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System of classical nonlinear oscillators as a coarse-grained quantum system
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Constrained Hamiltonian dynamics of a quantum system of nonlinear oscillators is used to provide the
mathematical formulation of a coarse-grained description of the quantum system. It is seen that the evolution of
the coarse-grained system preserves constant and minimal quantum fluctuations of the fundamental observables.
This leads to the emergence of the corresponding classical system on a sufficiently large scale.
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I. INTRODUCTION

The relation between quantum and classical mechanics (QC
relation) is a very complex one with many complementary
facets. Over the years, since the discovery of quantum theory,
many different and more or less related aspects of the QC
relation have been investigated. The studied problems can be
artificially divided into two main groups. The first group entails
the problems of formal or mathematical relations between
quantum and classical formalisms (an excellent review is [1]).
Problems of the other group are related to the description
of physical reasons or processes that effectuate the quantum
to classical transition [2-4]. Our goal in this paper is to
explore yet another formal QC relation and interpret it as
the mathematical formulation of a coarse-graining that is
necessary in the quantum to classical transition.

Comparison of typical formal features of classical and
quantum mechanics is facilitated if the same mathematical
framework is used in both theories. It is well known, since the
work of Kibble [6-8], that the quantum evolution, determined
by the linear Schrodinger equation, can be represented using
the typical language of classical mechanics, that is, as a
Hamiltonian dynamical system on an appropriate phase space,
given by the Hilbert space geometry of the quantum system.
This line of research was later developed into the full
geometric Hamiltonian representation of quantum mechanics
[9-16]. Such geometric formulation of quantum mechanics has
inspired natural definitions of measures of entanglement [16]
and has been used to model the spontaneous collapse of the
state vector [17,18].

It has been realized recently that the geometric formula-
tion of quantum mechanics provides a particularly suitable
framework for discussions of nonlinear constraints that might
be imposed on a quantum system [19-21]. In particular,
it was shown in Ref. [19] that a quantum system of two
qubits constrained to be always on the manifold of separable
states shows the characteristic qualitative features of classical
Hamiltonian dynamical systems, which cannot be realized by
the unconstrained Schrodinger evolution. The idea is further
explored in [26] and applied to a general spin system, i.e., to a
quantum system with a finite Hilbert space. Study of the QC
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relations for such systems is hampered by the fact that there is
no classical mechanical model which after quantization gives
the quantum system.

In this paper we consider systems based on the Heisenberg
H, dynamical algebra, say, a collection of oscillators possibly
nonlinear and interacting. Classical system of oscillators is
quantized to give the quantum system of oscillators. Our main
result is that the quantum system of oscillators constrained
with a specific type of constraints is equivalent to a finite
dimensional Hamiltonian system that preserves constant and
minimal quantum fluctuations of the fundamental observables
during the entire evolution. This Hamiltonian system is close
to the classical one if some classicality parameter is small.
Finally we shall propose an interpretation of these formal
results as the mathematical formulation of the emergence
of classical systems from a coarse-grained description of
quantum systems.

The paper is organized as follows. Geometric Hamiltonian
formulation of quantum mechanics and in particular the
quantum constrained evolution for a general quantum system is
formulated in Sec. II. Our main result is given in Sec. III where
the formalism is applied to study the evolution of a system of
quantum oscillators with particular constraints. In Sec. IV a
complete construction of the classical system based on the
constrained quantum system is presented. Section V contains
a discussion and an interpretation of the formal results from
Secs. [Il and 1V.

II. HAMILTONIAN FORMULATION OF CONSTRAINED
QUANTUM DYNAMICS

A. Hamiltonian framework for quantum systems

Consider a quantum system with separable and complete
Hilbert space H. The Schrodinger dynamical equation on H
generates a Hamiltonian dynamical system on an appropriate
symplectic manifold. The symplectic structure, which is
needed for the Hamiltonian formulation of the Schrédinger
dynamics, is provided by the imaginary part of the unitary
scalar product on H. In fact the Hilbert space H is viewed as
a real manifold M with a complex structure, given by a linear
operator J such that J> = —1. If { is finite n-dimensional
then M = R?", but in general M is an infinite dimensional
Euclidean manifold. Real coordinates {(x;,y;),i =1,2,...}
of a point € H= M are introduced using expansion
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coefficients {c;, i = 1,2, ...} in some basis {|i), i = 1,2, ...}
of H as follows:

v) = Xi:cili% o=2 jgy", (1a)
xi = V2Re(e;), yi=~2Im(c;)), i=12,.... (I1b)

Alternatively, if H is identified with some space of functions
Lry(RM) with ¢ € RV then the real and imaginary parts of
¥(q) = [¢(q) + im(q)]/v/2 give two real fields [p(q),7(q)]
representing the coordinates of the real infinite manifold M.

