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Statistical ensembles in the Hamiltonian formulation of hybrid quantum-classical systems
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General statistical ensembles in the Hamiltonian formulation of hybrid quantum-classical systems are analyzed.
It is argued that arbitrary probability densities on the hybrid phase space must be considered as the class of possible
physically distinguishable statistical ensembles of hybrid systems. Nevertheless, statistical operators associated
with the hybrid system and with the quantum subsystem can be consistently defined. Dynamical equations for
the statistical operators representing the mixed states of the hybrid system and its quantum subsystem are derived
and analyzed. In particular, these equations irreducibly depend on the total probability density on the hybrid
phase space.
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Hybrid quantum-classical (QC) systems are neither quan-
tum nor classical. There is no unique generally accepted
theory of the QC systems, primarily because each of the
suggested theories has some unexpected or controversial
features [1–5]. Current technologies are sufficiently developed
to enable experimental studies of the interaction between
typically quantum and typically classical objects [6]. The
choice of the proper hybrid theory will ultimately depend on
the experimental tests, but such experiments require detailed
preliminary theoretical models. It is plausible to expect that the
interaction between the classical and the quantum subsystems
might introduce features that are not present either in the
quantum or in the classical subsystems without interaction (see
for example [1]). In this Brief Report we shall explore some
features of the hybrid system theory which is formulated using
the framework of Hamiltonian dynamical systems [1,2,7].

The Hamiltonian hybrid theory, as formulated for example
in Ref. [1], has many of the properties commonly expected of
a good hybrid theory. However, it also has some controversial
features concerning the class of mathematical objects that
should be interpreted as physical variables of the QC system.
Also, what should be mathematical objects that represent the
most general statistical ensembles of QC systems and the
corresponding mixtures of the quantum subsystems is not
trivially obvious and needs a careful discussion. Formally,
the problem is inherited from the surplus structure present
in the Hamiltonian formulation of the quantum mechanics. It
can be argued that what must be considered as nonphysical in
the Hamiltonian formulation of the standard linear quantum
mechanics might acquire physical meaning for the QC system
because of the presence of the classical subsystems and the
quantum-classical interaction.

In what follows we shall first briefly recapitulate the Hamil-
tonian formulation of quantum mechanics and of the hybrid
quantum-classical systems. Then we shall discuss possible
representation of general statistical ensembles of QC systems
within the Hamiltonian formulation. Statistical operator for
the QC system as well as conditional and unconditional
mixed states of the quantum subsystem corresponding to the
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general ensembles of the QC systems will be defined and their
evolution will be discussed.

Hamiltonian formulation of quantum mechanics.
Schrödinger dynamical equation on a Hilbert space H
generates a Hamiltonian dynamical system on an appropriate
symplectic manifold [8,9]. The real manifold M associated
with the Hilbert space H in fact has Riemannian and
symplectic structure, provided by the real and the imaginary
parts of the scalar product, and can be viewed as a phase space
of a Hamiltonian dynamical system, additionally equipped
with the Riemannian metric which reflects its quantum origin.
A vector |ψ〉 from H, associated with a pure quantum state,
is represented by the corresponding point in the phase space
M denoted by Xψ or simply by X.

Real coordinates {(xj ,yj ), j = 1,2, . . . } of a point ψ ∈
H ≡ M are introduced using expansion coefficients {cj , j =
1,2, . . . } in some basis {|j 〉, j = 1,2, . . . } of H as follows:

|ψ〉 =
∑

j

cj |j 〉, xj =
√

2 Re cj , yj =
√

2 Im cj . (1)

The coordinates (xj ,yj ) represent canonical coordinates of
a Hamiltonian dynamical system on M. Consequently, the
Poisson bracket between two functions F1 and F2 on M in the
canonical coordinates (xj ,yj ) is given by

{F1,F2}M = 1

h̄

∑
j

(
∂F1

∂xj

∂F2

∂yj

− ∂F2

∂xj

∂F1

∂yj

)
. (2)

A quantum observable Ĥ is represented by the corresponding
function of the form

H (Xψ ) = 〈ψ |Ĥ |ψ〉. (3)

Hamiltonian flows with the Hamilton’s function of the form (3)
generate isometries of the Riemannian metric. More general
Hamiltonian flows on M, corresponding to the Hamilton’s
function which are not of the form (3), do not generate
isometries and do not have the physical interpretation of
quantum observables. It can be seen easily that

{H1,H2}M = 1

ih̄
〈[Ĥ1,Ĥ2]〉. (4)

The Schrödinger evolution equation

ih̄|ψ̇〉 = Ĥ |ψ〉 (5)
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is equivalent to the Hamilton equations on M assuming the
standard form in the canonical coordinates (xj ,yj ),

ẋj = ∂H

∂yj

, ẏj = −∂H

∂xj

, (6)

with H given by Eq. (3).
The Hamiltonian formulation of the Schrödinger equation

on H automatically preserves the constraints imposed by
the physical equivalence of Hilbert space vectors. In fact,
Hamiltonian formulations based on H and on the projective
Hilbert space as the space of physical states are equivalent. We
use the formulation in which points of the quantum phase space
are identified with the vectors from H since it is sufficient for
our main purpose.

