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Hybrid quantum-classical model of quantum measurements
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Two types of Hamiltonian hybrid quantum-classical theories are considered as potential models of the quantum
measurement process. The two theories have the same Hamiltonian dynamics but differ in the association of
states of the quantum system with states of the hybrid model. In the first type of association pure quantum states
are modeled by pure states of the hybrid, while in the second type the pure quantum states are modeled by
statistical mixtures of the hybrid pure states. It is shown that the second of the two theories describes correctly
the quantum measurement while the first provides only an averaged description.
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The first phenomenological model of the measurement
process in quantum mechanics (QM), which is mathematically
explicit and rigorous, was given by von Neumann [1]. The
model postulates mathematical form of the change under-
gone by the state vector of the system composed by the
measurement apparatus (A) and the measured system (S),
when an ideal measurement of a physical quantity, represented
by a Hermitian operator, is performed. The type of change
experienced by the system + apparatus (SA) state vector in
the measurement process is called the collapse of the state
vector and is qualitatively different from any other dynamical
process occurring in an isolated quantum system. If the state
vector is interpreted as a real property of the SA system, and
with other standard axioms of the von Neumann type, the
special status of the collapse process among all other physical
processes demands an explanation. Many attempts have been
made to provide at least an approximate description of the
state vector collapse in terms of usual dynamical processes
in a SA system [2,3]. One type of attempt to model quantum
measurement, if not explain it, considers the SA system as
a novel kind of so-called hybrid quantum-classical systems.
Such models start with an isolated quantum system S and
an isolated classical system A, which are then allowed to
interact and form the hybrid SA system, with its own type
of states and the corresponding hybrid dynamics. Hybrid
systems are interesting independent of their application in
modeling the measurement, and several hybrid theories have
been proposed (for a recent review, see Ref. [4]). Some of the
suggested hybrid theories are mathematically inconsistent, and
“no-go” theorems have been formulated [5], suggesting that
no consistent hybrid theory can be formulated. Nevertheless,
mathematically consistent hybrid theories exist [4,6–8].

The goal of this communication is to compare descrip-
tions of the quantum measurement in two mathematically
consistent theories of hybrid quantum-classical systems. The
dynamics in the two theories is the same and is described
in terms of Hamiltonian dynamical systems, as for example in
Refs. [4,9–11]. However, the association of states of the hybrid
SA system with the states of the quantum SA system is
different in the two hybrid theories, and due to this difference
one of the hybrid theories gives a good model of the quantum
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measurement while the other theory provides only an averaged
result. Let us stress right at the beginning that we treat the
description provided by a hybrid theory as a convenient model
of the quantum measurement, and we take no stance as to the
ontological status of such hybrid model.

The hybrid theories to be discussed belong to the class
of hybrid theories that are derived by considering part A
of a bipartite quantum system SA as classical. These types
of hybrid theories are formulated by giving two rules, one
concerning the states of the hybrid and one concerning the
hybrid dynamics. The state association rule explains how
quantum states of the quantum SA system are modeled by
states of the hybrid SA system. The hybrid dynamics rule
fixes the dynamics of the hybrid SA system that models the
Schrödinger dynamics of the quantum SA system. The hybrid
theory is compatible with QM dynamics if the Schrödinger
evolution of a quantum SA state followed by an application
of the state association rule gives the same hybrid state as the
state association applied on the initial quantum state followed
by the hybrid dynamics. Pictorially, the two routes indicated
in Fig. 1 end up in the same hybrid state. Let us point out that
a hybrid theory might be compatible with QM only for certain
types of dynamics or only over a certain type of states, and that
here we are interested only in hybrid modeling of the quantum
measurement process. The two hybrid theories considered are
compatible with QM for the type of dynamics involved in the
measurement process. We first present the hybrid dynamics,
which is the same in both hybrid theories discussed, and then
explain the state association rules of the two theories.