Besides the complex structure J, the real manifold M has
Riemannian and symplectic structure. Since M is real, it is
natural to decompose the unitary scalar product on H into its
real and imaginary parts,

| .
(Vilva) = GOy + 2’—hsz<wl,1/fz>. )

It follows that G is Riemannian metric on M and that Q
is a symplectic form on M. Furthermore, J, G, and 2
satisfy G(yr1,v») = Q1,J¥,) so that the space M is in
fact a Kéhler manifold. Thus the manifold M associated
with the Hilbert space H can be viewed as a phase space
of a Hamiltonian dynamical system. A vector |¢) from H,
associated with a pure quantum state 1, is represented by the
corresponding point X in the phase space M. Itis convenient
to add an abstract index a = 1,2, ... to the points from M
such as X7, and to assume the standard summation convention
over repeated abstract indices. On the other hand, summation
over coordinate indices i, j as in (1) or integration over the
argument g in ¢(q), 7 (g) will always be written explicitly.

In the coordinates (x;,y;) the Riemannian and the symplec-
tic structures of M are given by

G—10 3
_(0 1)’ )

a=(" ! 4
_(—1 0)’ @

where 0 and 1 are zero and unit matrices of dimension equal
to the dimension of the Hilbert space. In the coordinates
(¢(q),m(g)) the analogous formulas are

G(WM//z)=quwﬁl(q)fﬁz(q)+7T1(Q)712(Q)], ®)

Q(Iﬁmﬁz)=/dq[¢1(6])ﬂz(q)—m(q)(iﬁz(CI)]- (6)

Thus, coordinates {(x;,y;),i = 1,2...} or {(¥(q),7(q)), q €
RV} represent canonical coordinates of a Hamiltonian dy-
namical system. Consequently, the Poisson bracket between
two functions F; and F, on M corresponding to the sym-
plectic form €2 is in the canonical coordinate representation

(¢(q),7(q)) given by
§F 6F> 6F, OF;
F, B} = d — . 7
tF1.F2) f "[&p(q)an(q) 8¢<q>an(q>} @

A one-parameter family of unitary transformations on H
generated by a self-adjoined operator A is represented on
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M by a flow generated by the Hamiltonian vector field
Q(—JAY,-) = (dA)(-) with the Hamilton function

AXy) = (YlAly) = (A)y. (8)

Thus, quantum observables A are represented by functions of
the form (A),,,. Such and only such Hamiltonian flows with
the Hamilton function of the form (8) also generate isometries
of the Riemannian metric G. More general Hamiltonian flows
on M, corresponding to the Hamilton functions which are not
of the form (8), do not generate isometries and do not have
the physical interpretation of quantum observables. In what
follows we shall often use the short-hand notation A(Xy) = A
and (A)v, = (A), implicitly assuming relation to the state .
Not every such function has an interpretation as a classical
variable. If it does then we shall denote it by the corresponding
small letter a = A = (A).

It can be seen easily that the Poisson bracket of two Hamil-
ton functions relates to the commutator between corresponding
observables,

| I
{A1,Ax} = E([AlyAﬂ). )
The Schrédinger evolution generated by Hamiltonian H,
inly) = H|y), (10)
is equivalent to the Hamilton equations on M,
X4 = QV,H(Xy). (11)

In the canonical coordinates (x;,y;) the Schrodinger evolution
is given by

. oH ) oH .
X :a—yi, yi:_a_)ci’ i=1,2,... (12)
or in (¢(q),m(g)) coordinates by
. SH . SH N
MCD:F(q)’ 7T(61)=—%» g eR". (13)

We have constructed the Hamiltonian dynamical system
corresponding to the Schrodinger evolution equation on H.
In fact, phase invariance and arbitrary normalization of the
quantum states imply that the proper space of pure quantum
states is not the Hilbert space used to formulate the Schrodinger
equation, but the projective Hilbert space. This also is a Kéhler
manifold and can be used as a phase space of a completely
geometrical Hamiltonian formulation of quantum mechanics.
Nevertheless, we shall continue to use the formulation in which
points of the quantum phase space are identified with the
vectors from H since it is sufficient for our main purpose.