Mixed states of a quantum system in the Hamiltonian
formulation. A quantum state is in general represented by
the corresponding density operator ρ̂ on H. On the other
hand every positive function ρ(x,y) with unit integral on
M represents a density of some probability theory on M.
Expectation of a function F (x,y) with respect to ρ(x,y) is
given by

F̄ =
∫
M

ρ(x,y)F (x,y)dM, (7)

where dM is the Lebesque measure on M. The densities
satisfy Liouville equation on M,

∂

∂t
ρ(x,y; t) = {H (x,y),ρ(x,y; t)}M. (8)

Quantum-mechanical average of the observable F̂ in the state
ρ̂, Tr(ρ̂F̂ ), is reproduced with the formula (7) using any of
the probability densities ρ(x,y; t) with the same first moment
fixed by the requirement

ρ̂(t0) =
∫
M

ρ(x,y; t0)�̂(x,y)dM, (9)

where �̂(x,y) = |ψx,y〉〈ψx,y | and the state |ψx,y〉 ∈ H cor-
responds to the coordinates (x,y) of M. Liouville evolution
of the densities ρ(x,y; t) yielding the same ρ̂(t0) generates
the same von Neumann evolution ρ̂(t). The fact that the
quantum mixed state ρ̂ determines only an equivalence class of
densities, those with the appropriate first moment, is equivalent
to the nonuniqueness of the expansion of the quantum mixed
state in terms of convex combinations of pure state projectors.

Hamiltonian theory of hybrid systems. Hamiltonian theory
of hybrid quantum-classical systems can be developed starting
from the Hamiltonian formulation of a composite quantum
system and imposing a constraint that one of the components is
behaving as a classical system [7]. The result in the macro limit
imposed on the classical subsystem turns out to be equivalent
to a Cartesian product of two Hamiltonian systems as in
Ref. [1]. One of these Hamiltonian systems corresponds to the
quantum and the other one to the classical subsystem of the
hybrid. However, the interaction between the two subsystems
has crucial influence on their properties.

The phase space of the hybrid system M is considered
as a Cartesian product M = Mc × Mq of the classical
subsystem phase space Mc and of the quantum subsystem
phase space Mq . Denoting the local coordinates on the
product as (p,q,x,y), where (p,q) ∈ Mc and (x,y) ∈ Mq ,

one can write the evolution equations of the QC system as
Hamiltonian dynamical equations on the phase space M with
the Hamilton’s function comprised of three terms,

Ht (p,q,x,y) = Hc(p,q) + Hq(x,y) + Vint(p,q,x,y), (10)

where Hc is the Hamilton’s function of the classical subsystem,
Hq(x,y) of the form (3) is the Hamilton’s function of the quan-
tum subsystem and Vint(p,q,x,y) = 〈ψx,y |V̂int(p,q)|ψx,y〉,
where V̂int(p,q) is an operator in the Hilbert space of the quan-
tum subsystem which depends on the classical coordinates
(p,q) and describes the interaction between the subsystems.
The Poisson bracket on M of arbitrary functions of the local
coordinates (p,q,x,y) is defined as

{f1,f2}M =
k∑

i=1

(
∂f1

∂qi

∂f2

∂pi

− ∂f2

∂qi

∂f1

∂pi

)

+ 1

h̄

∑
j

(
∂f1

∂xj

∂f2

∂yj

− ∂f2

∂xj

∂f1

∂yj

)
. (11)

Thus, the Hamiltonian form of the QC dynamics on M as the
phase space reads

q̇ = {q,Ht }M, ṗ = {p,Ht }M, (12)

ẋ = {x,Ht }M, ẏ = {y,Ht }M, (13)

where the Hamilton’s function Ht (p,q,x,y) in local coordi-
nates on M is given by Eq. (10).

