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Influence of the thermal environment on entanglement dynamics in small rings of qubits
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Numerical solutions of the stochastic Schrodinger equation given by quantum state diffusion approach to
open quantum systems is used to study dynamics of nearest neighbor qubit pairs in systems of small number
of qubits on rings with Heisenberg and transverse Ising interaction and under the influence of the thermal
environment. In particular, the dependence of the pair entanglement dynamics on the temperature, number of
qubits, the type of coupling, and the type of entanglement in the initial state was analyzed for systems of up to
N=10 qubits. Periodic recurrence of relatively large values of the pair entanglement with dumping due to
decoherence by the thermal noise is observed. It is concluded that the pair entanglement in rings with trans-
verse Ising coupling and prepared in a separable initial state is the most resistant on the decoherence effects of
the thermal noise, compared to the Heisenberg coupling or initial states with different types of entanglement.
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I. INTRODUCTION

The possibility of using the entanglement as a resource
for quantum computation and communication [1] in practice
is effected by the environmental decoherence. Thus studies
of creation and conservation of the entangled states in quan-
tum systems in real conditions are of paramount importance.
Systems such as chains of few, up to N=10, spin are now
available for experimental studies, and the coupling between
the spins can be observed [2]. In these experiments the en-
vironmental influence, its effect on the entanglement in de-
pendence on the spin coupling, has to be well understood and
can be studied. Such systems are commonly modeled by a
collection of few coupled spins in interaction with a thermal
bath of harmonic oscillators. Theoretical studies of these
models can be quite involved because analytical solutions
are usually not available and numerical solutions of the cor-
responding master equations are quite consuming.

Entanglement in spin chains has been extensively studied
[3]. However, the major part of these studies concentrate on
the static properties of the entanglement in the system’s
ground state or in the state of thermal equilibrium, and cre-
ation and dynamics of the entanglement in spin chains with
the environmental influence has been studied much less. One
of the first studies is reported in [4], where dynamics of
two-site entanglement in the anisotropic XY model with pe-
riodic boundary condition and with no environmental effects
was studied, using analytic results in the thermodynamic
limit N—c. In [5] a concept of entanglement flow in multi-
particle systems was introduced and entanglement rate equa-
tions, which relate the rate of change of entanglement to
already present entanglement, were suggested. Entanglement
dynamics in systems with two or three qubits with or without
decoherence was analyzed, for example, in [6,7]. Transport
of entanglement in open-ended spin chains, and the possibil-
ity to use such chains as quantum wires, has been studied,
and some recent references on this topic are, for example
[8—11]. Entanglement dynamics in approaching and in the

*buric@phy.bg.ac.yu

1050-2947/2008/77(1)/012321(10)

012321-1

PACS number(s): 03.67.Mn

steady state in a system with nonconstant number of qubits
and decoherence was studied in [12], using exact solutions
for a pair of qubits with Ising Hamiltonian. Recently [13],
entanglement dynamics in a small open chain of Josephson
charge qubits, which is naturally written as a chain of
coupled spins, with realistic disorder and noise, has been
studied numerically, using time dependent density matrix
renormalization group method [14] to approximate the state
dynamics. In this paper, we considered small rings of up to
N=10 spins with either Heisenberg or transverse Ising inter-
action weakly coupled to a thermal environment. Our main
goal is to answer the following question: Which combination
of the types of initial state and the types of coupling leads to
the largest pair entanglement between the considered pair of
qubits after some predetermined period of time? To that end,
we have analyzed how the dynamics of the entanglement
between nearest neighbors depends on (a) the number of
spins in the ring, (b) temperature of the environment, (c) the
type of the coupling among the spins, and (d) the entangle-
ment of the initial state.

The study of entanglement dynamics in finite chains and
the environmental influence is hampered by the fact that no
analytic solutions of the relevant dissipative equations are
available, and numerical solutions for the evolution of the
state p(f) require large storage space. Furthermore, it is not
always clear what the relevant dynamical equations are when
the Markov approximation cannot be applied.

In this paper, we shall assume that the thermal environ-
ment, its coupling to the system of few qubits, and the inter-
spins coupling are such that the Markov approximation is
valid, and we shall use numerical solutions of a particular
stochastic unraveling of the Linblad master equation given
by the quantum state diffusion theory (QSD) [15], to study
the entanglement dynamics. The state space of the resulting
stochastic Schrodinger equation (SSE) is 2V times smaller
than the dimension of the state space of the Linblad equation.
Correlations between different components of the neighbor-
ing spins Tr[po{oﬁj; i=1,...,N, j, k=x,y,z, which are
needed to calculate the state p reduced over the ring except
the considered pair of neighboring spins, are given as sto-
chastic averages E[(ao”, )] over realizations of the stochas-

©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.77.012321

NIKOLA BURIC

tic process. A number of sample paths taken to perform the
averaging and the duration of the simulated evolution have
been taken large enough to obtain definite understanding of
the results.

