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Decoherence of qubits interacting with a nonlinear dissipative classical or quantum system
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Quantum trajectories given by the quantum state diffusion theory are used to study the dynamics of a pair of
qubits interacting with the quantized Duffing oscillator. The latter is a nonlinear dissipative and driven quantum
system that in the semiclassical limit displays typical bifurcations and chaotic behavior of the classical model.
It is shown that the oscillator part of the qubits-oscillator system in the semiclassical limit is well described by
the classical model despite the oscillator-qubit interaction. On the other hand, exact quantum dynamics of the
qubits pair is completely different from the classical model as long as there is non-negligible qubit-oscillator
interaction. Dynamics of the interqubits entanglement and the qubits pair von Neumann entropy is studied in
the deeply quantum and various degrees of semiclassical regimes and for different values of the oscillator’s
bifurcation parameter. It is concluded that the decoherence of the qubits pair by the dissipative nonlinear
oscillator is more effective when the oscillator is in the more classical regime, and if the semiclassical

oscillator dynamics is chaotic rather than regular.
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I. INTRODUCTION

The theory of quantum measurement requires a division
of the analyzed system into two parts. One of them, the small
system denoted by (q,p), is described exactly and with all
details, using quantum mechanical formalism, while the
other part, the large system, is described only in a coarse-
grained way by using a small number of relevant degrees of
freedom, denoted by (Q, P). Coarse graining leads to deco-
herence. The coarse graining of the large system is com-
monly performed by averaging over its irrelevant degrees of
freedom. Such coarse graining renders the dynamics of the
relevant degrees of freedom (Q, P) of the large system irre-
versible with dissipative and stochastic contributions. De-
pending on the properties of the particular large system, such
dynamics can be predominantly quantum, with characteristic
phase space delocalization, or predominantly classical with
the well-defined approximate phase space orbits. Further-
more the deterministic part of the (Q,P) evolution can be
nonlinear and complicated. The dynamics of the small quan-
tum part, with (¢g,p) degrees of freedom is influenced by the
dynamics of the (Q, P) variables. The primary effect of such
influence is the entanglement between (g,p) and (Q,P) de-
grees, which via the averaging over the neglected degrees of
the large system leads to the decoherence of the (g, p) system
[1]. The mechanism of decoherence is universal if the
coarse-grained system consists of a large number of nonin-
teracting harmonic oscillators [2]. In fact, common experi-
mentally studied systems of entangled qubits are of the form
of few qubits with interaction mediated via a third system of
one or few degrees of freedom, which can display dissipation
and decoherence. Examples include atoms in a leaky cavity
in interaction with the specific electromagnetic field that can
itself be coupled to the electromagnetic environment [3,4]
and trapped ions in a chain interacting via exchanged
phonons [5]. It is interesting to analyze the dynamics of the
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coupled small-large systems when the large system displays
complex dynamical properties.

In this paper we shall analyze the decoherence dynamics
of a pair of qubits [playing the role of the small (g,p) sys-
tem] in interaction with the quantum dissipative Duffing os-
cillator [large (Q,P) system]. The later is characterized by
two important parameters: the parameter S related to the
classicality of the system and the bifurcation parameter g
determining the qualitative properties of the dynamics of the
system in the classical limit. In fact, the classical driven Duf-
fing oscillator goes through a sequence of bifurcations from
the stable fixed point up to the chaotic attractor as the pa-
rameter g is increased [6]. The corresponding quantized open
dissipative system in the semiclassical limit of small B dis-
plays similar qualitative dependence on g in the sense that
the expectation values (Q), (P) evolve as trajectories of the
classical system and then the long term dynamics of (Q), (P)
corresponds to qualitatively different attractors including the
chaotic attractor depending on the value of the parameter g
[7,8]. The large quantum system with such behavior enables
us to study the decoherence dynamics in the typical quantum
system of the two qubits under the influence of qualitatively
different dynamics of the large system.

Understanding of the entanglement becomes particularly
important since it was discovered that it enables quantum
systems to perform useful tasks that cannot be performed by
systems obeying classical physics (for a recent review of the
literature please see [9]). One can consider different forms of
entanglement and various quantities have been introduced in
order to quantitatively characterize the degree of entangle-
ment between quantum systems. One such quantity is the
entanglement of formation for a pair of qubits in a pure or in
a mixed state. In order to characterize the dynamics of deco-
herence we shall use the dynamics of the entanglement of
formation between the two qubits and the von Neumann en-
tropy of the density matrix representing the state of the pair
of qubits. This can be considered as measuring the entangle-
ment between the pair of qubits and the rest represented by
the dissipative oscillator.
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Our analyses are related to the recent works on the deco-
herence by chaotic environments, modeled typically by
kicked tops [10], kicked rotators [11,12], spin chains [13], or
abstract models [14—-16]. Chaoticity of the quantum systems
that are used in these references to play the role of the envi-
ronment is identified with certain properties of their spectral
distributions or with the chaoticity of the corresponding clas-
sical model. Neither of these is equivalent to the existence of
chaotic approximate phase space trajectories, i.e., existence
of the phase space localized wave packet whose centroid
approximately follows the classically chaotic evolution,
which is the property of the dissipative Duffing oscillator
used here. Related to the decoherence by complex or chaotic
environment is the problem of entanglement dynamics in
closed or open quantum systems that can be considered cha-
otic in some sense [17-30]. In this case the complicated dy-
namics is produced by the quantum system internal dynam-
ics, and in the case studied here the interest is in the
consequences of the interaction of a simple quantum system
with a macroscopic system with complicated dynamics. We
would also like to mention the recent paper [31] where the
dynamics of a single qubit in interaction with a driven dissi-
pative linear oscillator was studied using quantum trajecto-
ries similar to our approach.