B. Constrained quantum systems

The Hamiltonian framework for quantum dynamics enables
one to describe the evolution of a dynamical system generated
by the Schrodinger equation with quite general additional
constraints [19-21]. Suppose that the evolution given by the
Hamiltonian H is further constrained onto a submanifold I" of
M given by a set of k independent functional equations,

[(X)=0,1=12,... .k (14)

Equations of motion of the constrained system are obtained
using the method of Lagrange multipliers. In the Hamiltonian
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form, the method assumes that the dynamics on I is deter-
mined by the following set of differential equations:

k
X =Q(VX.VHy), Ha=H+Y Mfi, (5
=1

which should be solved together with the equations of the
constraints (14). Other approaches to realize the constraints
are possible [21], but the resulting system is not explicitly
of Hamiltonian form. Notice that the total Hamilton function
H,,; need not be given as the quantum expectation of a linear
operator on H. The Lagrange multipliers A; are functions on
M that are to be determined from the following so-called
compatibility conditions,

0= fi =QNVf,VHue)

k

= QVAVH) + ) b QVfiV L), (16)
m=1

on the constrained manifold I". There is a standard Dirac
approach to the constrained classical Hamiltonian dynamics
[22,23]. We shall not go into its details that stress the distinction
between the first- and the second-class constraints. In order to
apply the standard procedure, the constraints have to be regular.
A set of constraints is irregular if there is at least one such that
the derivative of the constraint with respect to at least one of
the coordinates is zero in at least one point on the constrained
manifold. Otherwise the constraints are regular. In our case the

constraints are regular if for all /

8fi 8fi

S 2,
0@ 7 @)

for all ¢ € RV and everywhere on the constrained manifold.
If this is not satisfied the Dirac classification is blurred and the
straightforward application of Dirac’s recipe is not possible.
It will turn out that the case of interest here involves precisely
the irregular constraints that cannot be easily replaced by an
equivalent set of regular constraints.

We shall now briefly recapitulate the main steps of the
general analysis of the constrained dynamics. The Eq. (16) can
be satisfied in two fundamentally different ways. First, if the
matrix of Poisson brackets { fi, fn} = QUV 11,V fin) = (R )im
computed on I' is nonsingular, then the multipliers are uniquely
determined from

#0 (17)

k
=Y Q" m QY . VH). (18)

m=1

The equations of motion (15) assume the form

k
X =Q(VX,VH)+ Z ﬁ(Q;l)lme(me,VH) (19)

l,m=1

and should be solved together with the constraints (14). In
this case all the constraints (14) are called primary and of
the second class. In this case I' is symplectic manifold with
the symplectic structure determined by the so-called Dirac-
Poisson brackets,

k
(FL,Fdp = {FL Y+ ) (RN Q) o P2l (20)

I,m=1
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A very different situation occurs if all of the Poisson brack-
ets { f;, fu} and { f,,, H} are zero on the constrained manifold
I' and the regularity condition (17) is trivially satisfied. In
this case the constraints are said to be of the first class.
The compatibility conditions do not specify the multipliers
and the constrained dynamics is not uniquely determined.
Nevertheless, once a system with regular first-class constraints
and the Hamiltonian H,,, is put onto the constrained manifold,
the system remains on that manifold whatever choice is
made for the Lagrange multipliers. Different choices of the
multipliers must be considered as leading to the same physical
situation.

Let us stress that the described scheme can be applied
and leads to the above conclusions only if the constraints are
regular. If this is not the case then it might be necessary to fix
some or all of the multipliers even if the constraints appear to
be of the first class. The system analyzed in the next section is
precisely of this type.

If some of the compatibility equations do not contain mul-
tipliers, then for that condition f; = {f;, H} = 0 represents an
additional constraint. These are called secondary constraints,
and they must be added to the system of original constraints
(14). They could be of the first or of the second class. If
this enlarged set of constraints is functionally independent
one can repeat the procedure. At the end one either obtains
a contradiction, in which case the original problem has no
solution, or one obtains appropriate multipliers A; that need
not be uniquely determined.

III. DYNAMICS OF A QUANTUM SYSTEM OF
OSCILLATORS WITH CONSTRAINTS

The Hilbert space H = L,(R") is the unique irreducible
representation space of the canonical commutation relations
given by the n-term direct sum of Heisenberg H, algebras.
Up to the normalization and the global phase invariance, this
Hilbert space is the state space of a collection of n quantum
oscillators. The fundamental observables of such a system are
represented by 2n operators (Qi,f’,-), i =1,2,...,n, satisfy-
ing [Qi,ﬁj] = i4; ; on a dense domain in H. The symplectic
phase space M of the Hamiltonian formulation of the quantum
oscillators system is given as the product of n infinite dimen-
sional symplectic spaces. The canonical coordinates of this
infinite dimensional symplectic space can be written using the
continuous index as ¢(qi, . ..,q,),7(q1, --.,qn) (g € R) or
using discrete indices as (x/,y)) ( = 1,2,...,n,i = 1,2, ...).
A Hermitian operator A is in the Hamiltonian formulation rep-
resented as function A(Xy) = (WMW) on M. In particular,
fundamental observables Qi, 13]- give 2n fundamental variables
as functions on the infinite quantum phase space M, which we
shall denote as g; = (0), pj = (ﬁj>. The Poisson brackets of
the infinite phase space M between the fundamental variables
gi, p;j are given by the general formula (6) as