The structure of the paper is as follows. In the next sec-
tion we describe the considered rings of qubits and the type
of the environmental influence, and then provide a short
summary of the quantum state diffusion method that we used
for numerical computations. Results of the numerical com-
putations are presented and discussed in Sec. III, after a brief
recapitulation of the definition of the entanglement of forma-
tion for bipartite systems of qubits, which we used as a mea-
sure of the nearest neighbor entanglement. Section IV con-
tains a short summary and our main conclusions.

II. MODELS AND THE CALCULATION METHOD

Systems of qubits on a ring lattice with N sites and
coupled via Heisenberg or transverse Ising interactions are
described by the following Hamiltonians:

N N
H= 2 wa‘? +JE (Ufaﬁl + GYU‘?)+1 + af ‘+1)’

; , N+1=1
(1)
or
N N
H=2, 0o +JX, olof,,, N+1=1. (2)

where o}** are the three Pauli matrices of the ith qubit, J is
the coupling strength, and w corresponds to the frequency of
precession around z axes of the state of a decoupled qubit.
The crucial difference between Egs. (1) and (2), which is
clearly manifested in the entanglement dynamics [6], is that
Eq. (1) is symmetric under rotations around z axes, and Eq.
(2) has no such symmetry. We shall consider systems (1) and
(2) in the geometric configuration of a ring, that is the
boundary condition is given by oy, ;=07.

The Schrodinger-Liouville equation p=—i[H,p] with the
Hamiltonians (1) or (2) describes the evolution of the system
in complete isolation from the environment. In real systems
there are environmental perturbations of different types, de-
pending on the particular properties of the physical system
modeled by the Hamiltonians of the type (1) or (2), and they
crucially affect the dynamics of the entanglement. If the en-
vironment and the system satisfy the conditions of Markov
approximation [16] then the most general completely posi-
tive continuous evolution of the open system is described by
the Linblad master equation [17,16]

dpto)

1 . .
o =—i[H,p]—5§ [Lip.L1+[LipL),  (3)

where —i[H, p] describes the unitary part and the rest is the
dissipative part. The Hamiltonian H in Eq. (3) is in general
different from the Hamiltonian that describes the isolated
system, but under the assumed Markov property and for qu-
bits with local environments, the difference is small and can
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be incorporated as a small correction of the parameters in the
original Hamiltonian.

Linblad operators L; describe all different types of the
influence that the environment exerts on the system. Stan-
dard models of these influences, when the environment of
each of the qubits can be considered independently of the
environments of the other qubits, include the thermal envi-
ronment, described by local Linblad operators L;=1,
®...(L;)... ® 1y where, for each qubit,

L;= M(ﬁ + &U;'. (4)
2 2

The operators L; induce dissipation [the first term in Eq. (4)]
and excitation (the second term) processes between the two
levels of each of the qubits. The parameter 7 is proportional
to the temperature and I is treated here as a phenomenologi-
cal parameter that describes the coupling of a qubit with its
thermal environment [13,18]. Well known derivation (see for
example [19]) of the Linblad master equation (3) and the
form of the Linblad operators (4) that correspond to the ther-
mal environment, starts with a Hamiltonian microscopic
model of spins and a large collection of bosonic modes,
which interact independently with each of the spins. The
derivation is based on the perturbation expansion in the spin-
boson coupling, and assumed properties of the bosonic
modes, such as the Markov property and a very large number
of the bosonic modes. These assumptions are valid if the
microscopic model and its parameters satisfy certain proper-
ties. As a result, the master equation (3) and the Linblad
operators (4) with the parameter gamma that explicitly de-
pends on the correlation properties of the bosonic modes are
obtained. Of course, many particular systems of interacting
qubits with bosonic environment, especially in the domain of
solid state physics, do not satisfy the assumptions and the
constraints on the parameter values that justify the derivation
of Eq. (3). There are many types of generalized master equa-
tions that do not assume the Markov property of the environ-
ment [20,16]. For example, the relevant master equation
might be of the form (3) but with the Linblad operators that
depend explicitly on time and the systems initial state [21].
Nevertheless, we shall consider the spin-boson systems such
that Egs. (3) and (4) represent a good approximation of the
qubits part dynamics. Then, the parameters in Egs. (3) and
(4) have to satisfy certain conditions: The phenomenological
parameter I" should be small, corresponding to the weak cou-
pling, and the time scale of the environment dynamics
should be small compared to the systems dynamics time
scale. We shall suppose that 7z and I" are equal for all qubits
and that J and I' are small J, I' < w, and analyze the dynam-
ics for different values of 7= w. Under these assumptions we
can use the master equation (3) with the Hamiltonian (1) or
(2) and the Linblad operators (4) as a good approximation to
study the effects of the thermal environment on the entangle-
ment dynamics in the systems of qubits (1) or (2). Since an
application of dynamical equations, which result from treat-
ing the environment perturbatively, like Eq. (3) or Eq. (6)
based on Markov-Born approximation, to study the
asymptotic — e dynamics is questionable, we shall concen-
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trate on the influence of noise during a finite and relatively
short period of time. This period is determined by the peri-
odic features of the entanglement dynamics in the isolated
system.

