3.86310−13 m. The de Broglie wavelengthlBe
of a nonrelativistic electron is much larger thanlCe since
lBe=h/mev=klCe, wherek is the ratiok=c/v. For nonrel-
ativistic electronsk is much greater than one. Electron dif-
fraction and interference were demonstrated with gratings
and wavelengths having the following values: Davisson-
Germer experiment[2] on nickel crystal, lattice constantd
=0.215 nm, lBe=0.167 nm; Jonsson’s double-slit electron
experiment[3], d=500 nm,lBe=0.005 36 nm; Mollenstedt
[4], d=100 nm, lBe=0.2 nm; Tonomuraet al. [5], d
=90 nm,lBe=0.1 nm.

The neutron radius isrn=0.7310−15 m, its Compton
wavelength equalslCn=1.319310−15 m, and de Broglie
wavelength for thermal neutronssk=c/v,105d is lBn

=klCn=0.1319 nm. The slit widths(lattice constants) in per-
fect crystal neutron interferometers for thermal neutrons are
of the order of 1mm (Rauch and Werner[6]). In the single-
and double-slit interferometer of Zeilingeret al. [7] with
cold neutrons, the values werelBn=2 nm and slit widthsd
were in the range 20–100mm.

In the frame of quantum optics and quantum electrody-
namics there is no place for a notion of the diameter of a
photon, but it is worth mentioning that Hunter and Wadlinger
[8] studied this problem and planned a single-slit transmis-
sion experiment in order to verify their assertion that the
photon diameter is equal tol /p, wherel is photon’s wave-
length.

With the advent of atomic interferometry[9], the ratio of
the size of a particle with respect to its de Broglie wave-
length has been changed significantly. The atomic radii[10],
determined from ionic crystal atomic data, show periodicity
with respect to atomic number and take values in the interval
0.06 nm–0.28 nm. But atoms in Rydberg states are much
larger, as shown by Fabreet al. [11] by measuring their
transmission through micrometer size slits. “The extension
of an n-state wavefunction—of the order of 2n2a0 wherea0
is the Bohr radius—falls in the micrometer range forn
=100 and corresponding Rydberg atom has the dimension
of a biological cell or even of a manufactured object(wire,
slit . . .)” [11].

It was demonstrated in molecular interference experi-
ments of Schmiedmayeret al. [12] and Chapmanet al. [13]
that interference fringes can be observed when the size of a
particle (,0.6 nm for Na2 molecule) is considerably larger
than both its de Broglie wavelengths0.016 nmd and its co-
herence length(typically 0.1 nm). Based on these results the
following fundamental question was raised by Schmied-
mayeret al. [14]: “What limits do the size and complexity of
particles place on the ability of their center-of-mass motion
to exhibit interference effects?” This and related questions
[15,16] stimulated Arndtet al. [17], Nairzet al. [18], Brezger
et al. [19], and Hackermulleret al. [20] to perform experi-
ments with objects of larger mass and diameter, including
macromolecules.

Arndt et al. [17] demonstrated that a C60 molecule inter-
feres despite its complexity. They report the observation of
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de Broglie wave interference of C60 molecules by diffraction
at a material absorption grating having 50-nm-wide slits with
100-nm period and stated: “This molecule is the most mas-
sive and complex object in which wave behavior has been
observed. Of particular interest is the fact that C60 is almost
a classical body, because of its many excited internal degrees
of freedom .. .”[17]. In addition, de Broglie wavelength of
the interfering fullerenes,lBf=2.5 pm, is already smaller
than their diameters,1 nmd by a factor of almost 400 and
Arndt et al. [17] pointed out that “it would be certainly in-
teresting to investigate the interference of objects the size of
which is equal or even bigger than the diffraction structure.”

In the standard quantum theory particles are implicitly
treated as material points, so their size has not been taken
into account in the probabilistic interpretation of the modulus
square of a wave function. However, in light of the molecu-
lar interference experiments, it is necessary to clarify the
notion of the size of a quantum particle, as well as to recon-
sider the quantum theory of interference by taking into ac-
count the size of a particle. A full quantum description of
interference assuming that the characteristic sizes of the dif-
fraction structure are of the order of the diameter of a particle
is rather complex. It requires that particle-wall interaction be
taken into account. However, the work presented in this pa-
per treats the particle-wall interaction in a simplified way. At
the same time it takes properly into account the influence of
both slits on a particle wave function, regardless of through
which slit the particle passed.