Hamiltonian evolution. Hamiltonian theory of the hybrid
SA model is based on the mathematical possibility of describ-
ing the Hilbert space quantum mechanics as a Hamiltonian
dynamical system. This Hamiltonian formulation of quantum
mechanics has been described in many publications [12]
and is repeated here. Necessary notation is be introduced
and explained when needed. The hybrid theory is developed
starting from the Hamiltonian formulation of a composite
quantum SA system and imposing a constraint that one of
the components, A, is behaving through the entire evolution
as a classical system [10], in the sense that the total quantum
fluctuation of the basic A observables Q̂ and P̂ in pure hybrid
states is kept constant and minimal throughout the entire
evolution. The evolution of pure states of the total SA hybrid
system is described by Hamiltonian dynamical equation, and
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FIG. 1. Illustration of the compatibility of a hybrid model
description with quantum SA dynamics. The sequence of operations
consisting of the Schrödinger evolution followed by the application
of the rule of state association (RSA) gives the same hybrid state as
the one obtained through the state association followed by the hybrid
evolution. The hybrid states ρψ (t0) and ρψ (t) can be pure or statistical
mixtures depending on the RSA and/or hybrid dynamics.

the subsystem A, in the appropriate macrolimit, behaves as a
classical system.

The real symplectic phase space of the hybrid system MSA

is given by the Cartesian product MSA = MS × MA of the
S subsystem phase space MS and of the A subsystem phase
space MA. The manifold MA is isomorphic to the manifold
of A coherent states {|q,p〉}, and MS is the real symplectic
phase space of the S system corresponding to the Hilbert space
HS . Local canonical coordinates on the product are denoted
{x,y,p,q}.

The Poisson bracket on MSA of arbitrary functions of the
local coordinates (x,y,q,p) is defined as

{f1,f2}MSA
=

nA∑
i=1

(
∂f1

∂qi

∂f2

∂pi

− ∂f2

∂qi

∂f1

∂pi

)

+
nS∑
j

(
∂f1

∂xj

∂f2

∂yj

− ∂f2

∂xj

∂f1

∂yj

)
(1)

where nA and nS are numbers of A and S degrees of freedom
respectively.

The Hamilton’s function is in general comprised of three
terms, Ht (x,y,q,p) = HA(q,p) + HS(x,y) + Vint(x,y,q,p).
Here HA is the Hamilton’s function of the A subsystem and
HS(x,y) = 〈ĤS〉 is the Hamilton’s function of the S sub-
system. The function Vint(x,y,q,p) = 〈ψx,y |V̂int(q,p)|ψx,y〉,
where V̂int(q,p) is an operator in the Hilbert space of the
S subsystem which depends on the A coordinates (p,q),
describes the interaction between the subsystems. For ex-
ample, a common toy model of the SA premeasurement
interaction, with HS = 0 and HA = 0 and the interaction
given by g(t)ÂP̂ where P̂ is the observable conjugated to
the pointer observable Q̂, is represented by the function
Vint(x,y,q,p) = g(t)〈Â〉〈p,q|P̂ |p,q〉 = g(t)〈Â〉p.

The Hamiltonian dynamical equations for functions of pure
states f (x,y,p,q) of the hybrid are

ḟ (x,y,q,p) = {f (x,y,q,p),Ht (x,y,q,p)}MSA
, (2)

and probability densities on MSA, representing mixed states
of the hybrid, evolve according to the Liouville equation [11]

ρ̇(x,y,q,p) = {Ht (x,y,q,p),ρ(x,y,q,p)}MSA
. (3)

Correspondence between states of the quantum system and
the hybrid model. The two hybrid theories that we discuss
here have the same Hamiltonian dynamics of pure (2) and

mixed states (3). However, the states of the hybrid SA system
modeling a state of the quantum SA system are different in
the two hybrid theories. In the first theory, a pure state of the
quantum system is modeled by the corresponding pure state of
the hybrid, and in the second theory a pure state of the quantum
system is modeled by the corresponding mixed state of the
hybrid. However, both state association rules have the property
that the expectation values of the canonical observables Q̂,P̂

of a system A in a state of the quantum SA system are the same
as the expectations in the associated hybrid state of classically
behaving variables q,p.