Equation (3) describes coupled evolution of 22 matrix
elements of the state p, which requires quite large memory
space for the numerical computations. As is well known,
there is a class of alternative but equivalent descriptions of
an open Markov system dynamics given entirely in terms of
pure states. The evolution equation in these formulations is a
stochastic Schrodinger equation with the state space of di-
mension 2. In fact, the density matrix p can be written, in
different but equivalent ways, as a convex combination of
pure states. Each of these results in a stochastic differential
equation for |¢(t)) in the Hilbert space . Such SSE’s are
called stochastic unraveling [15,22,16] of the Linblad master
equation for the reduced density matrix p(z). There are many
different forms of nonlinear and linear SSE that have been
used in the context of open systems [24,23,16,15,22] or sug-
gested as fundamental modifications of the Schrodinger
equation [15,25-30]. They are all consistent with the require-
ment that the solutions of Eq. (3) and of SSE satisfy

p(t) = EL|yA0) (1], )

where E[|y(t)){(yA1)|] is the expectation with respect to the
distribution of the stochastic process |¢(t)). The advantages
of the description in terms of the pure states and SSE over
the description by p are twofold. On the practical side, which
is why we shall use it, the computations are much more
efficient, as soon as the size of the Hilbert space is moderate
or large [34]. On the theoretical side, the stochastic evolution
of pure states provides valuable insight which cannot be in-
ferred from the density matrix approach [31,32,15,16,33,6].

There are two main approaches to the unraveling of the
Linblad master equation: The method of quantum state dif-
fusion [15] and the relative state method [23,16], with spe-
cific advantages associated with each of the methods. The
relative state method is usually used to describe the situa-
tions when the measurement is the dominant interaction with
the environment. The method offers particular flexibility in
that the master equation can be unraveled into different sto-
chastic equations conditioned on the results of measurement.
On the other hand, the correspondence between the QSD
equations and the Linblad master equations is unique, and is
not related to a particular measurement scheme, or the form
of the Markov environment. The resulting SSE is always of
the form of a complex diffusion process on the Hilbert space
of pure states.

In our computations we shall use the unraveling of the
master equation given by the quantum state diffusion equa-
tion. The equation is given by the following formula:

\diy = — iH|ydt + | >, 2LLe — LiL, — (LIXL) || g(e))dt
k

+ 2 (L= (L) p(0)dW, (6)
1

where ( ) denotes the quantum expectation in the state |¢(t))
and dW, are independent increments (indexed by k) of com-
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plex Wiener c-number processes W,(¢) and satisfy

E[de] = E[deder] = O,
E[dW]der] = 5k,k’dt’

k=1,2...m, (7)

where E[-] denotes the expectation with respect to the prob-
ability distribution given by the (m-dimensional) process W,

and W, is the complex conjugate of W,.

We have used the QSD equation (6) with the Hamilto-
nians of the form (1) or (2) and the Linblad operators corre-
sponding to the local thermal environment (4). In our case
there are N Linblad operators, one of the form (4) for each
qubit, so m=N. A single realization of the stochastic process
(6) is used to calculate, for example, (0{0{-‘“); J, k=x,y,z,
and then averaging over many sample paths gives the corre-
lation functions E[{c’o?,,)]=Trpolic’,,] which are needed
for the calculation of the entanglement measure. It turns out
that the number of sample paths needed for satisfactory re-
sults is not large, as we shall comment on the next section.
The details of the algorithm for numerical solutions of Eq.
(6) are explained in [34].

III. TWO SITE ENTANGLEMENT DYNAMICS:
RESULTS OF NUMERICAL COMPUTATIONS

The state of a system of qubits interacting with an envi-
ronment is a mixed state described by the density matrix p.
Such a state is termed separable if the density matrix p can
be written as a convex combination of matrices in product
form, that is if p=2Np; (® ... pyy Where p;; is a density
matrix in the space of the ith qubit. Otherwise, the state p is
an entangled state. Entangled states occupy a major part of
the systems state space, and different types of entanglement
of such states can be defined. A general theory of multipartite
entanglement is far from completed (see, for example
[37,18]). We shall be interested in the entanglement between
only two qubits in the ring, and furthermore only for the case
of the nearest neighbor (i,i+1) qubits. The correlations
among the considered pair of qubits are described by the
reduced density matrix p;;,=Tr;7 [p] where (i,i+1) de-
notes that the trace is taken over the Hilbert spaces of all the
qubits except the considered pair (g;,q;,;). The pair of qubits
is entangled with the qubits in the rest of the chain and with
the environment. In our calculations the dynamical effect of
the entanglement with the rest of the chain is treated exactly
and the entanglement with the environment is approximated
as a noise described by the Linblad operators.