{gi.pilm =261, i,j=12,....n, 21
where we stress by the subscript M that the Poisson bracket
is computed on the infinite manifold M, for example as in
(6). Notice that the quantum variables of the oscillator system
are represented as functions of the fundamental variables of
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the infinite phase space M [x yl or the canonical fields
o(q1, .. .,qn), 7(q1,...,q,)] but most of them cannot be
represented as functions only of the fundamental variables
gi, pj- A nonlinear operator expression in terms of Qi, ﬁj is
represented as a functionof x/, y! (1 = 1,2, ...,n,i = 1,2,...)
or functional of ¢(qi,...q,), 7(qi,...q,), but cannot be
written as function only of ¢;, p; (i,j =1,2,...,n). Such
expressions involve terms that represent quantum fluctuations
of the fundamental observables, i.e., contain the second or
higher order moments, for example fluctuations (A Q,-)2 =
(Q?) q, , (AP = (P)? — pl and correlations (P, Q; +
Qi P;) — 2p;q;.Of course, these are functions on M but cannot
be presented as functions only of ¢;, p; (i,j = 1,2,...,n). A
polynomial expression of Q;, ﬁj thus involves a function of
gi, pj plus additional terms involving the correlations. The
important observation is that the correlations can become ar-
bitrarily large during typical Schrédinger evolution. However,
there is an important exception. Namely, when the system is
in the coherent state, all moments of Q; (P;) of order higher
than two are expressible solely in terms of ¢; and AQ; (p;
and A P)), while the correlations (Qf” 13,-” + 13,-” Q;" ) —2q" pt
(m,n € N) vanish.

Previous discussion suggests that a closed dynamical
system expressed solely in terms of the fundamental vari-
ables g;, p; could be obtained from the quantum system if
the Schrodinger evolution is additionally constrained to the
appropriate coherent state manifold, i.e., to preserve constant
and minimal values of the fluctuations of the fundamental
observables Q i P ;. The formalism of the constrained quantum
Hamiltonian system sketched in the previous section is ideally
suited for the analysis of such systems. However, as we
shall see, the construction of the most appropriate set of
constraints and the analysis thereof is not straightforward. In
this section we deal with the construction of the constrained
system. Physical interpretation of the constrained system will
be discussed in the following sections.

A system of quantum nonlinear oscillators is given by the
following Hamiltonian:

n

A 1 4 A A A
H=) P+ V(01.0s....00)
i=1 !
- Z—P2 Mo 52 4 (22)
2m; 2 Chow

where V is some function of (Q1,0,,...,0,) having the
properties 82V /3 Q% g,—0 = m;w?(i = 1,2,...,n).

In the general case when the Hamiltonian is not only
quadratic in Ql,Qz, . ,Qn, the dispersions AQi, Aﬁi (i=
1,2, ...,n) will assume different arbitrarily high values in the
states along an orbit generated by H. However, the constrained
system defined by the Hamiltonian (22) and the following set
of 2n constraints,

i A h
fiX)=(A0)" = 5 =0, (23a)
£i(X) = (AR - ’"T”h —0, (23b)

should preserve the dispersions of all fundamental quantum
observables. The values of the dispersions in (23) are the
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minimal values that can be achieved simultaneously by the
coordinates and momenta, and are obtained if and only if
the state of the ith oscillator is a coherent state. However,
the constraints (23) are irregular and we shall see that the
conservation of minimal dispersions is achieved by a more
suitable set of constraints.

Let us consider in detail a single nonlinear oscillator. This
example is in fact sufficient to indicate the typical features of
the general case. In this case there are only two constraints of
the form (23):

h
2 -
fo(X) = (AQ) - e =0,

mwh

(24a)

fp(X) =

The constrained manifold I' defined by (24) coincides
with the set of coherent states, which is a finite-dimensional
submanifold of all quantum states M. This shows that there
exists an infinite set of constraints on M with the same
constrained manifold as the one given by the two constraints
(24). Furthermore, this indicates that it might not be possible to
treat the two constraints (24) within the standard Dirac scheme
for regular constraints. Nevertheless, in order to illustrate
the problems that occur, we shall proceed with the analysis
of the constrained Hamiltonian equations (15) with the two
constraints (24).

The general dynamical equations for the fundamental
variables g = (0), p= (P) of the constrained quantum
Hamiltonian system with the constraints (24) assume the form

qg=1{q,H +)‘qfq + Apfolms
p={p.H +)‘qfq +)‘pfp}/\/la

and should be solved together with the constraints equa-
tions (24). Notice that in (25) the Poisson brackets are those of
the full quantum phase space M, and H is a function on M
and not on the constrained manifold.