The first type of state association, which we call type I, is
given by the following rule:

|ψ〉SA =
∑

i

|ψi〉S ⊗ |φi〉A

−→ δ
(
x − xψs

)
δ
(
y − yψs

)
δ(q − qa)δ(p − pa) (4)

Pure quantum state of a general form on the left of
Eq. (4) is modeled by the corresponding point (xψs

,yψs
,qa,pa)

from MSA. The point represents pure separable state
〈qa,pa|ψ〉SA ⊗ |qa,pa〉 ≡ |ψs〉 ⊗ |qa,pa〉 with the property
that the coordinates of the |ψ〉SA-dependent coherent state
|qa,pa〉 of the system A are such that the expectations of basic
operators of the apparatus Q̂ and P̂ in the entangled state |ψ〉SA

and in the separable state 〈qa,pa|ψ〉 ⊗ |qa,pa〉 are the same
and equal to 〈Q̂〉 = qa,〈P̂ 〉 = pa . The state |ψ〉S is explicitly
given by |ψ〉S = ∑

i ci〈qa,pa|ψi〉A|ai〉.
Such association between pure states of the quantum system

and the hybrid model is consistent with the constraint that
A behaves as a classical system and implies that there is
no entanglement between S and A, but no restriction on the
entanglement in S is imposed. This hybrid theory was studied,
for example, in Refs. [4,10,11,13].

The association between states of the quantum and the
hybrid systems in the second hybrid theory is based on the
argument that predictions of quantum mechanics are statistical
even if the quantum system is in a pure state. Therefore,
predictions of the hybrid model should also be statistical.
Hence, the state of the hybrid modeling a pure quantum state
should be a proper statistical mixture of the pure states of the
hybrid. We define such a rule in general, and call it type II, and
then illustrate the rule using as examples the states relevant in
the measurement process:

|ψ〉SA =
∑

i

|ψi〉S ⊗ |φi〉A

−→
∑

i

|ci |2δ(x − xi)δ(y − yi)δ(q − 〈q〉φiA
)

× δ(p − 〈p〉φiA
). (5)

By definition, the state of the hybrid SA modeling the quantum
state |ψ〉SA is the statistical mixture of pure hybrid states
(xi,yi,〈q〉φiA

,〈p〉φiA
) with statistical weights |ci |2.

As the first example, consider a separable quantum
SA state |ψ〉 = |ψ〉S ⊗ |φ〉A = (

∑
i |〈ai |ψ〉S |ai >S) ⊗ |φ〉A,

where |ai〉 are the eigenstates of the measured observable.
Notice that the state of the S subsystem is represented in the
eigenbases of the S part of the Hamiltonian, which is in the
case of the premeasurement just the measured observable Â.
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The type II associated hybrid state is the following mixed state
on MSA:

ρψ (x,y,q,p) =
∑

i

|〈ai |ψ〉S |2δ(x − xi)

× δ(y − yi)δ(q − qa)δ(p − pa), (6)

where qa = 〈φA|Q̂|φA〉, pa = 〈φA|P̂ |φA〉. In the case of a
macroscopic A system already set in one of its coherent states
|q0,p0〉, the hybrid mixture (6) is given by

ρψ (x,y,q,p) =
∑

i

|〈ai |ψ〉S |2δ(x − xi)

× δ(y − yi)δ(q − q0)δ(p − p0). (7)

This is a statistical mixture of pure hybrid states δ(x −
xi)δ(y − yi)δ(q − q0)δ(p − p0) with probabilities |〈ai |ψ〉S |2.

Consider now an entangled state of the quantum SA system
of the following form: |ψ〉SA = ∑

i ci |ai〉S ⊗ |qi,p0〉. Such
states appear as the result of the premeasurement interaction
between S and A where |ai〉 are the eigenstates of the measured
observable and |qi,p0〉 are the relative coherent states of the
apparatus. The hybrid state, in the macrolimit applied on the
A system, is by definition given by the following density on
MSA:

ρψ (x,y,q,p) =
∑

i

|ci |2δ(x − xi)

× δ(y − yi)δ(q − qi)δ(p − p0). (8)

The state of the hybrid SA modeling this quantum state is
the statistical mixture of pure hybrid states (xi,yi,qi,p0) with
statistical weights |ci |2.