In the case of qubits isolated from the environment, the
system remains in the pure state and the entanglement of the
considered pair of qubits with the rest of the chain can be
measured by the Von Neuman entropy of p;;,, by treating
the qubit pair and the rest of the chain as the two components
of a bipartite system. However, we shall not be interested in
the entanglement of the pair with the rest of the chain, but in
the entanglement among the two qubits of the (i,i+1) pair
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[(i,i+1) entanglement]. In general, a measure of the degree
of entanglement among the two qubits which are not in a
pure state, called the entanglement of formation [35,36], is
defined by minimization of the expression =pS(| )W |)
where S is the Von Neuman entropy of the pure state |i),
over all possible convex expansions of the state p;
=3,p:ll ) where vectors |if) form a basis of pure states in
the two qubit Hilbert space. Few other measures of bipartite
entanglement exist, but would give qualitatively the same
results for the dynamics of the (i,i+1) entanglement. For a
pair of qubits the entanglement of formation can be calcu-
lated by simple algebraic procedure. First, a concurrence is
calculated by the following formula

C(p; 1) = max{0, \’/X1 — N, - \“K3 - \“‘K4}, (®)

where \;>---\, are the eigenvalues of the matrix p(o?
®o?,,)plo} ® o?,,), where p is the complex conjugate of p
calculated in the standard bases. The entanglement of forma-
tion is then given via the function

h(x) ==xlogy(1 —x) x — (1 —x)log,y(1 — x)

by the following formula

L= Gl ®)

E(pi,i+1) =h( 2

The state p; ;| of the two qubits can be represented in the
bases

{1Lok® 1,19

i+1°

o ® olh, (10)
where the expansion coefficients are the correlation functions
Tri,i+1[TI7,i-;l[p]OJi<0-zl‘+1] =E[<0{<0{+1>] (11)

Thus, in order to calculate the dynamics of the entanglement
of formation, we have to compute the averages
E[(yd1)| d¥c’, | ¥t))] over the stochastic evolution |y(t)).

Our main goal is to understand the dependence of the
(i,i+1)-entanglement dynamics on the type of interqubit in-
teraction, the size of the ring N, temperature of the environ-
ment 77, and the initial state. As the initial states we have
considered pure N qubit states with three different distribu-
tions of entanglement: The separable states

,TN>v (12)

the states with only one (i,i+1)-pair maximally entangled
and the rest in product form

Imax) = [([T1, 1)+ L Ta) @ s oosly)IN2, (13)

and an example of a state with distributed entanglement
Wy=(T1 2z I+ LTl L) o
—
+[Lida - TN, (14)

We shall present the results of numerical computations of
E(p; ;41(1) for a few illustrative small values of the tempera-
ture dependent parameter n: 7=0.1(~41 mK); n~
=0.5(~91 mK); 7=0.8(~123 mK); n=1(~144 mK), and
for N up to 10 qubits. In the presented results the parameters

|sep> =(—=p12T, ...
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FIG. 1. (1,2) (full black lines) and (1+[N/2],2+[N/2]) (dotted
gray lines) pair entanglement for the isolated rings of qubits with
Heisenberg (c), (e) and transversal Ising (a), (b), (d), (f) coupling. T
represents the dimensionless time 7=wt and E is the measure of
entanglement Eq. (9). In (a) and (b) the initial state is [W) and the
number of qubits is (a) N=7 and (b) N=38. In (c) and (d) the initial
state is |max) and N=7. In (e) and (f) the initial state is |sep) and
N=T.

w, the interqubit interaction J, and the coupling to the envi-
ronment I" are fixed w=1; J=0.02 and I'=0.02 (compared
with isolated system I'=0). All time series are given in terms
of the dimensionless time 7=tw, and we use the units in
which fi=k=1.

Isolated systems

Let us first describe the evolution of the (i,i+ 1) entangle-
ment for the isolated system, illustrated in Fig 1. These re-
sults serve a double purpose. They show what are the rel-
evant time intervals for the (i,i+ 1)-entanglement dynamics,
and indicate if the decrease of (i,i+1) entanglement in the
open system is mainly due to redistribution of the entangle-
ment between the qubits or due to the decoherence by the
environment. Figure 1 shows (i,i+1) entanglement unitary
dynamics given by Egs. (1) and (2) starting from |W) and for
N=17,8 [Figs. 1(a) and 1(b)] and from |max) [Figs. 1(c) and
1(d)] and |sep) [Figs. 1(e) and 1(f)] states for N=7. The
isolated dynamics is similar for other numbers of qubits and
is illustrated along with the entanglement dynamics with the
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\ FIG. 2. Pair entanglement
010 3 from |W) initial state and 7=0.5.
005 ' (a) Heisenberg coupling and N=35
7 ~ (dotted gray), N=6 (gray thin), N
S — 0,004l . . , =7 (gray thick), N=8 (black dot-
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! T =10 (black thick). In (b), (c), and
0.30- 0,30+ (d) the thick black lines are for the
E 1 ¢ E d) Heisenberg coupling, the full gray
0.25+ 0.25+ lines are for the transverse Ising
0.201 .20 (1, 2) pair and in (b) gray (.lotted
for (1+[N/2],2+[N/2]) pair. (b)
0.15 0.15 N=6; (c) N=7; (d) N=8. T and E
0104 0.40.] are as in Fig. 1.
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thermal noise (Figs. 2-6). Clearly, E(r,