We study the dependence of the interference pattern on
particle size using a theoretical approach developed earlier
[21–23]. The approach that explains interference phenomena
as a process of accumulation of individual particle arrivals to
the screen is briefly summarized in Secs. II–IV. An asymmet-
ric double-slit interferometer with slit widthsd1 andd2 is the
generic case for this study[24]. One may consider three
options for the ratio of slit widths to the diameter of a par-
ticle, D. In Sec. V we discuss the following cases:D is
negligible with respect to the widthsd1 andd2, d1.D.d2,
and D.d1.d2. In Sec. VI we discuss results for all three
cases.

II. WAVE FUNCTION OF A PARTICLE BEHIND AN
N-SLITS GRATING

By measuring the time of arrival of atoms on a screen at
the distancey behind ann-slit grating, Kurtsieferet al. [25]
found good agreement of their experimental results with the
modulus square of the time-dependent wave functioncsx,td
of atomic transverse(alongx axis) motion. The function was
evaluated numerically from the space-dependent partwsx,yd
of the stationary solution of the two-dimensional
Schrödinger equation. The functionwsx,yd satisfies the
Helmholtz equation and is written in the form of the Fresnel-
Kirchhoff integral [26]. Then, the following two important
assumptions were made:(1) the longitudinal motion of par-
ticles behind the slits was classical-like, satisfying the rela-
tion y=vt; (2) the time-dependent transverse wave function
is independent of the initial longitudinal velocity of an atom.

The space-dependent partwsx,y,zd of the wave function

Csx,y,z,td = e−ivtwsx,y,zd s1d

can be written in another formf21–23g which has some ad-
vantages in comparison to the Fresnel-Kirchhoff form. In
order to encompass more general cases the solutions of the
three-dimensional Schrödinger equation are considered.
With approximations valid for small diffraction angles the
function wsx,y,zd can be written in the form

wsx,y,zd =
1

2p
eikyE

−`

` E
−`

+`

dkxdkzcskx,kzd

3eikxxeikzze−ikx
2y/2ke−ikz

2y/2k, s2d

wherecskx,kzd is the double Fourier transform of the func-
tion wsx,y,zd on the aperture,wsx,0 ,zd.

cskx,kzd =
1

2p
E

−`

`

dxE
−`

+`

dzwsx,0,zde−ikxxe−ikzz. s3d

The solution given in Eq.s2d is equivalent to the Fresnel-
Kirchhoff solution, if the functioncskx,kzd is determined
from the same boundary conditions at the grating as are the
ones used in deriving the Fresnel-Kirchhoff integral. This
equivalence was first shown numericallyf21–23g and later
analyticallyf27g. The proof of the analogous equivalence for
an infinite periodic grating was given by Dubetsky and Ber-
man f28g.

The time-dependent wave function of the transverse mo-
tion is then defined by substitutingy under the integral sign
in Eq. (2) by vt. Here,v denotes the initial velocity of the
particle, assumed to be along they axis. The usual justifica-
tion for such a substitution is that in reality the motion of the
particle along the longitudinal axis looks like the motion of a
classical particle, whereas the transverse motion is quantum.
With this substitution, and using the de Broglie relationmv
="k, two exponents of twoy-dependent exponentials in the
integral are transformed into the following time-dependent
expressions:

s4d

With the aid of the latter substitution the wave function
Csx,y,z,td takes the form of a product of two time-
dependent functions. The first function is the stationary plane
wave along they axis with the initial energy"v. The second
function has the form of the nonstationary solution of the
two-dimensional Schrödinger equation in thex-z plane:

Csx,y,z,td =
1

2p
eikye−ivtE

−`

` E
−`

+`

dkxdkzcskx,kzd

3eikxxeikzze−ikx
2
"t/2me−ikz

2
"t/2m, s5d

where vx=kx
2" /2m, vz=kz

2" /2m. The latter function is de-
noted bycsx,z,td and is called the transverse wave function
or the time-dependent wave function of the transverse mo-
tion:
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csx,z,td =
1