Dispersions of Q̂ and P̂ in the hybrid mixed state can
be large, but this is a consequence of the classical statistical
indeterminacy of the apparatus state. This is guaranteed to be
the case for all times because of the constrained Hamiltonian
evolution. Dispersions of the observables of the S system
which do not commute with the Hamiltonian are of the
classical statistical but also of the quantum nature. However,
the hybrid system is always in some state with a sharp value of
the S part of the Hamiltonian or the measured observable.
Which such state the hybrid is in can only be specified
with some probability, and the mixed state is understood as
representing a statistical ensemble. Like in the type I rule, there
is no entanglement between S and A systems. The possibility
of entanglement between S degrees of freedom depends on the
type of interaction between S and A systems.

The hybrid dynamics (2) and (3) and the state associations
of type I (4) and type II (5) are introduced here independently
of each other. However, as was pointed out, if the hybrid
theory is considered as a model of some bipartite quantum
system with one part behaving as classical, then the state
association and dynamics must be compatible in the sense
of Fig. 1. Compatibility of type I and II state association rules
with the dynamics (2) and (3) is demonstrated for the special
type of dynamics modeling the premeasurement process.

Hybrid models of a quantum measurement. We now discuss
descriptions of the quantum measurement provided by the
two hybrid models. We consider the S system to be a qubit,
the measured observable to be σ̂z, and the apparatus to be
a free one-dimensional (1D) particle. The premeasurement

Hamiltonian is Ĥint = μσ̂zP̂ . The SA system is initially set in
the state |ψ〉0 = ∑

i ci |σz〉i ⊗ |q0,p0〉A, where i = +,− and
|σz〉± are the eigenstates of σ̂z. The quantum premeasurement
process results in the entangled state:

∑
i ci |σz〉i ⊗ |q0 −

μt〈σ̂z〉i ,p0〉A. The interaction is such that the manifold of
A coherent states is invariant. Of course, the duration of the
premeasurement is considered finite and short.

The corresponding hybrid Hamiltonian is Ht = μp(y2
1 −

y2
2 + x2

1 − x2
2 )/2 where x1,x2,y1,y2 are the canonical coordi-

nates in qubit phase space R4 associated with the Hilbert space
C2. Hybrid equations of motion in the Hamiltonian form are

ẋ1 = pμy1, ẏ1 = −pμx1 ẋ2 = −pμy2, ẏ2 = pμx2,

q̇ = μ
(
y2

1 − y2
2 + x2

1 − x2
2

)/
2 ṗ = 0. (9)

The solutions of these equations are such that 〈σ̂z〉 = (y2
1 −

y2
2 + x2

1 − x2
2 )/2 = const = 〈σ̂z〉0, p = p0 and q(t) = q0 +

μt 〈σ̂z〉0. In what follows we conveniently denote the solution
q(t) by q(t ; 〈σ̂z〉0) since it depends on 〈σ̂z〉0.

Type I association is compatible with the hybrid and
quantum descriptions of the premeasurement dynamics. A
pure hybrid state (x1,y1,x2,y2,q,p)0 is associated with the
initial quantum state |ψ〉0 = |ψ0〉S ⊗ |q0,p0〉A by the type I
rule. The final hybrid state (x1,y1,x2,y2,q,p)t , given by the
solutions of Eq. (9), is associated by the type I rule with
the quantum result of the premeasurement, which is the en-
tangled pure state |ψ(t)〉 = 〈σz+|φ0〉|σz+〉 ⊗ |q0 − μt,p0〉 +
〈σz−|φ0〉|σz−〉 ⊗ |q0 + μt,p0〉. From Eq. (9) we see that the
type I rule and the hybrid dynamics establish correlation
between the value q(t ; 〈σ̂z〉0) of the pointer observable and
the expectation of the measured observable in the initial state
〈σ̂z〉0. Thus, type I theory, as it stands, does not reproduce the
results of a single measurement for arbitrary initial states (the
same result but with different basic motivation was obtained
in Ref. [13]).