W)) is a constant for of time it fluctuates with a relatively small amplitude, and

the Heisenberg ring [Fig. 1(a)], and for the Ising case [Fig.  then a few large oscillations (but smaller than the maximum)
1(b)] it regularly oscillates around an average, which can occur. This basic sequence keeps on repeating for ever. In the
depend on the position of the considered (i,i+1) pair. same time the entanglement of (4,5) pair is created when

Dynamics from the initial state with maximally entangled ~ (1,2) drops, and in general large values of (1,2) entangle-
pair is illustrated for N=7 in Fig. 1(c) for the Heisenberg and ~ ment occur simultaneously with small values of (4,5) en-
in Fig. 1(d) for the Ising cases. (i,i+1) entanglement for the  tanglement and vice versa. Fluctuations in (i,i+1) entangle-
pairs (1,2) and for (4,5) are shown. Oscillations of the  ment dynamics with the Hamiltonian (1) are faster than with
(i,i+1) entanglement are irregular with some periodically  the Hamiltonian (2). The basic period between the bursts of
recurring features. (1,2) entanglement initially drops faster large values of entanglement among the fixed pair of qubits,
with the Hamiltonian (1) then with Eq. (2), then for a period ~ denoted by 7y, can be clearly identified in the case of the

1.0+
E b)
0.8
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0.4

0.24 FIG. 3. (Color online) (1,2)
/\ 00l pair entanglement dynamics from

|max) initial state for (a) and (b)

3$0 400 500 600 0 100 200 3_(|)—0 400 500 600 N=6 and (C) and (d) N=7, for the
(a) and (c) the Heisenberg cou-
1.04 . pling and for (b) and (d) the trans-
E c) E d) verse Ising. The parameter 7 is i1
0.8 084 =0.5 (dotted gray), n=1 (black),
and isolated system (green). T and
0.6+ 0.6 E are as in Fig. 1.
0.4 0.4
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0.0 0.0
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FIG. 4. (a) and (b) (1,2) and
(c) and (d) (5,6) pair entangle-

600 800 1000 0 460

600 800 1000 ment dynamics from |max) initial
T state and N=8, for (a) and (c) the
Heisenberg coupling and for (b)
and (d) the transverse Ising, and
7=0.5 (black dotted) and isolated
systems (black full). 7 and E are
as in Fig. 1.

0 200 400 600 800 1000 0 200 400

Ising coupling. In the analysis of the effects of the thermal
environment we shall be interested in maximal temperatures
such that the state of (i,i+1) qubit is still entangled after this
basic period 7y.

The entanglement dynamics from a separable initial state
strongly depend on the initial state. However, some qualita-
tive features are independent of the initial state. The succes-
sion of few oscillations with relatively large amplitudes fol-
lowed by a period of fluctuations with smaller amplitudes
can be observed. The period between the bursts is roughly
constant in time. In the case of Ising interaction [Fig. 1(f)]
this is obvious, and is less clear in the Heisenberg case [Fig.

0.304
E
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0.20
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100

200

300

T

400

500

600

400

T

600

800

0.30+

E
0.254
0.20

0.154

b)

T 1
800 1000

1(c)], since the difference between the peaks and smaller
amplitude fluctuations is smaller. Nevertheless, similarly to
the case of |max) initial condition, the basic period 7y can be
defined using the Ising chain. Also large values of (1,2)
entanglement are roughly simultaneous with small values of
(4,5) entanglement. This is quite clear in the case of Ising
interaction and in general is also true for the dynamics with
the Heisenberg coupling.

We shall now discuss the (i,i+1) entanglement dynamics
under the influence of the thermal decoherence described by
the Linblad equation (4). Creation of entanglement between
a pair of qubits, its redistribution between the qubits in the

FIG. 5. (Color online) (1,2)
pair entanglement dynamics from
|sep) initial state for (a) and (b)

0.30+

0.25

0.20

0.15+

0.104

300 400 500 600 N=6 and (c) and (d) N=7, for (a)

T and (c) the Heisenberg coupling
and for (b) and (d) the transverse
Ising. In all figures 7=0.5 (dot-
ted), 7=0.8 (dashed), and isolated
system (full). 7 and E are as in
Fig. 1.