The structure of the paper is as follows. In the next sec-
tion we introduce the model of two qubits interacting with
the dissipative quantum Duffing oscillator. In Sec. III, we use
the quantum trajectories of the quantum state diffusion
theory [32] to compare the exact dynamics of the large and
small subsystems of the dissipative oscillator-qubits system
with the corresponding dynamics of a classical approxima-
tion. Presented are all typical dynamical situations that could
occur in the qubits-oscillator system depending on the values
of the three parameters that characterize (a) the classicality
of the oscillator, (b) the qualitative properties of its dynam-
ics, and (c) the strength of the qubits-oscillator interaction. In
Sec. IV we study the decoherence of the qubit pair by dis-
cussing the dynamics of entanglement between the two qu-
bits and between the qubits and the dissipative oscillator in
the different dynamical regimes. We consider the decoher-
ence of the initially maximally entangled qubits states with
the oscillator in the quantum or classical regime, and the
entanglement creation (dynamics) from initially separable
qubits states due to interaction with the oscillator in the
quantum regime. Summary and discussion of our results are
presented in Sec. V.

II. THE MODEL

Chaotic property of a classical dynamical system is com-
monly defined in terms of instability of its phase space tra-
jectories. Lack of such trajectories for isolated quantum sys-
tems represent a problem if the definition of the chaotic
dynamics with its consequences is to be extended from clas-
sical to quantum systems [33,34]. Therefore, there are sev-
eral inequivalent definitions of what should be considered as
a chaotic quantum system [33-38,29]. However, isolated
systems represent an idealization, and in the case of more
realistic open quantum systems the interaction with the en-
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vironment can lead to dynamics which preserves wave
packet localization in phase space [32,39,1]. At the same
time the quantum dynamics of the centroid of such well lo-
calized wave packet could be very similar with the dynamics
following from classical equations, and in particular the cen-
troid could evolve chaotically leading to the chaotic evolu-
tion of the quantum expectation values of the dynamical
variables [7,8,40].

The complete description of a state of an open quantum
system is given by its density matrix p, and the evolution is
commonly described by the corresponding master equation
for p(¢) [39]. This description corresponds to an ensemble of
quantum systems, and is not suitable if we want to charac-
terize the chaoticity of the quantum dynamics in terms of
orbits of the expectation values of dynamical variables.
However, the evolution of the state vector of a single open
quantum system can often be described by the Schrodinger
equation with additional terms due to dissipation and sto-
chastic fluctuations [41-43,39]. Such stochastic Schrodinger
equations (SSE) are obtained by unraveling the master equa-
tion for p(). They are all consistent with the requirement that
the solutions of the master equation and of the SSE satisfy

p(0) = E[|p(0)X (0[], (1)

where E[|i(t))(y(1)|] is the expectation with respect to the
distribution of the stochastic process |¢(t)).

In the case of continuous Markov evolution the unique
SSE for the stochastic state vector |¢(f)), which has the same
transformation properties as the Markov master equation in
the Lindblad form for p(7) [44,39], is given by the theory of
quantum state diffusion (QSD) [32]. The resulting SSE is of
the form of a diffusion process on the Hilbert space of pure
states,

\d) = — iyt + | X 2LDL, — LiLy— (LIXE || (0))dr
k
+ 2 (L= (L) | (0)aw, (2)
k

where ( ) denotes the quantum expectation in the state |¢())
and dW, are independent increments of complex Wiener
c-number processes W,(r) satisfying

E[dW,]=E[dW,dW,]=0, E[dW,dW]= & dt,

k=1,2,...,m. (3)

Here E[-] denotes the expectation with respect to the prob-
ability distribution given by the multidimensional process W,

and W, is the complex conjugate of W,. The first term
—iH|) dt describes the unitary part, the rest proportional to
dt represents the drift, and the last term proportional to dW
represents the diffusion. The Lindblad operators L, are inter-
preted and inferred from different types of influence that the
environment exerts on the system and are the same as in the
Lindblad master equation. The correspondence between the
QSD equations and the Lindblad master equations is unique,
and is not related to a particular measurement scheme, or the
form of the Markov environment.
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Besides the practical advantage in numerical computa-
tions of using pure states N dimensional bases rather than the
bases of N X N matrices, the description of the evolution by
the QSD equation has the advantage that often the environ-
mental influence leads to permanent localization of the wave
packets |¢(t)) onto a small areas in phase space. This is
important in the study of the chaotic semiclassical behavior,
and therefore is the primary reason for us to use the QSD
approach to modeling quantum chaotic dissipative systems.