2p
E

−`

` E
−`

+`

dkxdkzcskx,kzdeikxxeikzze−ivxte−ivzt.

s6d

The wave functionCsx,y,z,td from Eqs.s1d and s5d is ex-
pressed throughcsx,z,td as

Csx,y,z,td = eikye−ivtcsx,z,td. s7d

From Eq.s6d we see that Kurtsieferet al. [25] were right in
assuming that the transverse wave functioncsx,z,td is inde-
pendent of the particle’s initial momentump="k.

Equation(5) has an important property. One can directly
verify that it satisfies exactly the time-dependent free particle
Schrödinger equation.[This looks curious and unexpected if
one has in mind that Eq.(5) was obtained by substituting the
relationy=vt into the approximate solution of the stationary
Schrödinger equation.] As such, it could be a wave function
of a particle behind a grating, if it were to satisfy the bound-
ary conditions at the grating. But, it satisfies the boundary
conditions aty=0 only for t=0. This could be remedied by
substituting the plane wave along they axis (in the initial
wave function as well as in the wave function behind a grat-
ing) by a wave packet with a well-defined wave front. Such
a wave packet was constructed by Gottfried[29].

From Eq.(3) it is evident that the probability amplitude of
transverse momentac̄spx,pzd=cskx,kzd /"=cspx/" ,pz/"d /"
is determined by the boundary conditions at the grating. It is
independent of the initial longitudinal momentum as well. In
addition, it is independent of time. Its modulus squared de-
termines the distribution of the particle’s momenta. So, one
is forced to conclude that particles with zero component of
transverse momentum acquire a small component of trans-
verse momentum in passing through the grating. The distri-
bution of momenta acquired at the grating does not change
during the free evolution behind the grating.

For large values ofy the functionwsx,y,zd in Eq. (2) is
approximated by[22]

wsx,y,zd =
k

2py
e−isp/2deikyeikx2/2yeikz2/2y

3E
A

wsx9,0,z9de−ikxx9/ye−ikzz9/ydx9dz9, s8d

whereA is the union of pointssx9 ,z9d at the apertures. Tak-
ing Eq. s3d into account, Eq.s8d takes the form

wsx,y,zd = eikyk

y
e−isp/2deikx2/2yeikz2/2ycskx/y,kz/yd. s9d

We see that the variablesKx=kx/y and Kz=kz/y play the
role of kx andkz.

SinceKx andKz are proportional tox/y andz/y, respec-
tively, functions uwsx,y,zdu=const are a family of functions
of x andz spreading along thex andz axis asy increases. In
fact, for each value ofuwu, in the far field there exists the
straight line with origin at the center of the grating along
which this particular value ofuwu propagates.

Using the approximate Eq.(9) and having in mind the
definition (6) of the transverse wave function, we may write
the approximate form of this function which is valid in the
far field. It is

csx,z,td =
m

"t
e−isp/2deismx2/2"tdeismz2/2"tdcsmx/"t,mz/"td.

s10d

The wave functioncsx,z,td is proportional to the probability
amplitudecsmx/"t ,mz/"td, wheremx/"t andmz/"t play the
role of kx andkz, respectively.

III. WAVE FUNCTION AND PROBABILITY AMPLITUDE
OF THE PARTICLE TRANSVERSE MOMENTUM

BEHIND VARIOUS ONE-DIMENSIONAL GRATINGS

We shall look for a transverse wave function behind a
one-dimensional grating[22],

csx,td =
1

Î2p
E

−`

+`

cskxdeiskxx−vxtddkx, s11d

where

cskxd =
1

Î2p
E

−`

`

dxcsx,0de−ikxx. s12d

From Eq.s12d we see that the probability amplitude of trans-
verse momentumc̄spxd=cskxd /Î"=cspx/"d /Î" behind a
one-dimensional gratingssee Fig. 1d is determined by the
function wsx,yd=eikycsx,y/vd at y=0 sboundary condi-
tionsd. We are choosing the simplest ones:csx,y=0d
=const forx at the openings,csx,y=0d=0 for x outside the
openings. The constant has to be determined from the nor-
malization conditione−`