400

600
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FIG. 6. (Color online) (a) and
(b) (1,2) and (c) and (d) (5,6)

pair entanglement dynamics from
|sep) initial state for N=8, for (a)
and (c) the Heisenberg coupling
and for (b) and (d) the transverse
Ising, and 7=0.5 (dotted), n=1
(dashed), and isolated system
(full). T and E are as in Fig. 1.
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ring, and its loss due to the thermal noise act simultaneously
to determine the nearest neighbor entanglement dynamics
E(; ;+1)(1). The properties of the dynamics crucially depend on
the type of the entanglement in the initial state, and also on
the Hamiltonian, but the general features are qualitatively the
same for rings with different N. Thus we shall present the
results first for |W> initial states illustrated in Fig. 2, then for
|max) initial states illustrated in Figs. 3 and 4 and finally for
|sep) initial states (Figs. 5-7).

All computations of E; ;(¢) that are illustrated in Figs. 2-7
have been done by averaging the solutions of the QSD equa-
tion (6) over only 200 sample paths. However, we have
tested the computations using averaging over 100 and 1000
paths, and the results cannot be differentiated on the scale of
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/\/D

4 5 6 7 8 9 10

0.25+
0.20

0.15-’
0.10-7
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FIG. 7. Dependence of (1,2) pair entanglement E at t= 7y on the
number of qubits N for several fixed 7, for the transverse Ising
coupling and |sep) initial state. (b) Isolated system (stars), 7=0.5
(circles), 7=0.8 (boxes), and 7=1 (down triangles). The lines serve
only to guide the eye.

600 800 1000

the figures. Relatively small number of sample paths is
needed to obtain the qualitatively clear results.

|W) initial states

Qualitative properties of E(; 5)(r) with |W) initial state are
simple. For Heisenberg coupling E(; 5)(#) monotonically de-
creases to zero, and is equal for all (i,i+ 1) pairs at all times.
However, the decrease is more complicated than the simple
exponential, since the rate of the decrease is not constant. In
Fig. 2(a) we have illustrated E; 5(¢) for N=5,6,7,8,9,10
and for n=0.5. The decrease is, of course, slower for smaller
i, but E;;,)(1) always goes to zero for some sufficiently
large finite 7. The dynamics of E(;;,1)(¢) with the Ising cou-
pling (2), illustrated in Figs. 2(b)-2(d) for N=6,7,8, consists
of relatively simple oscillations superimposed on the mono-
tonic decrease. Again, E(;;,1)(f) goes to zero for some suffi-
ciently large finite 7. The dynamics of E( ;,)(¢) for different
(i,i+1) pairs can be different, and E(; ;,1)(¢) with the Hamil-
tonian (2) can be larger or smaller than E; () with the
Hamiltonian (1).

Let us now discuss the qualitative features of the pair
entanglement dynamics from |max) and |sep) initial states. In
the presentation of the results we shall use the following
notation. By E; ;,,(#;|¢),77) we shall denote the (i,i+1) pair
entanglement as a function of time when we want to refer to
a specific initial state |¢,) and for some fixed 7z. The symbol
,0) corresponds to the isolated system, i.e., I
=0 and not to 7=0 in Eq. (4). If the dependence of a quantity
like the period 7or E; ; on N wants to be stressed then we put
N as a subindex of the corresponding quantity.

[max) initial states
,1) is to
decrease the amplitudes of large oscillations and small fluc-
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tuations that occur in the isolated system. In fact, the small
fluctuations, between the times corresponding to the bursts of
large peaks, completely disappear already for quite small 7.
The relative decrease of large peaks increases in time. For
temperatures larger than some 77, which depends on N, the
entanglement wave, that is observed to go around the ring in
the isolated systems, becomes overdumped and the maximal
entanglement at (i,i+1) pair of the initial state completely
disappears before one period is completed. 71, increases
proportionally with N, that is with the period of the entangle-
ment wave, because the thermal noise acts locally on each of
the qubits. For example, for the rings with either type of
coupling and for N=6: ng is larger than 1; for N=7: ng is
0.5<n,<0.8; and for N=8: n;<<0.5. Comparison of E, )
X (t;|lmax),n) in rings with the different coupling and for
different N and 7 shows that the relative decrease of pair
entanglement during one period E ;. )(t=7;|max),n)/
E( ;1) (t=7;|max),0) is always larger with the Heisenberg
coupling. In the case of isolated rings we have seen that the
pair entanglement after one period in the Heisenberg ring is
larger than in the ring with the Ising coupling. Thus the ini-
tially maximal pair entanglement in the Ising case is faster
distributed among qubits in the chain, but is also more robust
with respect to the thermal noise, than with the Heisenberg
coupling.