We chose the quantization of the Duffing oscillator as an
example of the chaotic dissipative system which shall play
the role of the large quantum system [7,45]. The Hamiltonian
H, and the single Lindblad operator L are

H,=P%2+ B*Q%4 — Q%2 + g cos(1)Q/ B+ Y(QP + PQ)/2,
“4)

L=\2ya=\24(Q - iP)1\2, (5)

when substituted in the QSD equation, and in an appropriate
classical limit, represented by 8— 0, reproduce the dynamics
of the classical Duffing oscillator, given by the second order
nonautonomous equation

d*Q dQ

” +Q% - Q=g cos(r). (6)

Depending on the parameter g the classical system (6) can
have simple regular attractors such as fixed points or periodic
orbits, or a complicated chaotic attractor. The dissipative
quantum evolution (2) with Egs. (4) and (5), in an appropri-
ate limit, reproduces the classical dynamics. The parameter 3
characterizes the classicality of the system in the sense that
the classical limit is realized by rescaling S— 0, which leads
to the large ratio of the phase space covered by the system’s
motion and the area of the Planks cell. Also appropriate val-
ues of y imply good localization in the sense that the disper-
sion of the dynamical variables is negligible with respect to
their variations during the motion. If 3 is sufficiently small
and for appropriate y the QSD equation with Egs. (4) and (5)
reproduces the qualitative and quantitative properties of the
classical Duffing oscillator. For example, for g=0.3 and 7y
=0.125 the averages (Q(z)), (P(t)) of the open quantum sys-
tem reproduce the chaotic trajectories of the classical Duffing
oscillator [7].

We chose a pair of qubits in an external fixed field to
represent the typical small quantum system. The Hamiltonian
reads

Hs=w(r)1(+w0')2(, (7)

where 0)16:}2,’1 denote x, y, and z components of the Pauli op-
erators for the first or the second qubit. We shall also use o”,
i=1,2 to denote the vector of Pauli operators for the first or
second qubit.

The qubits do not interact directly but are both linearly
coupled to the Q variable of the large system, i.e., to the

Duffing oscillator
Hi; = pQo; + pQo. (8)

The total Hamiltonian is given by
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H=H1+HS+H[S. (9)

Notice that the qubits self-Hamiltonian H, and the inter-
action Hamiltonian H;; do not commute.

Equation (2) with the Hamiltonian (9) and the Lindblad
operator (5) represent our model of the small quantum sys-
tem, the two qubits, interacting with the large nonlinear dis-
sipative system, the dumped Duffing oscillator, which can be
quantum, when B=1, or approximately classical when S
=0.01. We are interested in the decoherence of the qubits
pair corresponding to different dynamical regimes of the
large system. This problem will be studied using numerically
obtained trajectories of the system (2), (9), and (5).

II1. QUALITATIVE PROPERTIES OF DYNAMICS
IN THE SEMICLASSICAL REGIME

In this section we concentrate on possible dynamical
properties of single orbits of the evolution equation (2) with
Egs. (9) and (5) for different values of the relevant param-
eters. In particular, we shall be interested to see if a classical
model can reproduce the quantum dynamics of the oscillator
and the qubits in some domain of the parameters. Qualitative
properties of the evolution of the average values (Q), (P),
(a'), (0?) along an orbit of the QSD equation (2) with Egs.
(9) and (5) are determined in different ways by the values of
the parameters 3, v, g, and w. If $ is sufficiently small and
for sufficient dissipation 7y the dispersions AQ and AP are
simultaneously small during the evolution. Then, the param-
eters g and w determine the qualitative properties of the dy-
namics. The parameter g determines if the dynamics of (Q),
(P) is regular or chaotic. The effect of the different values of
the parameter x on the dynamics of averages (¢'), (¢°) and
dispersions Ao, Ao? is tricky and depends on whether (Q),
(P) dynamics is regular or chaotic.