+` ucsx,0du2dx=1. So the boundary
conditions are

FIG. 1. Illustration of a grating withn slits of various widths.
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csx,0d = 5 1
Îd1 + d2 + ¯ + dn

, x P A, A = ø Sxj −
d j

2
,xj +

d j

2
D

0, x ¹ A.

s13d

For the grating with one slit of widthd j, centered at point
xj, the probability amplitude of transverse momentum is
given by

Î"c̄s"kxd = cskxd =
Î2

Îpd j

sin
kxd j

2

kx
e−ikxxj . s14d

For the grating withn slits of widthsd1,d2, . . . ,dn centered
at x1,x2, . . . ,xn, we found

Î"c̄s"kxd = cskxd =
Î2

Îpsd1 + ¯ + dnd
1

kx
o sin

kxd j

2
e−ikxxj .

s15d

For a grating with even numbern of slits of equal width,
d j =d, centered at pointsxj =−sn/2dd−sd/2d+ jd, where j
=1, . . . ,n, the latter expression reduces to

Î"c̄s"kxd = cskxd =
Î2

Îpnd

sin
kxd

2

kx
oe−ikxxj

=
Î2

Îpnd

sin
kxd

2

kx

sin
kxdn

2

sin
kxd

2

. s16d

In order to understand how a one-slit wave function changes
with the increase of the width of the second slit, and how the
size of particles might influence the interference patterns, it
was proposed recently to study interference behind an asym-
metric double-slit interferometerf24g. Young’s double-slit
grating is symmetric since the widths of both slits are equal
sd1=d2d. The transverse wave function in the momentum
representation behind a grating with two slits of widthsd1
andd2 centered atx1=−d/2 andx2=d/2 is

Î"c̄s"kxd = cskxd

=
Î2

Îpsd1 + d2d
1

kx
Feikxd/2sin

kxd1

2
+ e−ikxd/2sin

kxd2

2
G .

s17d

It is easy to see that in the casesd2=0, d1.0, x1=−d/2 and
d2=d1, x1=−d/2, x2=d/2, Eq. s15d reduces to the expres-
sions validf21–23g for n=1,

Î"c̄s"kxd = cskxd =
Î2

Îpd1

sin
kxd1

2

kx
eikxsd/2d s18d

and forn=2

Î"c̄s"kxd = cskxd =
2

Îpd1

sin
kxd1

2

kx
cos

kxd

2
. s19d

The momentum distribution behind one slit, and asym-
metric and symmetric double slits are given by, forn=1,

"uc̄s"kxdu2 = ucskxdu2 =
2

pd1

sin2kxd1

2

kx
2 , s20d

and forn=2 andd1Þd2,

"ucs"kxdu2 = ucskxdu2

=
2

psd1 + d2d
1

kx
2Fsin2kxd1

2
+ sin2kxd2

2

+ 2 sin
kxd1

2
sin

kxd2

2
cosskxddG , s21d

for n=2 andd1=d2,

"uc̄s"kxdu2 = ucskxdu2 =
2

pd1

sin2kxd1

2

kx
2 f1 + cosskxddg. s22d

These distributions are graphically represented in Fig. 2 for a
chosen set of parameters. By comparing Eqs.s18d–s20d, as
well as the curves in Fig. 2, we may understand how the
increase of the width of the second slit influences the one-slit
curve. The effect of increasing the second slit width leads to
Fig. 2scd, which corresponds to a symmetric double slit. The
second slit induces oscillations of the one-slit curve. The
period of oscillations is determined by the mutual distance of
slits d. By applying an elementary trigonometric formula,
one easily shows that the oscillations are bounded by two
envelopes, the upper and the lower one, which are deter-
mined by the following expressions:

ucskxdu2 ø ucskxduu
2

=
8

pskxd2sd1 + d2d
sin2kxsd1 + d2d

4
cos2

kxsd1 − d2d
4

,

s23d
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ucskxdu2 ù ucskxdul
2

=
8

pskxd2sd1 + d2d
sin2kxsd1 − d2d

4
cos2

kxsd1 + d2d
4

.

s24d

From Eq.s23d one concludes that ford2!d1 the upper en-
velope isvery closeto ucskxdu2 for one slit. From Eq.s24d one
sees that ford2=d1 the lower envelope reduces to thekx axis,
as it should be. One sees also that in this case the upper
envelope is equal to 2ucskxdu2 for one slit.