Statistical ensembles of QC systems and quantum sub-
systems. Consider a general probability density ρ(p,q,x,y)
on the total hybrid phase space M = Mc × Mq . There is
no reason to require such probability density to represent
a physical quantity or an observable of the QC system. If
such ρ(p,q,x,y) is a quadratic function of x,y then it is
equal to the quantum expectation in the corresponding state
|ψx,y〉 of an operator function f̂ρ(p,q), i.e., ρ(p,q,x,y) =
〈ψx,y |f̂ρ(p,q)|ψx,y〉, where for each fixed p,q the operator
f̂ρ(p,q) is a statistical operator on the Hilbert space of
the quantum subsystem. However, in general a probability
density of an arbitrary form ρ(p,q,x,y) describes a perfectly
legitimate statistical ensemble of QC systems. In general,
following the Hamiltonian formulation of the QC system
dynamics, the evolution of ρ(p,q,x,y; t) considered as a
statistical ensemble on M is given by the Liouville equation
with the Hamilton’s function (10) and the Poisson bracket (11),

∂

∂t
ρ(p,q,x,y; t) = {Ht (p,q,x,y),ρ(p,q,x,y; t)}M, (14)

i.e., ρ(p(t),q(t),x(t),y(t); t) = const when (p(t),q(t)) and
(x(t),y(t)) are determined from the Hamilton equations (12)
and (13), respectively. However, Liouville evolution of an
ensemble which is at t = t0 of the form 〈ψx,y |f̂ρ(p,q; t0)|ψx,y〉
will in general result in some probability density ρ(p,q,x,y; t)
which is not quadratic in x,y, i.e., cannot be expressed as
expectation of an operator. Therefore, it can be argued that the
most general statistical ensembles of QC systems need to be
represented by general probability densities ρ(p,q,x,y; t). We
shall therefore assume, in accordance with the Hamiltonian
theory, that an arbitrary probability density ρ(p,q,x,y; t)
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describes a statistical ensemble of QC systems, that is, a mixed
state of the hybrid, and that the evolution of such mixed states
is given by the corresponding Liouville equation.

Suppose a QC system is in a general mixed state
ρ(p,q,x,y; t). The density ρ(p,q,x,y; t) generates a unique
positive operator valued function (POVF):

ρ̂(p,q; t) =
∫
Mq

ρ(p,q,x,y; t)�̂(x,y)dMq, (15)

which can be called the hybrid statistical operator. ρ̂(p,q; t)
contains less information about the hybrid system state than the
density ρ(p,q,x,y; t), and plays a secondary role in the hybrid
theory presented here. The corresponding mixed state of the
quantum subsystem conditional on the classical subsystem
being in the state (p,q) is uniquely represented by

ρ̂p,q(t) = ρ̂(p,q; t)/
∫
Mq

ρ(p,q,x,y; t)dMq. (16)

The unconditional mixed state of the quantum subsystem of
the hybrid in the state ρ(p,q,x,y; t) is also uniquely obtained
as

ρ̂(t) =
∫
M

ρ(p,q,x,y; t)�̂(x,y)dM. (17)

At time t the previous formula defines positive, trace 1
operator, i.e., a statistical operator representing the mixed state
of the quantum subsystem. At any t the statistical operator ρ̂(t)
depends on the value of the subintegral expression at the same
time t . The Liouville evolution of ρ(p,q,x,y; t) is certainly
continuous in t and the dependence on t of ρ̂(t) given by
Eq. (17) is also continuous. Thus, the formula (17) defines a
continuous one-parameter family of statistical operators on H.

Analogously to the relation (9) valid for a purely quantum
system, many hybrid ensembles represented by different
ρ(p,q,x,y; t) have the quantum subsystem in the same
conditional or unconditional mixed state. The crucial differ-
ence between the purely quantum and the hybrid systems
is that we have assumed that each different ρ(p,q,x,y; t)
describes physically different ensembles of QC systems with
the quantum subsystem in the same mixed state. This will be
reflected in the evolution of (15) or (17). Recall that all different
ρ(x,y; t) in Eq. (9) with the same first moment correspond to
the physically equivalent quantum mixture ρ̂(t0), and generate
unique von Neumann evolution of ρ̂(t) which is obtained from
the Liouville evolution of any such ρ(x,y; t). Therefore, all
such ρ(x,y; t) are equivalent in the purely quantum case.
In the hybrid case, different ρ(p,q,x,y; t) which give the
same ρ̂(p,q; t0) [or ρ̂(t0)], as we shall see, generate different
evolution of ρ̂(p,q; t) [or ρ̂(t)] and thus must be considered
as physically different.

The evolution equation satisfied by ρ̂(p,q; t) can be ob-
tained from (14) and (15) using partial integration over (xj ,yj )
and the identities ∂F/∂xj = (〈ψx,y |F̂ |j 〉 + 〈j |F̂ |ψx,y〉)/

√
2,

∂F/∂yj = i(〈ψx,y |F̂ |j 〉 − 〈 j |F̂ |ψx,y〉)/
√

2, where F =
〈ψx,y |F̂ |ψx,y〉. The resulting equation is

∂ρ̂(p,q; t)

∂t
= 1

ih̄
[Ĥq +V̂int(p,q),ρ̂(p,q; t)]