A. QSD evolution of the averages versus
classical approximations

The classical analog of the quantum system (2) with Egs.
(9) and (5) is given by the corresponding differential equa-
tions on the six-dimensional classical phase space. The clas-
sical model is obtained by approximating the evolution of the
averages (Q), (P), (ai:i) exactly described by the QSD
equation (2). There are two crucial approximations in the
construction of the classical model: (a) the average values of
operators given by nonlinear expressions of operators Q, P,
and a)lfj)z,’z can be replaced by the same nonlinear expressions

of the average values (Q), (P), <0}C:§,z); and (b) the construc-
tion of the phase space of the composite system is according
to the rules of the classical mechanics obtained as the prod-
uct of the plane R? for the Duffing part and the two Bloch
spheres S2 X S? for the two qubits. The plane R? is the set of
harmonic oscillator coherent states and is invariant on the
dynamics generated by the quadratic harmonic Hamiltonian.
As we shall see, the two assumptions are justified for the
case of the Duffing oscillator with small B, but are not jus-
tified for the qubit part of the model. The equations of the
classical model are written in terms of the classical coordi-

nates (Q, P) e R? for the oscillator and (g,,p5,q3.p3) Which
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are the symplectic coordinates on the product S?>X S, and
are related to the single qubit coherent state averages of the

qubits components <0')'(:§yz) by the following formulas

[33,46,47]:
Ui: %\"Z—qiz—piz, (10)
0§=%\'2—q,-2—p?, (11)
o=(g;+pi-1), i=12. (12)
The equations of the classical model read
dQ
— =P, 13
i (13)
dq, —up P41
- 1 - A ’
dt 2V(2-pi-qi)
dq P29
=2 =upr0- =2 (14)

NQ2-pr-g3)’

P .
i yP + Q—,8Q3—,u(p%+p§+q%+q§)/2—g sin(1)/ B,

(15)
P _ 0 2-pi-2q;
- 1 - [ ’
dt 2V(2-pi-q))
dp, 2-p3-2q;
Tl ug0- = (16)
dt 2V(2-p3-q3)

Notice that if there is no qubit-oscillator interaction, i.e., u
=0, the qubit part of the classical model (14) and (16) rep-
resent the exact quantum evolution of the average values
<O’1’2(l‘)x’v’2>, where the state | ) is a product of the qubit’s
coherent states, in the form of the Hamilton’s dynamical
equations ¢;=KH)/dp;, p;=—dH,)/dp;. This is a conse-
quence of the fact that the Hamiltonian H, is linear in the
generators o**(7),., . and there is no interaction between qu-
bits. Thus, the purely qubit part of the quantum model is
represented exactly by the classical model, and it is only the
Hamiltonian form of the equations that is classical. It is the
interaction between qubits and the quantum dissipative oscil-
lator and the nonlinear parts of the oscillator potential that
are not exactly described by the classical model.

When the parameter B is small, and for sufficient local-
ization due to dissipation 7, the exact dynamics of averages
(Q), {P), given by Eq. (2) with Egs. (9) and (5), reproduce
the dynamics of the dissipative Duffing oscillator part of the
classical model (13) and (15), including the qualitative de-
pendence on the chaoticity parameter g. This is true even for
large coupling uw=1 between the oscillators and the qubits.
On the other hand, provided that the coupling strength u is
not negligibly small, the part of the classical system that
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corresponds to the two qubits, that is the dynamics of (o-i,jz)
as given by Egs. (14), (16), and (10)—(12), completely fails
to describe the exact qubit dynamics of the quantum system
given by Eq. (2) with Egs. (9) and (5), irrespective of the
values of the parameter g. In fact, the interaction between a
qubit and the oscillator introduces entanglement between the
two systems which is not captured by the product construc-
tion of the classical phase space. On the other hand, the
effect of the qubit-oscillator entanglement on the oscillator is
destroyed by the action of the Lindblad operator (5) on the
oscillator state and dynamics. The effect of the Lindblad op-
erator is to localize the state onto small regions of the R?
phase space which turns the dynamics of the centroid of such
localized wave function into the dynamics of the classical
model (13) and (15). Similar impossibility to capture the
exact dynamics of the qubit part of Eq. (2) with Egs. (9) (5)
is shown also by the modification of the classical model in
which one would use the classical equations (13) and (15) to
describe the oscillator dynamics and replace the qubit part
(14) and (16) by the Schrodinger differential equations on
the two qubit Hilbert space C* [48]. These qubit equations
will depend on the values of (Q(r)) as a time-dependent pa-
rameter. Such mixed classical-quantum description of the
oscillator-qubit system describes well the oscillator part (in
the B—0 limit) but also fails to describe the qualitative
properties of the exact qubit dynamics. The qualitative prop-
erties of the qubits must be described by the full system (9)
using the QSD equation (2) and the Lindblad (5).

In the rest of this section we shall describe the typical
dynamical regimes of the qubit and the oscillator dynamics.
The dynamics of entanglement between the qubits and be-
tween the two qubits and the dissipative oscillator is de-
scribed in the next section. In all our computations the initial
state is a product of the oscillator and the qubit pair states,
and for the oscillator state we use some of the harmonic
oscillator coherent states. All illustrations of our results use
the dimensionless time 7=wt.