A study of a wave function behind a grating with two
different slitssd1Þd2d is useful because one may see how a
one-slit wave function changes with the increase of the width

of the second slit from zero tod1. The time and space par-
ticle distribution behind an asymmetric double-slit grating is
shown in Fig. 3. By comparing this distribution with the
distributions behind a one-slit grating and behind a two-slit
symmetric grating[21–23], one sees how the presence of the
second slit and the increase of its width influence and change
the one-slit distribution.

As in the case of momentum distribution, the effect of the
very narrow second slit is to induce oscillations of the one-
slit ucsx,tdu2 curve. With increasing width of the second slit,
these oscillations would become larger, and the main peaks
would move towards the places corresponding to the sym-
metric double slit.

IV. STATISTICAL EXPLANATION OF THE SPACE
DISTRIBUTION USING TRANSVERSE MOMENTUM

DISTRIBUTION

Based on the above factorization of the wave function
Csx,y,td and the properties of its factors summarized above,
we proposed[22] the new expression for the probability den-

sity P̃sx,td for the particle’s arrival at timet to a pointsx,y
=vtd, which is far from the grating:

P̃Sx,
y

v
D = P̃sx,td

; E
−`

+`

dkxE
−`

+`

dx9 ucskxdu2ucsx9,0du2

3dSx − x9 −
"kxt

m
D . s25d

Particles emerge from different pointssx9 ,0d at the aperture.
That is the reason for integration overx9. The contribution of
each point at the aperture is proportional toucsx9 ,0du2. The
integration overdkx and the functionucskxdu2 reflects the con-
tribution of various angles/momenta in diffraction. Finally,
thed function assumes straight trajectory from a pointsx9 ,0d
at the slits to the pointsx,yd and leads to the simplified form

P̃sx,td =E
−`

+`

dkx ucskxdu2UcSx −
"kxt

m
,0DU2

. s26d

By assuming that the functioncsx,0d satisfies at the grat-
ing the boundary conditions given in Eq.(13), Eq. (26) is

transformed into the sum ofn termsfP̃isx,tdg. That is

P̃sx,td =
1

o
i=1

n

di

o
i=1

n E
sm/"dsx−xr

i d

sm/"dsx−xl
id

dkxucskxdu2 ; o
i=1

n

P̃isx,td.

s27d

Herexl
i andxr

i are the coordinates of the left and right edges
of the ith slit.

Numerical calculations for various values ofn graphically
presented in Ref.[23] and in Fig. 4 show that far from the

slits (Fraunhofer region) the functionP̃sx,td is nearly equal

FIG. 2. The particle transverse momentum distributionuc̄spxdu2
behind:(a) one-slit grating(d1=1 mm), (b) asymmetric double-slit
grating
(d1=1 mm, d2=0.25mm, d=8 mm), and(c) symmetric double-slit
grating (d1=d2=1 mm, d=8 mm).
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FIG. 3. The particle distribution functionucsx,tdu2 behind the
asymmetric double-slit grating(d1=1 mm, d2=0.25mm, d=8 mm)
close to the slits(a,b) and far from the slits(c,d). The initial longi-
tudinal wave vector isk=4p31010 m−1, the particle mass ism
=3.8189310−26 kg.

FIG. 4. The probability densityP̃sx,td of particle’s arrival to the
point x at time t sy=vtd behind the asymmetric double-slit grating
(d1=1 mm, d2=0.25mm, d=8 mm) close to the slits(a,b) and far
from the slits(c,d). It is evaluated from Eq.(27). Particle’s diameter
D is negligible with respect to the widths of the slits. The initial
longitudinal wave vector isk=4p31010 m−1 and the particle mass
is m=3.8189310−26 kg.
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to the exact probability densityuCsx,y,tdu2= ucsx,tdu2. Near

the slits(Frenel’s and Talbot’s regions) P̃sx,td and ucsx,tdu2
qualitatively look similar but they differ numerically.