Consider the hybrid theory with the type II association. The
quantum initial state and the final state are the same as before,
and the hybrid dynamics is also determined by Eq. (9). The
initial hybrid state is the mixed state represented by

ρ(x,y,q,p; t0) = p+δ(〈σ̂z〉 − 〈σ̂z+〉)δ(q − q0)δ(p − p0)

+p−δ(〈σ̂z〉 − 〈σ̂z−〉)δ(q − q0)δ(p − p0),

(10)

where the notation is somewhat imprecise but is quite
obvious and suggestive. This state, evolved by the Hamiltonian
Ht = μp〈σ̂z〉, is transformed into the mixed state

ρ(x,y,q,p; t)

= p+δ(〈σ̂z〉 − 〈σ̂z+〉)δ(q(t ; 〈σ̂z〉) − q0)δ(p0 − p0)

+p−δ(〈σ̂z〉 − 〈σ̂z−〉)δ(q(t ; 〈σ̂z〉) − q0)δ(p0 − p0), (11)

where the solutions of Eq. (9) are used. This is equivalent to

ρ(x,y,q,p; t)

= p+δ(〈σ̂z〉 − 〈σ̂z+〉)δ(q(t ; 〈σ̂z+〉) − q0)δ(p0 − p0)

+p−δ(〈σ̂z〉 − 〈σ̂z−〉)δ(q(t ; 〈σ̂z−〉) − q0)δ(p0 − p0). (12)

Equation (12) is just the hybrid state associated by the type II
rule with the entangled quantum state, which appears as
the result of the quantum premeasurement evolution. This
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demonstrates compatibility of the type II rule with the quantum
and hybrid descriptions of the premeasurement dynamics.
The final state of the hybrid SA system is a classical
statistical mixture of pure SA states. In each of these pure
states the pointer variable of the apparatus corresponds to
an eigenvalue, either 〈σ̂z+〉 or 〈σ̂z−〉. This is just the result
of an ideal σ̂z measurement. Statistical mixture is here a
consequence of the initial incomplete knowledge represented
by the initial mixture of hybrid pure states. Thus, Hamiltonian
model of the hybrid dynamics with the type II rule for
the state modeling successfully describes the measurement
process.

In summary, we have studied description of the quantum
measurement process in two hybrid theories. The hybrid
theories have the same dynamics but differ in the rules that
associate a state of the hybrid system with the state of the
quantum system. The type I rule associates pure hybrid states
with a pure quantum state. The type II rule associates statistical
mixtures of hybrid pure state with pure quantum states. It

is motivated by the fact that the predictions of a quantum
system are statistical even when it is in a pure state and
therefore the corresponding state of the hybrid system must
also give statistical predictions. It is shown that the hybrid
theory with the type II association rule correctly models the
measurement process while the hybrid theory with the same
dynamics but with the type I association models only averaged
results of measurements. Nevertheless, it might be possible,
as it seems to be indicated in Ref. [13], to supplement the
type I hybrid theory with an additional decoherence process,
caused perhaps by macroscopic features of the apparatus and
occurring before the premeasurement, which would then imply
the postmeasurement hybrid state similar to the result of the
type II hybrid theory.
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38, 19 (2001); N. Burić, Ann. Phys. (NY) 323, 17 (2008).

[13] H.-T. Elze, Int. J. Quantum Inform. 10, 1241012 (2012).

054101-4

http://dx.doi.org/10.1016/j.physrep.2012.11.001
http://dx.doi.org/10.1016/j.physrep.2012.11.001
http://dx.doi.org/10.1103/PhysRevA.85.052109
http://dx.doi.org/10.1103/PhysRevA.85.022127
http://dx.doi.org/10.1103/PhysRevA.61.022108
http://dx.doi.org/10.1103/PhysRevA.61.022108
http://dx.doi.org/10.1103/PhysRevA.78.042104
http://dx.doi.org/10.1103/PhysRevA.72.062109
http://dx.doi.org/10.1103/PhysRevA.72.062109
http://dx.doi.org/10.1103/PhysRevA.86.042120
http://dx.doi.org/10.1103/PhysRevLett.94.140402
http://dx.doi.org/10.1103/PhysRevA.85.064101
http://dx.doi.org/10.1103/PhysRevA.85.064101
http://dx.doi.org/10.1103/PhysRevA.86.034104
http://dx.doi.org/10.1007/BF01940762
http://dx.doi.org/10.1103/PhysRevD.31.1341
http://dx.doi.org/10.1016/S0393-0440(00)00052-8
http://dx.doi.org/10.1016/S0393-0440(00)00052-8
http://dx.doi.org/10.1016/j.aop.2007.04.019
http://dx.doi.org/10.1142/S0219749912410122