+{Hc(p,q),ρ̂(p,q; t)}p,q

+
∫
Mq

{Vint(p,q,x,y),ρ(p,q,x,y; t)}p,q

× �̂(x,y)dMq. (18)

The solution of Eq. (18) remains a well defined statistical
operator onH for all t , which is a desirable property not shared
by some other hybrid system theories [4,5]. The equation for
the statistical operator of the quantum subsystem ρ̂(t) follows
after the integration over (p,q),

dρ̂(t)

dt
= 1

ih̄
[Ĥq,ρ̂(t)] + 1

ih̄

∫
Mc

[V̂int(p,q),ρ̂(p,q; t)]dMc

+
∫
Mc

{Hc(p,q),ρ̂(p,q; t)}p,qdMc

+
∫
M

{Vint(p,q,x,y),ρ(p,q,x,y; t)}p,q

× �̂(x,y)dM. (19)

The first term on the right side of Eq. (19) generates the unitary
part of the evolution. The other terms do not preserve the norm
of ρ̂(t), and are responsible for nonunitary effects. Notice
that the evolution of ρ̂(p,q; t) [ρ̂(t)] cannot be expressed
only in terms of ρ̂(p,q; t) [ρ̂(t)], but irreducibly involves the
probability density ρ(p,q,x,y; t).

Observe that taking different ρ ′(p,q,x,y; t) yielding the
same ρ̂ ′(p,q; t0) = ρ̂(p,q; t0) via (15) will in general generate
different ρ̂ ′(p,q; t) �= ρ̂(p,q; t). In other words, the states
of the quantum subsystem of a hybrid in different states
ρ(p,q,x,y; t) and ρ ′(p,q,x,y; t) might be the same at some
moment t0, but will inevitably evolve differently. This is
natural since the corresponding evolution equation (18) for
ρ̂(p,q; t) must depend on the evolution of the entire QC
system. In particular, one might adjust the total initial ensemble
of the hybrid so that the evolution of the quantum subsystem
from a fixed initial mixture ρ̂(t0) has different properties,
without altering the Hamiltonian. Experimental observation
of different evolutions of the same initial quantum state
ρ̂(p,q; t0), obtained from multiple ρ(p,q,x,y; t) that are
different functions of (x,y), would provide a confirmation
of our main assumption concerning the class of physically
distinguishable ensembles of hybrid QC systems.

Summary and discussion. In summary, we have explored
some of the consequences of the assumption that in the
Hamiltonian formulation the set of ensembles of hybrid
quantum-classical systems is mathematically represented by
the space of probability densities on the hybrid system phase
space. Each such ensemble uniquely determines a conditional
and an unconditional mixed state of the quantum subsystem
represented by the corresponding density operators on the
quantum subsystem Hilbert space. Evolution of the quantum
subsystem mixtures is defined using the evolution of the
hybrid probability density. Different hybrid ensembles might
give the same quantum subsystem mixture at some time
t0, but that quantum mixture obtained from different hybrid
ensembles will evolve differently. The evolution equations
for the hybrid statistical operator ρ̂(p,q; t) (18) and for the
quantum subsystem unconditional mixture ρ̂(t) (19) have been
derived and inevitably involve the full density ρ(p,q,x,y; t).

034104-3



BRIEF REPORTS PHYSICAL REVIEW A 86, 034104 (2012)

The initial assumption about the mathematical objects
needed to represent all physically possible ensembles of
hybrid systems in fact assumes that the ensembles of possibly
interacting quantum-classical systems are more general than
ensembles of quantum-classical systems without the interac-
tion between the subsystems. In the latter situation a set of
densities on the hybrid phase space that is invariant under the
evolution can be chosen to contain only functions that are
necessary of quadratic dependence on the quantum degrees of
freedom. However, if the quantum and the classical subsystem
interact then the invariant set of densities is in general the
full set of probability densities on the hybrid phase space.

We have shown how such a general set of hybrid ensembles
generates consistently defined quantum-mechanical mixtures
of the quantum subsystem with the corresponding evolution
equations reflecting the quantum-classical interaction. The
interaction implies that the evolution of the quantum sub-
system statistical operator shows explicit dependence on the
equivalent representations of the initial density operator.

This work was supported by the Ministry of Science and
Education of the Republic of Serbia, Contracts No. 171006,
No. 171017, No. 171020, No. 171028, and No. 171038, and
by COST (Action MP1006).

[1] H-T. Elze, Phys. Rev. A 85, 052109 (2012).
[2] Q. Zhang and B. Wu, Phys. Rev. Lett. 97, 190401 (2006).
[3] M. J. W. Hall, Phys. Rev. A 78, 042104 (2008); L. L. Salcedo,

Phys. Rev. Lett. 90, 118901 (2003); A. Peres and D. R. Terno,
Phys. Rev. A 63, 022101 (2001); L. Diósi, N. Gisin, and W. T.
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