By taking into account thatP̃sx,td is obtained by sum-
ming the probabilities of the particle’s arrival at the point
sx,yd at time t along various possible trajectories, we con-

clude[22] that far from the slits the functionP̃isx,td is equal
to the probability that a particle reachessx,y=vtd at time t
after passing att=0 through theith slit of then-slits grating.

Near the slitsP̃isx,td is not equal to that probability because
the particles’ trajectories near the slits are more complicated
than further from the slits. Only far from the slits the straight
lines could approximate the particles’ trajectories.

V. ON THE POSSIBLE INFLUENCE OF THE PARTICLE’S
DIAMETER ON THE INTERFERENCE PATTERN

Up to now the size of the particles has not been taken into
account in the quantum theory of interference[1–6,25]. This
is because in the standard quantum theory the particle’s size
is absent from the probability interpretation of the modulus
square of a wave function. However, in light of molecular
interference experiments, it is necessary to reconsider the
quantum theory of interference by taking into account the
size of the particle.

An asymmetric double-slit grating seems to be very suit-
able for the study of the influence of a particle’s size on the
interference pattern[24]. Its usefulness comes from the fact
that one can identify three characteristic cases for the ratio of
slit widths d1 andd2 and the diameter of the particleD: (a)
the diameterD is negligible with respect to the widthsd1 and
d2; (b) the diameterD satisfiesd2,D,d1; (c) the diameter
D is greater than both widthsd1 andd2.

A full quantum description of interference, assuming that
the characteristic sizes of the diffraction structure are of the
order of the diameter of a particle, is rather complex. It re-
quires investigating the influence of particle-wall interaction
on interference. This interaction is neglected in the standard
quantum theory of interference of particles of negligible size.

In this paper we shall treat the particle-wall interaction in
the simple fashion, such that if the particle size is greater
than the slit opening, there is no transmission. But, we shall
take properly into account the influence of the slits on the
wave function, as it has been necessary in the standard quan-
tum theory of interference of particles having size negligible
with respect to the widths of the slits. We shall especially
take into account the well-established fact that the behavior
of the photon, electron, atom, and small molecule behind the
grating depends on the number of open slits, widths, and
distances. This implies that behavior of each particle is de-
termined by all slits illuminated by the initial particle wave,
not only by the one through which the particle had passed
[22].

A. The particle’s diameter is negligible

If a particle diameterD is negligible with respect to the
widths d1 and d2, the particle can go through either of the

slits. The transverse wave functioncsx,td and probability
amplitude of transverse momentac̄spxd are given by Eqs.
(11) and (17). The momentum distributionuc̄spxdu2 and time
dependence of space distributionucsx,tdu2 are graphically
represented for chosen set of parameters in Figs. 2(c) and 3,
respectively.

The evident dependence of transverse momentum distri-
bution on the grating parameters and the close relation be-
tween momentum distribution and the space distribution
clearly show that the behavior of each particle is determined
by the superposition of all waves emerging from every slit
illuminated by the initial particle wave.

B. The particle diameter D satisfiesd2,D,d1

In this case we are faced with the question of how and
where to take the diameter of the particle into account. We
know that the diameter of the particle is not incorporated
anywhere in the Schrödinger equation. But, we expect that a
particle having diameterD which satisfiesd1.D.d2 could
not pass through the second slit.

We foresee two possible reasonings. First, one can regard
csx,td as a probability amplitude for a particle being at cer-
tain place at timet, without any other physical reality. Then,
one has to conclude that particle distribution in this case
should be identical to the one-slit distribution(no interfer-
ence). Second, one can considercsx,td as a real wave asso-
ciated with a particle. Then, one should conclude that the
solution of the Schrödinger equation behind a grating is the
same in case(b) as in case(a) [given by Eqs.(11) and(17)].
This is because the boundary conditions for the wave func-
tion are the same in both cases. Consequently, the momen-
tum distribution ucskxdu2 of particles is given by Eq.(21)
because it is determined by the values of the wave function
at the boundary.