The general procedure requires first to compute the Poisson
brackets between the constraints and between the constraints
and the Hamiltonian H, and then to check the values they
assume on the constrained manifold I'. Computations are
facilitated using the relations

(24b)

(25)

= (y|A|q), 26
W )<w| Aly) = (v]Alq) (26a)
Al = (g|A 26b
aw*(q)“”' lv) = (qlAlY) (26b)
and equality
§A1 JA, B 8A, JA
3¢p(q) dn(q) S¢(q) én(q)
_ _i[ 8AI 8A, Ay SA } @7
B SV (q) 8¥*(q)  SY(q) 8y*(q) ]’
where ¥*(q) = [¢(q) — i7(q)]/v/2.

The Poisson brackets between the constraints are

. 3fy  8f» Sfp 8y ]
b - d -
{fq: 1} l/ q |:51ﬂ(‘1) Sv*(g)  Sv(q) dv*(q)

—i/de[(W|Q2|f]) —2(0)(¥10lg) (gl P?|¥)
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—2(P)(q|Ply)— <1 = —i(([0% P?])
—2(ON[0Q,P?]) — 2(P)([Q*. P))
+4(Q)(P)([Q.P]))

= 20((QP + PQ) — 2(0)(P)) = 4h A(Q. P).

(28)

The symbol <> means the term of the same form as the previous
one but having Q replaced by P and vice versa.

Similar calculations give the brackets between the con-
straints and the Hamiltonian H:

{fo. H} =

{fpsH} =

where V/(Q) denotes the derivative of the function V(Q).
All three expressions (28), (29), and (30) are zero on
the constrained manifold I of the coherent states. Thus the
constraints (24)) appear to be of the first class and there are
no secondary constraints. According to the general theory
for the regular first-class constraints the Lagrange multipliers
in the total Hamiltonian H,, should be left unspecified.
However the constraints are not regular because, for example,
the derivative with respect to the coordinate ¥ (g) = ¥ (0) is

31y
8v(q)

indicating that the multipliers have to be specified from some
other condition. In order to correctly fix the multipliers one
might use the following reasoning. Consider the Poisson
bracket { f, f,}. If the constraints where regular, this bracket
would be a first-class constraint and would be preserved by the
constrained evolution. In fact, the bracket { f,, f,} computed
on I', as seen from (28), represents the correlation between
0 and P in a coherent state. This must be preserved by the
evolution on I' generated by the total Hamiltonian H,,;. The
dynamical equation with H;,, for the correlation A( Q, P )reads

— A(Q P, (29)
—2h AV'(0), P), (30)

=[¢*V*(q) = 2¢(O)¥*(@lly4=0 =0,  (31)

d . 4 A A
—A(Q P) ={A(Q,P),Hio}

(V”(Q)>

(L s )
= 2h(2m(AP) MRS NN0)

+hp(APY —?»q(AQ)) (32)

on I and vanishing only if the multipliers are

1 (V"(Q))
Ap=——, Ag = ———. 33
P 2m ! 2 (33)
Thus, the total Hamiltonian that would preserve the irregular
constraints (24) with the additional compatibility condition is
(P)? A (VD))
Hipp = —— +(V(Q)) — ——
2m 2
However, this is stiAll not satisfactory. To see this, one might
obs;rve that A(f(Q),P) = 0 should hold on I'" for arbitrary
f(Q). The evolution generated by the total Hamiltonian (15)
should yield on I’

~ nh
[(AQ)2 - ﬂ} . (3%

d AL A Al A
EA(f(Q),P) ={A(f(D),P),Hor} = 0. (35)
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It turns out that the multiplier A, must depend on f (0), ie.,
on an arbitrary function, and cannot be fixed by any means.
The origin of such discrepancy is seen from

A VoD A
(V) =Y Vo496 -

x (0N, (36)
k=0

where possibly all moments (O — (ONF) are present (if v =

o0) and influence the dynamics (35), while our constraints

(24) contain only the moment of order two. Resolution of this

problem requires a number of constraints equal to the order v

of highest moment present in (36),

Far—1(X) = (0 — (O =0, (37a)
. . 2k — D
_ _ 2k\ _
Faan(X) = (0 — (0N —amak =0, (37b)

k=23,...,[(v+1)/2]. Although the constraints (37) im-
plicitly follow from (24) and hold automatically on I', they
must be present explicitly in the total Hamiltonian. In that
case the choice of the multipliers

ve(0)

Agk = % Ir (38)
cancel termwise the appropriate contributions of moments
(O — (O) to the evolution (35).