B. Dynamics of the oscillator subsystem

Figure 1 illustrates qualitatively different dynamics of
(Q), {P) for the whole system (9), obtained for three typical
values of g and for the fixed values of the parameters [
=0.01 and y=0.125. These values of 8 and 7 lead to the very
similar dynamics of (Q), (P) generated by the classical equa-
tions on the phase space on one hand and by the QSD equa-
tion (2) with Egs. (9) and (5) and the corresponding coherent
initial state on the other. The fixed point [Fig. 1(a)], the pe-
riodic [Fig. 1(b)] or the chaotic orbit [Fig. 1(c)] are generated
by the QSD equation with Egs. (9) and (5), and are very
similar to the Q, P part of the corresponding solutions of the
phase space classical approximation. This good approximate
coincidence of the quantum (Q), (P) and the classical Q, P is
the consequence of strong localization of the wave function
on the points in the Q, P part of the phase space due to the
action of the Lindblad operator (5) proportional to the oscil-
lators annihilation operator. Indeed the dispersions of both O
and P are negligible compared to (Q), (P), as is illustrated
only for the coordinate in Figs. 1(d)—1(f). On the other hand,
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FIG. 1. Qualitatively different dynamics for different values of the bifurcation parameter g in the semiclassical regime of the oscillator
part of the full system (2), (9), and (5). (a), (b), and (c) illustrate (P) (dimensionless) vs (Q) (dimensionless) and (d), (¢), and (f) (Q) and AQ
and where | ) is a solution of the QSD equation. In (a) and (d) g=0.003, (b) and (e¢) g=0.03, and (c) and (f) g=0.3. Other parameters are

B8=0.01, ©=0.1, y=0.125.

in the quantum regime, i.e., for S=1, the correspondence
between (Q), (P) and Q,P is completely lost. Qualitatively
the same quantum dynamics of (Q), (P) is obtained for dif-
ferent g corresponding to qualitatively different dynamics of
0, P. In Fig. 2 we illustrate dynamics of {Q), (P) [Figs. 2(a)
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and 2(b)] and (o-i) and AO‘; [Figs. 2(c) and 2(d)] for g=0.3
[Figs. 2(a) and 2(c)] corresponding to the chaotic classical
dynamics and for g=0.003 [Figs. 2(b) and 2(d)] correspond-
ing to the regular case. The coupling strength in Figs.
2(a)-2(d) is mw=1, corresponding to strong interaction, but

FIG. 2. Typical dynamics in
the deeply quantum regime S=1.
(a), (b) illustrate (P) (dimension-
less) vs. {Q) (dimensionless) and
(c) and (d) (oi) (dimensionless)
and Ao'zl (dimensionless) and | ) is
a solution of the QSD equation.
The coupling is u=1 and in (a)
and (c) g=0.3, and in (b) and (d)
¢=0.003.
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FIG. 3. Typical dynamics in the semiclassical regime of the qubit part of the full system (2), (9), and (5) starting from qubits in the
separable initial state. All figures illustrate time series ((Ti} (black) (dimensionless) and Aa'i (gray) (dimensionless) where | ) is a solution of
the QSD equation and fixed parameters are S=0.01, y=0.125. In (a) ©=0.01, g=0.003, (b) u=0.1, g=0.03, (c) =1, g=0.003, (d) u=1,

¢=0.03, (e) u=1, g=0.3, (f) ©=0.1, g=0.3.

the similar dynamics of (Q), (P) is obtained for other values
of w. Of course, the dynamics of <0'Zl) strongly depends of .
The dispersions of oscillator observables Q and P are of the
same magnitude as the averages and are not shown. The
values of the parameters correspond to the stable fixed point
or to the chaotic dynamics in the semiclassical regime. We
see that in the deeply quantum regime of the dissipative os-
cillator B=1 there is no qualitative dependence of the dy-
namics of either the oscillator or the qubits subsystems on
the values of the classical bifurcation parameter g.

C. Dynamics of the qubits subsystem

The dynamics of the qubits degrees of freedom for small

B is illustrated in Figs. 3 and 4, which correspond to the
typical dynamics from a separable initial state |7) 1) (Fig. 3
and the maximally entangled state (|T)||)+|])1))/v2 (Fig.
4). The dynamics of the qubits is sensitive to the coupling
strength p and to the parameter g. The dynamics is illus-
trated over a time interval which is sufficiently long to infer
the qualitative properties of the asymptotic states and dy-
namics. The time intervals strongly depend on the parameter
g.
In general, weak coupling u<<1 and small g [Fig. 3(a)] or
large g [Fig. 3(f) and Fig. 4(d)] lead to regular or chaotic
oscillations of the 0;’ components, respectively, together
with large dispersions A(r;’z. Thus, a large dispersion is typi-
cal for weak coupling w. The behavior for small g and weak

coupling depends also on the properties of the initial state. If
the initial state is maximally entangled then the dispersion of
o'? remains maximal all the time [Fig. 4(a)]. Strong cou-
pling u=1 implies localization of the o, component, i.e.,
small dispersion in the case of g values that correspond to the
fixed point [Fig. 3(c)] or to the periodic {(Q), (P) orbit [Fig.
3(d) and Fig. 4(b)]. In these two cases of regular {Q), (P)
dynamics and strong coupling the component o, localizes
onto its eigenstate. However, the values of g that correspond
to chaotic (Q), (P) dynamics imply chaotic dynamics of
(02 and comparably large dispersion Aai’z irrespective of
the value of the coupling strength [Figs. 3(d), 3(f), and 4(c)].
Let us stress again that the qubit part of the classical phase
space model [Eqgs. (14) and (16)] completely fails to predict
the qualitative behavior of the averages (o!?).