|sep) initial states

The pair entanglement from an initially separable state
E;;.1(t;|sep),n) survives decoherence by the thermal noise
longer than from any of the other two types of initial states
(|W) or |max)). E| ,(t;|sep),n1) are illustrated in Fig. 5, for
N=6,7 and in Figs. 6(a) and 6(b) for N=8 together with
Es4(t;|sep),n) [Figs. 6(c) and 6(d)]. The initial state is the
separable state |[sep) given by Eq. (12). Values of
E;;.1(t;|sep)) depend on the initial state but the qualitative
features are independent. As was pointed out, the temporal
pattern of bursts of large peaks followed by periods of small
amplitude fluctuations is clearly seen in the isolated system
with the Ising coupling and survives the influence of small
thermal noise. Also, the noise does not change the distribu-
tion of the periods of bursts and small values of E; ;, in the
ring. The period of time 7 between the two successive bursts
appears to be roughly constant in time. Thus, in the case of
Ising coupling, we define the value of the parameter n=1n,,
analogously as with the |max) initial state, such that E, (¢
sepy,n)=0 if 7=ny. The period 7 depends on N at least
for the type of initial separable states like [sep), when all but
one of the qubits are initially in the state |1). The pattern is
much less clear in the rings with Heisenberg coupling. There
are no peaks that exceed the average amplitude by more than
double, and there are no clear long periods when
E;;.1(t;|sep),n) is very small or zero. Nevertheless, for both
types of the coupling we used 7 as determined for the rings
with the Ising coupling and the considered initial separable
state, and we illustrate the dependence of the entanglement
dynamics on 72 up to the time of the order of 7.

Like in the case of |max) initial state, the main effects of
the thermal noise, of dumping both the small oscillations and

=7
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the large peaks, is the same in rings with either type of cou-
pling. For small # and a short initial period of time
E\5(t;|sep),nn) is smaller than E;,(r;|max),n), but after
some time the pair entanglement from the [sep) becomes
larger than that from the |max>. Thus, for example, at 7
corresponding to |max) initial state E (= 7;|sep),i)
>E, 5(t=7;|max),n,)=0. In other words, 7, for the sepa-
rable initial state is clearly larger than with the |max) initial
state. This is true for all NV that we have tested and for either
type of the qubits coupling.

Comparison of peaks in the evolution of E(t;|sep),) with
different Hamiltonians and for the same 7 after similar peri-
ods of time shows that the large peaks of the pair entangle-
ment generated by the transverse Ising dynamics are larger
than the nearby large peaks generated by the Heisenberg
Hamiltonian. This is true for all considered values of n and
for all N. However, periods of small or zero values of the
pair entanglement are, for small 7z, longer in the Ising case.

In the following we shall concentrate on the case of the
transverse Ising coupling, since the pair entanglement ap-
pears to be the most robust in this case. Dependence of iz on
the number of qubits N can be qualitatively inferred from
Figs. 5 and 6 and similarly for other N. The dependence is
indicated in Fig. 7 by plotting E(t=7y;|sep),n) for different
fixed 7. In the illustrated cases the recurrence period of large
pair entanglement in the case of the Ising coupling is 7y
=550, 75=700, and 73=2850. Although the period 7 in-
creases with N, the pair entanglement after the period E(r
=Ty.1:|sep),ir) for N+1 can be larger or smaller than E(¢
=7y;|sepy,n) for the same value of 7. Thus, for the same
value of 7, the first peaks of E| ,(t; |sep),ir) for different N
appear at the same time and have similar value, but at times
of recurrence of the large peaks the values E| ,(t;|sep),7) for
different N differs. In fact, it seems that, at least for N up to
N=10 that we have studied, E, ,(z;|sep),n) for fixed 7, is
smaller for N=2k than for either N=2k—1 or N=2k+1. For
example, for 7=1 the first maximum appears at =25 inde-
pendently of N. The values E| ,(r=25,[sep),n) for different
N are equal E|,(r=25,|sep),0)=0.17 for isolated systems,
and are similar for open system and small 7. However, at i
=1 and at times of first recurrence of the large value E; »(r
sepy,7) the (1,2) pair entanglement for the examples of
N=6,7,8 are E,(t=7¢;[sep),n)=0, E,(t=7;|sep),n)
=0.035, and E|,(t=1g;|sep),n)=0.0088. This is different
from the case of |max) initial state when E(t=r7y,|max),)
for the corresponding 7y can only decrease with increasing N
(or remain equal to zero), and consequently the correspond-
ing i1, also decreases with N.