We see that starting with the primary constraints (24) one
would have to add a possibly infinite number of secondary
constraints in order to satisfy all possible compatibility
conditions (35). This is not satisfactory. Fortunately, there is
an alternative procedure which starts with a different set of
two primary constraints and offers a resolution.

A. More convenient primary constraints

To formulate the primary constraints in the alternative
procedure, we associate with each point from M denoted X
a point «(y) on the coherent state manifold I" such that

a(¥) = (Q)y,(P)y). (39)

By definition, the operators ) and P have the expectations
in the coherent state «(y) the same as in the state 1. This
association of a single coherent state with the whole set of
states in fact establishes an equivalence relation on M that
will play a crucial role in the following section.

With the notation (39) we formulate the following two
constraints

@y = (V(Q)y — (V(D)e =0,

®, = (P?)y = (P?)ai) =0
to be imposed on the oscillator with arbitrary fixed potential
V(Q). The role of the constraints is to preserve during the
evolution the association of the set of points ¥ (¢) with the

corresponding single coherent state o(y(1)).
The total Hamiltonian assumes the standard form

Hipe = (H)y + 4@y + 1,9, (41)

(40a)
(40b)

and the compatibility condition

{A(f(Q),P),Hyp} =0 (42)
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yields the values of Lagrange multipliers

1

independently of the function f(Q), leading to

1

Hiy = mﬁzw) + V(D) aty) =

(H)a).  (44)
Noting that (132)&(,/,) = (f’)ﬁ(w) + mwh/2 and dropping the
irrelevant constant we finally obtain the total constrained
Hamiltonian

1

Hior = 5=(P)agy) + V(i) (45)

which preserves the evolution on the manifold of the coherent
states I". It is seen that the total Hamiltonian (45) is up to
additive constant equal to the initial Hamiltonian H = (H Vv
on the constrained manifold I'. However, H,, preserves
constant and minimal quantum fluctuations of fundamental
observables, while the evolution with H can in general make
them quite large.

The important fact is that the total Hamiltonian (45) depends
only on the variables g = (Q)a(w) and p = (ﬁ)a(w) that
parametrize the coherent state manifold. Thus, the constrained
evolution of the fields

o SHilg.p) . = S§Hiu(g.p) N
¢(x)_—87r(x) , (X)) =— 560 xeR
(46)
can be, up to the phase freedom of ¥ (x) = ¢(x) + im(x),

inferred from the Hamiltonian evolution of the coherent state
parameters

d 0H,,(q,
q _p _ 9Hulg p)y @7a)
dt m ap
dp A 0H,,(q,p)
_— = — V/ a = - 47b
T V(D aw) b (47b)

i.e., the dynamics of constrained system is given by the
Hamiltonian dynamics of constrained manifold parameters.

Let us finally stress that the role of the constraints is to
preserve during the evolution the association (39) of the set
of points 1(¢) with the corresponding single coherent state
a(Y(1)). In other words, relation (39) gives an equivalence
relation on the manifold M. Points from i € M which
give the same expectations (0) and (P) are identified with
the single representative: the coherent state «(yr) with the
same expectations. However, the equivalence relation is not
preserved by the unconstrained Schrodinger evolution of ¥ €
M. On the other hand, the constrained evolution is precisely
such that it preserves the equivalence of states, which can be
seen from the fact that it can be expressed entirely in terms
of the expectations g = (0) and p = (P) [Egs. (47)]. In this
sense the constrained evolution and the equivalence relation
(39) imply each other.
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B. Quantum constrained system and the classical oscillator

We shall now compare the total Hamiltonian (45) on the
constrained manifold I" of the coherent states with

1
he = P+ Vg, (48)
m

representing the Hamilton function of a classical nonlinear
oscillator with the potential V(g).
The quantum expectation of the potential V(Q) in a
oo eXp (—

coherent state o is
(x—<Q>u>2)
A 2AQ)2
V(O = / Vir 200 ) g
—00 (AQ)e 27

Using the general formula

/ f (t)—exp( (A“q[)z)

(49)

S ‘1_ (k)
; TEACEY)

we see that

. = (A
(V(0))y = V(q>+2( ) v (g), (51)

where ¢ = (Q)y and (AQ)y = /ii/2mw). Thus, the total
Hamiltonian in a point ¢ = (g, p) on the constrained manifold
is

o0

1 V(g
H,m=—+V<)+Z AL

2%k Cmow)
= 1 v ve(g)
= h. . 52
’+22kk' Qmaw) (52)

In the macroscopic limit, represented as i — 0 [24], the terms
in the sum in (52) tend to zero yielding

H,, — hy, h— 0. (53)

Alternatively, the dispersion (AQ), = +/fi/2mw) — 0 and
the exponent in the integral in (49) approaches the delta func-
tion §(x — (Q)y) = 8(x — q) producing (V(Q))y — V(q).