But the space distribution of particles in case(b) should
be different from the space distribution in case(a) because
the particles arriving at the smaller slit cannot go through.
Only particles arriving at the larger slit can go through.

Will those particles behave classically or quantum me-
chanically? Will those particles be influenced by waves
spreading from both slits? We shall assume that those par-
ticles will behave as quantum particles and that their motion
will be influenced by waves spreading from both slits.

We found that Eq.(27) is satisfied far from the slits if the
particle size is negligible with respect to the widths of the

slits. P̃isx,td is equal to the probability that a particle reaches
sx,y=vtd at timet after passing through theith slit at t=0 of
the n-slits grating. If we go to Eq.(25) from which Eq.(27)
was derived, we find that we assumed implicitly that each
particle passed through. However, the assumption is not ap-
propriate for slits widths smaller then the particle size. This
means that the integration in Eq.(25) should be only overx9
belonging to the slit through which particles can pass. This is
to say that probability of a large particle reachingsx,yd at

time t, P̃lsx,td, is equal to the probabilityP̃1sx,td of a particle
reachingsx,yd at time t after passing through the larger slit:

INTERFERENCE OF SMALL AND OF LARGE QUANTUM… PHYSICAL REVIEW A 69, 053618(2004)

053618-7



P̃lsx,td = P̃1sx,td =
1

d1 + d2
E

sm/"dsx−xr
1d

sm/"dsx−xl
1d

ucskxdu2dkx. s28d

The probabilityP̃1sx,td is graphically represented in Fig. 5

for a chosen set of parameters.P̃1sx,td shows presence of
interference, despite the fact that particles are not allowed to
pass through the smaller slit. The interference is due to the
influence of wave spreading through the smaller and through
the larger slit on the momentum distribution and motion of
particles going through the larger slit. The visibility in case
sbd is slightly less than in casesad, as seen by comparing Fig.
5 with Figs. 3 and 4.

C. The diameter D is greater than both widths d1 and d2

In this case, transmission through both slits will be zero,
and consequently there will be no interference.

VI. CONCLUSION

Inspired by the current efforts to perform diffraction and
interference experiments with objects of size equal to or even
larger than the diffraction structure, we outline an approach
to investigate how the particle diameter influences the inter-
ference pattern in an asymmetric double-slit interferometer.
The approach is based on the use of the time-dependent
wave function of a particle’s transverse motion and the prob-
ability amplitude of transverse momentum. We evaluated
these functions using the stationary solution of the two-
dimensional Schrödinger equation and assuming classical
motion along the longitudinal axis.

Similar solutions were determined and used by Dubetsky
and Berman[28] for infinite periodic gratings. The distribu-
tions for transverse momenta behind one slit, symmetric and
asymmetric double slits, andn-slits grating that we deter-
mined in Refs.[21–23] and in this paper are continuous since
these gratings are not periodic.

For the asymmetric double-slit grating we identify three
characteristic cases for the ratio of slit widthsd1 andd2 and
the diameterD of the particle:(a) D!d1 and D!d2, (b)
d1.D.d2, and(c) D.d1.d2.

The wave function behind the grating has the same form
in cases (a) and (b) because it is the solution of the
Schrödinger equation which is not sensitive to the diameter
of the particle.

The space distribution of particles in case(a) is given as
usual by the modulus square of this function. Using the same
wave function and assuming that a particle with diameterD,
such thatd1.D.d2, could not pass through the second slit,
we determine the space distribution in case(b). We conclude
that the momentum distribution of particles behind the grat-

FIG. 5. The probability densityP̃lsx,td= P̃1sx,td of large par-
ticles reachingsx,yd at time t after passing through the larger slit,
near the slits(a,b) and far from the slits(c,d). It is evaluated from
Eq. (28). D is assumed to be larger thand2 and smaller thand1. The
values of parameters are the same as in captions of Figs. 2–4.
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ing is the same in cases(a) and (b). As a consequence we
conclude that there should be interference in both cases(a)
and(b). The interference in case(b) is due to the influence of
wave spreading through the smaller slit on the momentum

distribution and motion of particles going through the larger
slit.

The interference is absent only in case(c) because trans-
mission should be zero in this case.
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