IV. DYNAMICS OF ENTANGLEMENT

The superposition principle is the hallmark of quantum
behavior. For composite quantum systems the superposition
of more than one product state, i.e., superposition of states in
the form of the product of states of the system’s constituents,
lead to the entanglement, that is, typically quantum correla-
tion, between the considered parts of the whole system. In-
teraction of a composite quantum system with the macro-
scopic environment often results in dynamical instability of
the entangled states. The entanglement among parts of the
system is transferred by interaction to the entanglement be-
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FIG. 4. Typical dynamics in the semiclassical regime of the qubit part of the full system (2), (9), and (5) starting from qubits in the
maximally entangled initial state. All figures illustrate time series <0'21> (black) (dimensionless) and Ao-i (gray) (dimensionless) where | ) is
a solution of the QSD equation and fixed parameters are 8=0.01, y=0.125. In (a) ©=0.01, g=0.003, (b) x=0.1, g=0.03, (c) n=0.1, g

=0.3, (d) u=1, g=0.3.

tween the system and environmental degrees of freedom and
is subsequently almost completely lost because of the deco-
herence in the macroscopic system. On the other hand, it is
known that in some cases macroscopic systems can mediate
interaction that leads to entanglement between different parts
of a composite quantum system [49,50]. In this section we
present the results of our analyses of the dynamics of en-
tanglement between (a) the two qubits in Eq. (9) and (b) the
pair of qubits and the Q,P degree of freedom of the large
dissipative system. We shall be especially interested in the
dependence of the entanglement dynamics on the classicality
parameter 3 and on the bifurcation parameter g.

The study of entanglement always involves correlations
and thus an ensemble of systems. If the system can be con-
sidered as isolated than it can in principle be represented all
the time during its evolution by an ensemble of equal pure
states. Otherwise, if the considered system is a part of a
larger system then the ensemble representing the state of the
subsystem, and completely ignoring the rest of the total sys-
tem, must be taken to represent a convex combination of
different pure states of the subsystem. In our case, the pair of
qubits is always interacting with the dissipative oscillator
and thus its state needs to be represented by a mixture p, of
pure states. Furthermore, the entire system of the qubit pair
and the dissipative oscillator includes dissipation and thus
cannot be considered as isolated. It is also described by a
mixture p. The qubit state p, is in principle related to the

total state p by the partial trace p,=Tr,[p]. On the other hand,
entries of the matrix p, can be expressed in terms of corre-
lations between qubit’s components: Trs[psofo'?], i, j
=x,y,z. The dynamics of these correlations can be computed
by averaging the quantum expectations (zﬁ(t)|a'102|¢//(t)> over
many realizations |¢{(f)) of the stochastic process give by the
QSD equation, according to the unraveling formula (1). This
double averaging, first over the pure sample state
((1)|a} () and then over many such samples
E[(g,/f(t)|oj(72|w(t))] gives Tr[p,o; 02] , j=x,v,z. These
correlatlons are all that we need in order to calculate the
measure of entanglement between the qubits, known as the
entanglement of formation, using the procedure discovered
by Wootters [51,52]. Entanglement of formation between
two qubits in a mixed state p, is calculated as follows. First,
a concurrence is calculated by the following formula:

N J— ~ /

Clp) =max{0.\N, - o == VN, (17)
where N> ...\, are the eigenvalues of the matrix ps(o
®0‘2)pv(0' ®a'2) where p, is the complex conjugate of p,
calculated in the standard bases. The entanglement of forma-
tion is then given via the function

h(x) ==xlogy x— (1 —x) logy(1 —x)

by the following formula:
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FIG. 5. (Color online) Dynamics of entanglement between qubits E(p,) (dimensionless) (a), (b), (c), (f) and von Neumann entropy
(dimensionless) (d) and (e) of the qubit pair S(p,) for 8=0.01 (a) (d); B=0.1 (b), (e) and B=1 (c), (f). Parameter values on various curves
are u=0.1, g=0.3 (dotted gray) (strong coupled, chaotic); u=0.1, g=0.03 (dotted black) (strong coupled, regular); u=0.01, g=0.3 (full
gray) (weak coupled, chaotic); u=0.01, g=0.03 (full black) (weak coupled, regular). Entanglement creation from separable |]1) initial state