To summarize, we have formulated a consistent set of
dynamical equations for an arbitrary quantum nonlinear
oscillator that maintains the evolution on the coherent state
manifold. Because such evolution preserves minimal fluctu-
ations AQ and AP, the total Hamiltonian H,,, on I differs
from the Hamilton function of a classical nonlinear oscillator
with the same potential V (g) by the terms that are small in the
macroscopic limit. At the risk of repeating ourselves, let us
stress once again that during the evolution with the quantum
Hamiltonian of the oscillator (H )y with no constraints, the
quantum fluctuations AQ and A P can become large and thus
make Hamiltonian functions (H )y and h; quite different even
in the macroscopic limit.

For the system with more than one oscillator, which might
be nonlinear and interacting, the condition that A Qi and Aﬁi
are simultaneously minimal implies that each of the oscillators
is always in some pure H, coherent state |¢; (7)). Thus, the total
state |y (¢)) is always given by the tensor product of the single
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oscillator’s pure coherent states |V (¢)) = ®;|o;(?)), implying
for example

WOI101 ® Q2 (1) = (O1)ariry X (02 artr)
= q1(t) X q2(1). (54)

Suppression of quantum fluctuations for each oscillator’s
degree of freedom implies that the degrees of freedom of
different oscillators do not get entangled during the evolution.
This is enough to generalize the results of the single-oscillator
analysis to the general case of arbitrary number of interacting
oscillators with constraints.

We have formulated the constrained evolution of a quantum
system of oscillators with the corresponding constraints. In
general, the Hilbert space of a quantum system represents the
space of an irreducible representation of the corresponding
dynamical algebra g, which need not be the Heisenberg
algebra as it is in the case of oscillators. Nevertheless,
one could study the evolution of such a system with the
constraints analogous to (23). The constraint manifold of such
a system with a Lie dynamical algebra g should coincide
with the manifold of the corresponding g-generalized coherent
states [25-27].

IV. EQUIVALENCE RELATION AMONG THE QUANTUM
STATES

The fundamental quantum observables 0., P (i=
1,2, ...,n) define 2n functions (X|0;|X), (X|P;|X) on M.
Values that these functions take on the coherent states
parametrize the 2n-dimensional manifold of the coherent
states I'. Thus, the set of fundamental quantum observables
and the constrained manifold are seen to be in a one-to-one
relation.

We use the coherent states or the elementary quantum
observables Qi,ﬁi to define an equivalence relation on M.
Two general quantum states X| € M and X, € M are defined
to be equivalent, or physically indistinguishable, if each
fundamental quantum observable takes the same value in
X1 as in X5. Thus, X1 ~ X5 if ¢;(X1) = qi(X2), pi(X1) =
pi(Xy) (i = 1,2,...,n). An equivalent definition is that the
states X, are equivalent if there is a coherent state (g, p)
such that ¢;(X12) = qi(q,p) = qi, pi(X12) = pi(q,p) = pi
(i =1,2,...,n). Each equivalence class contains one and
only one coherent state, i.e., a state from the constraint
manifold I".

The quantum phase space M appears as a bundle over
the constraint manifold I' = M/~. T is even dimensional
and is parametrized by the values of only 2n independent
variables (gq;,p;), i = 1,2,...,n. ' inherits a symplectic
structure @ which is the pullback of the symplectic structure
Q on M. In fact I" is finite-dimensional symplectic man-
ifold and (g;,p;), i = 1,2,...,n are canonical coordinates.
Thus, the constraint manifold I' is the phase space of a
classical system of n oscillators. The constraints (40) then
force the quantum dynamics onto the classical phase space
and thus generate a Hamiltonian dynamical system on I'.
This is the way in which the phase space of a classical
mechanical system and the Hamiltonian dynamics on it
appear from the structure of the quantum mechanics. The
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resulting Hamiltonian system on I' is to be compared with
the system of classical oscillators with physically the same
potential.

We have seen that (a) the constrained manifold I' is
related to a certain equivalence relation on full quantum
phase space M and (b) I" has the phase-space structure of
a finite Hamiltonian dynamical system. We can distinguish
two dynamical systems on I' defined by Hamilton functions
H,,; restricted on I" and h;. Since AQ = /ii/2mw) = const
during the evolution defined by H,,; such evolution differs
from the dynamics generated by & by the terms which are
small in the macroscopic limit.

V. DISCUSSION

The presented picture where the constraints are seen as the
equivalence relation imposed on the quantum states suggests
a physical interpretation of the constrained Hamiltonian
system (I',w,H,,|r). The equivalence classes of quantum
states determine the corresponding quantum observables
that can be considered as physically distinguishable. Thus,
in the Hamiltonian system with constraints only functions
defined on I' are considered as physically distinguishable.
In other words, if two functions on M correspond to
two different operators but generate the same function on
I', the two operators should be considered as physically
indistinguishable. We see that imposing the constraint on
the quantum system in fact provides the mathematical rep-
resentation of a coarse-grained description of the quantum
system.