=TN;

IV. SUMMARY

We have studied the time dependence of entanglement
between the nearest neighbor qubits situated on a ring under
the influence of the thermal environment. Rings with small
number of qubits (up to N=10) in an external constant field
and with Heisenberg or transverse Ising coupling have been
analyzed. We were primarily interested in the dependence of
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the pair entanglement dynamics on the number of qubits in
the ring, the temperature of the environment, and the type of
entanglement in the initial state, while other parameters, like
the coupling strength between the qubits and between each
of the qubits and the thermal environment, have been fixed to
some typical constant value. The values of the parameters
were in such a domain that the Markov approximation of the
system-environment dynamics was justified. The entangle-
ment dynamics from the initial states with distributed, local-
ized, and zero entanglement has been studied. Time depen-
dence of correlations between the pair of qubits have been
calculated by numerical solutions of the corresponding quan-
tum state diffusion equation, which is one of the methods
that relies on stochastic representation in the Hilbert space of
the system’s pure states, and subsequent averaging over
many sample pure state trajectories. The method of stochas-
tic trajectories requires much smaller computer memory for
computations, compared to the numerical solutions of the
evolution equation in terms of the density matrix. We have
demonstrated that the method can be used for efficient ana-
lyzes of the entanglement dynamics in the considered sys-
tems of qubits.

The dynamics of nearest neighbors entanglement for the
pair of qubits initially in a separable or maximally entangled
state shows a clear pattern of bursts of large values followed
by a period when the entanglement is small. We have con-
centrated on the dynamics of the pair entanglement during
the period of time up to the first recurrence of the burst of
large values. Detailed comparison of the entanglement dy-
namics of the systems with Heisenberg and transverse Ising
coupling, in particular the values of the pair entanglement
after the characteristic period, for different temperatures, dif-
ferent number of qubits and different initial states, was per-
formed. The most important differences between the en-
tanglement dynamics with Heisenberg and transverse Ising
coupling for different initial states can be summarized as
follows. (a) In the case of |W) initial state and for the Heisen-
berg coupling the pair entanglement is monotonically de-
creasing and becomes zero for finite times. On the other
hand, the entanglement dynamics with the transverse Ising
coupling is that of oscillations superimposed on the mono-
tonic decrease. This difference is easily understood since |W)
state is invariant for the dynamics generated by the Heisen-
berg coupling and the local thermal noise does not introduce
additional coupling of the qubits. (b) In the case of |max)
initial state the numerical calculations suggest the conclusion
that the initially maximal pair entanglement in the Ising case
is faster distributed among the qubits in the chain, but is
more robust with respect to the thermal noise, than with the
Heisenberg coupling. (c) Considering the pair entanglement
dynamics from the separable |sep) initial state, we have con-
cluded that the large peaks of the pair entanglement gener-
ated by the transverse Ising dynamics are larger than the
nearby large peaks generated by the Heisenberg Hamil-
tonian. Furthermore, the dependence of the values at the
peaks of the pair entanglement, after the characteristic pe-
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riod, on the number of qubits in the ring is more complicated
in the case of transverse Ising coupling. Finally, the main
conclusion of our numerical analysis is that the pair en-
tanglement in the system with transverse Ising coupling ini-
tially prepared in the separable state is the most robust with
respect to the decoherence by the thermal noise, compared
with systems with Heisenberg coupling and/or entangled ini-
tial state. In the case of only two qubits, an explanation of
the differences in the entanglement dynamics with Heisen-
berg or Ising coupling can be based on the abundance of
entangled states and the restriction on the dynamics posed by
the rotational symmetry in the Heisenberg case. The same
symmetry argument provides a qualitative explanation of the
observed differences of the entanglement dynamics in the
case of small rings analyzed in this paper. Of course, the case
of more than two qubits is much more difficult to understand
in details because it involves a difficult question of the dis-
tribution of states with bipartite and multipartite entangle-
ment.

In this paper, we have concentrated on the dependence of
the entanglement dynamics on the temperature, number of
qubits, initial state, and the type of coupling, but the interqu-
bit coupling J was fixed to some small value. It would be
interesting to investigate the role that the value of J plays in
the entanglement dynamics with respect to the role played by
the type of coupling and other parameters. For small variable
values of J the analysis could be based on the Markov ap-
proximation of the environmental influence. Applicability of
the Linblad master equations, or the equivalent QSD theory,
is questionable for larger values of J when the time scale of
the systems dynamics is shorter. Different types of noise,
other than thermal considered here, might be important for
different real systems. The qubits can interact via a nonlocal
environment, and in this case the entanglement dynamics is
quite different [38]. We have studied dynamics of the sim-
plest type of entanglement that is possible in a multiqubit
system. Still regarding only pairs of qubits, one could study
the entanglement dynamics for pairs of separated qubits, and
also investigate how the relation between the pair entangle-
ment and the entanglement between the pair and the rest of
the chain depends on the open system dynamics. Dynamics
of multiparty entanglement should also be studied. Finally,
we have chosen the Heisenberg and transverse Ising models,
the type of the decoherence, and the domain of parameters
with no regard to any similar experimentally available sys-
tem, but in order to demonstrate that the QSD method is an
efficient tool to study the entanglement dynamics in small
rings of qubits. Similar numerical computations could be
used to analyze the entanglement dynamics in particular ex-
perimentally available realizations of the qubits systems.
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