is illustrated in (f).
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Besides the dynamics of entanglement between the qubits
we shall also be interested in the entanglement of the qubit
pair as one quantum subsystem and the dissipative oscillator
as the other subsystem. An estimate of the maximum pos-
sible entanglement between the qubits and the dissipative
oscillator is given by the von Neumann entropy of the
reduced density matrix of the qubits pair S(p,)
=Tr[p, log,(p,)]. Let us stress that the total system consisting
of qubits and the dissipative oscillator as described by the
QSD formalism is always in a pure state during its evolution.
Nevertheless, all consistent experimental predictions are ob-
tained from the mixed state that is obtained by averaging (1).
However, the entanglement of formation is not given by sto-
chastic averaging over many trajectories satisfying Eq. (2) of
the entanglement calculated as if the system is in the pure
state. The definition of entanglement of formation requires
minimization over all equivalent representations of the
mixed state in terms of convex combinations of pure states
[9,53]. This is why we first computed, using the QSD ap-
proach, the reduce density matrix p,, which represents the
description of the qubits pair state, and then used it for the
computations of the concurrence E(p,) and the entropy S(p,).

A. Numerical results

The results of our computations are presented in Fig. 5.
We have illustrated the dynamics of the qubit entanglement
E(p,) and S(p,) for the oscillator system with the parameter
B=0.01 [Figs. 5(a) and 5(d)], 0.1 [figs. 5(b) and 5(e)], and
B=1 [figs. 5(c) and 5(f)]. As the initial state we use the
product of the coherent state |a) with «=0.25+i0.2 for the
oscillator and for the qubit pair we used either the maximally
entangled state (|1 |)+|] 1))/12 [in Figs. 5(a)-5(e)], or a
product of pure states |1 1) [in Fig. 5(f)]. The entanglement
dynamics depends on all three parameters B3, u, and g. No-
tice that the characteristic time intervals of the entanglement
dynamics in Figs. 5(a)-5(e) are an order of magnitude
shorter then the time intervals that are needed to infer the
long-term dynamics of the qubits in Figs. 3 and 4.

B. Entanglement dynamics from initially
maximally entangled state

When B=0.01 the dissipative oscillator behaves similar to
the classical system. The dependence on the interaction
strength dominates, but for a fixed value of u the dependence
of E(p,) and S(p,) on g is also clearly manifested. The cha-
otic oscillator induces more efficient decrease of the en-
tanglement E(p,) between the qubits than the regular one. It
is interesting to observe [Figs. 5(b) and 5(e)] that variation of
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g for fixed weak coupling w and B=0.1 can change the
asymptotic dynamics of the entanglement from E(p,)—0
when g=0.3 (chaotic) to E(p;) >0 when g=0.03 (regular pe-
riodic). Qualitatively similar dependence on the value of u
and g is observed also in the deeply quantum regime. Even
for B=1, larger values of u, and for fixed u larger values of
g, lead to a faster decrease of the entanglement between the
qubits [Fig. 5(c)]. Thus it is not clear if the observed depen-
dence of the entanglement dynamics on the parameter g is
due to the qualitatively different dynamics of the oscillator or
just due to the dependence on the value of the parameter g.
In fact the latter conclusion is supported by the fact that in
the strongly quantum regime no qualitatively different dy-
namics of the oscillator is displayed for different values of g,
but nevertheless the entanglement dynamics shows similar
dependence on g as in the semiclassical regime.

C. Generation of entanglement by the common environment

It is known that the entanglement between the (¢,p) de-
grees of freedom can be enhanced by their interaction with
the common “environment,” described by the (Q, P) system
[49,50]. In our case it can be observed that the evolution of
E(p,) for strong coupling w is not monotonic even when B
=0.01. When B=0.1 one can clearly see [Fig. 5(b)] that E(p,)
can be created at times after its been completely annulated,
i.e., from separable states. It is known that standard environ-
ments consisting of a sufficiently large number of harmonic
oscillators can mediate interaction and induce entanglement
in a pair of qubits initially in a separable state. However,
notice that the analyzes presented in [49] does not apply here
since the qubits self-Hamiltonian H, (7) cannot be neglected,
and does not commute with Eq. (8). Nevertheless we have
observed such environment-induced creation of entangle-
ment E(p,) between the qubits starting from a separable ini-
tial state [Fig. 5(f)]. The reappearance of entanglement that
can be seen for strong coupling ©=0.1 and B=0.1 is such
that the entanglement is nonzero for a brief period of time
and eventually is annulated permanently. On the other hand,
in the deeply quantum regime when 8=1 the entanglement
can be created from separable initial states and is preserved
for a long period of time. In this regime the nonlinear dissi-
pative oscillator appears as a very unsuccessful decoherer for
the qubit system, as is clearly seen from Figs. 5(c)-5(f). cor-
responding to 8=1 and to some extent to 8=0.1 [Fig. 5(b)].
The creation from separable initial states of small but long
lasting nonzero entanglement when =1 is illustrated in Fig.
5(f). The value of the coupling constant in this figure is u
=0.1 and corresponds to cases illustrating the faster decrease
of entanglement for the stronger coupling in Figs. 5(a)-5(c).
The entanglement created from the initially separable state
decreases with the weaker coupling, and for ©=0.01 and any
g, is negligibly small, i.e., numerically it is zero, during the
studied time interval.