The coarse-grained description gives a system with the
kinematic properties of a classical Hamiltonian mechanical
system. Furthermore, dynamics of the constrained system is
such that the quantum fluctuations of fundamental observables
are constant and simultaneously minimal during the evolution.
In fact, one can identify a class of classical Hamiltonian
dynamical systems that is generated by the constrained
quantum system and that preserves the quantum fluctuations.
The systems in this class differ from each other by terms
that are arbitrarily small in the macroscopic limit. On the
contrary, the corresponding terms in the quantum Hamiltonian
system with no constraints, i.e., in the full-detail picture
without the coarse-graining, necessarily become large during
the evolution. They are responsible for the creation of typical
quantum superpositions.

It is well known that a generic Hamiltonian dynamical
system is not structurally stable; i.e., small perturbations
of the Hamilton function typically induce nonequivalent
phase portraits [28-30]. Thus, one can expect qualitative
differences between the quantum systems for large values of
the classicality parameter and the classical system. However,
this is the problem of any Hamiltonian theory as a framework
for robust modeling of dynamical phenomena, and is not
strictly related to the QC relation.

We see that the classical system appears because of (a) the
coarse-grained description of the quantum system and then
(b) the classical, i.e., macroscopic, limit. It is important to
note that the two factors, i.e., the coarse-graining and the
macroscopic limit, are independent and both are necessary
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(please see also [5,31]). The two factors, one leading to
the suppression of, i.e., impossible to observe, dynamically
created quantum coherences and the other involving the
macroscopic limit, also appear in other explanations of the
appearance of the classical world from the quantum, such as
in the theory of environmentally induced decoherence [2,3].

Finally, let us illustrate the independent roles played by the
macroscopic limit and the coarse-grained observation using
one more example. Consider a large collection of 1/2 spins
6',i=1,2,...,N. One can define collective quantum ob-
servables iy = Y, 6!/N, iy, =Y ;6}/N, m. =Y ,6!/N.
The macroscopic limit corresponds in this case to the limit of
large N. However, the macroscopic magnetizations m, , . =
(M) in general do not behave as classical variables.
Even if the initial state is such that Am,/m,, Am,/m,,
and Am;/m, are all small, the evolution might be such
that quite quickly these ratios become large, i.e., close to
unity [32]. This occurs if the Hamiltonian includes long-
range interactions, for example if H;,, = Zi, ; 6167, Thus,
the macroscopic limit alone does not imply the classical
behavior even for the selected set of global observables. This
has been nicely illustrated in [5,31] (please see also [32]). A
coarse-graining analogous to the one discussed in this paper
is also needed. One declares that the only states that are
physically measurable are necessarily such that Am,, Am,,
Am, are simultaneously minimal. The states satisfying this
condition are the SU(2) coherent states of the N-term direct
product representation. Such coarse-graining is equivalent to
the evolution constrained on the submanifold of these coherent
states so that all three dispersions are small during such
evolution. Notice that the coarse-graining also implies that
the eigenstates of the quantum collective variables 7, , .
are not among the physically measurable states. Equally, the
states corresponding to a superposition of states with very
different values of the macroscopic variables (#i, , ;) are not
physical.
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VI. SUMMARY

We have used the formulation of quantum dynamics in
the form of a Hamiltonian dynamical system to study the
relation between quantum and classical systems of nonlinear
interacting oscillators. The classical system has finite dimen-
sional phase space and the quantum system viewed as the
Hamiltonian system is infinite dimensional in an essential way.
Kinematical and dynamical properties of the classical system
are obtained from the quantum one via the two-step procedure
consisting of (a) coarse-graining and (b) macroscopic limit
h — 0. The coarse-graining is mathematically treated as an
equivalence relation on the set of quantum states, and as
a result emerges the classical phase space. The equivalence
relation imposes a constraint on the Hamiltonian dynamics of
the quantum system. The effect of the constraints is to preserve
constant and minimal quantum fluctuations of the canonical
observables. The formulation of the most appropriate finite
set of constraints that fulfill the goal is not straightforward,
and involves the nonlinear potential. The resulting constrained
Hamiltonian system on the constrained manifold represents
the coarse-grained description of the quantum system of
oscillators. The system differs from the classical system with
the same potential only in the terms that are arbitrarily small
in the macroscopic limit.

The procedure can be generalized to obtain other classical
systems from the corresponding coarse-grained quantum
systems in the corresponding macroscopic limit.
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