V. SUMMARY AND DISCUSSION

We have studied decoherence dynamics of a pair of qubits
due to their interaction with the dissipative nonlinear quan-
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tum system, exemplified by the quantized driven Duffing os-
cillator. Due to the dissipation in the Duffing oscillator part
the system must be treated as an open quantum system. Dy-
namics of an individual quantum system in interaction with
the environment is described by stochastic unraveling of the
density matrix dynamical master equation. We have used a
particularly convenient form of such an unraveling provided
by the theory of quantum state diffusion. Description of in-
dividual quantum systems in terms of their trajectories in the
Hilbert space, and the localization, due to the dissipation and
fluctuations, of these trajectories onto trajectories in properly
defined phase space enables one to treat the qualitative prop-
erties of the quantum system dynamics in a way that is as
close as possible to the classical theory of dynamical sys-
tems. Variations of two parameters crucially alter the dynam-
ics of the quantum Duffing oscillator. In the limit when the
parameter S8— 0, which is analogous to 7 — 0, the quantum
Duffing oscillator behaves as the corresponding classical sys-
tem, and then the parameter g is the bifurcation parameter
that determines the qualitative properties of the oscillators
dynamics. Small g imply regular stationary or periodic dy-
namics and large g entail the chaotic dynamics.

Our main results concern two related types of problems.
First, we have compared the dynamics of the single quantum
system with the corresponding classical model, and second,
we have studied the dynamics of entanglement between qu-
bits with the nonlinear environment in different regimes.

Concerning the comparison of the classical approxima-
tions with the quantum system in different regimes the fol-
lowing picture is suggested by our numerical computations.
Due to the dissipation by the environments interaction with
the oscillator part, the state of the total system is localized on
small areas of the oscillator’s phase space and consequently
the oscillator’s dynamics in the limit of small 3 is well ap-
proximated by the classical model, despite the interaction
with the qubits. This is true for all qualitatively different
dynamical regimes of the oscillator. On the other hand, the
exact quantum dynamics of the qubits is not reproduced by
the classical model, even when the oscillator is behaving
classically. This observation is similar to the conclusions
about quantum-classical transition in coupled linear
oscillator-single spin system reported in Ref. [40]. The rea-
son for such failure of the classical model in the qubits do-
main is that the entanglement between each of the qubits
with the oscillators cannot be described by the classical way
of treating the qubit-oscillator interaction.

We have also studied the evolution of entanglement be-
tween the qubits and of the qubits von Neumann entropy, as
indicators of the decoherence of the qubits by the interaction
with the dissipative oscillator. Behavior of the entanglement
and the entropy from initially maximally entangled and from
separable qubits state was investigated. It is found that deco-
herence is much more effective when the dissipative oscilla-
tor is in the semiclassical rather then in the fully quantum
regime, for the same values of the parameters characterizing
the nonunitary effects in the oscillator dynamics. Further-
more, larger values of the bifurcation parameter g, corre-
sponding to the chaotic dynamics of the oscillator in the
semiclassical regime, imply more rapid decrease of the qu-
bits pair entanglement and faster increase of the qubits von
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Neumann entropy than the smaller values of g corresponding
to regular motion. In the semiclassical regime, i.e., for B
sufficiently small any value of g and qubit-oscillator cou-
pling strength u leads to annulation of the interqubit en-
tanglement after finite time. Contrary to the case of environ-
ment consisting of a large number of harmonic oscillators in
the thermal equilibrium, the decrease of the interqubit en-
tanglement is not monotonic. On the other hand, in the fully
quantum regime the entanglement between the qubits can be
created from initially separable state and appears to converge
at long times to finite nonzero values. Te variations in the
typical behavior of the entanglement as the parameter B is
gradually decreased from S=1 to S<<1 seems to be continu-
ous.

Properties of decoherence of a quantum system by an-
other coarse-grained quantum system considered as environ-
ment are related to the correlation function of the system that
plays the role of the environment. In our case, the open quan-
tum system could be the pair of qubits, in which case the
oscillator is treated as a part of the nonlinear environment
that can show classical or quantum features depending on f3,

PHYSICAL REVIEW A 79, 022101 (2009)

or the open system could be the pair of qubits in interaction
with conservative quantum nonlinear oscillator. In the later
case the open system is immersed in an environment that
interacts only with the oscillator and produces dissipation,
localization, and renders the classical behavior of the large
oscillator, i.e., in the classical regime 8— 0. The dynamical
properties of the systems playing the role of the environment
in the two possible arrangements, including their correlation
functions, are different and yet the decoherence of the qubits
systems in the two cases is by the construction the same.
This illustrates the importance of the type of coupling be-
tween the quantum system and the environment on the prop-
erties of decoherence of the quantum system.
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