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Dipolar Bose-Einstein condensates in weak anisotropic disorder
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Here we study properties of a homogeneous dipolar Bose-Einstein condensate in a weak anisotropic random
potential with Lorentzian correlation at zero temperature. To this end we solve perturbatively the Gross-Pitaevskii
equation to second order in the random potential strength and obtain analytic results for the disorder ensemble
averages of both the condensate and the superfluid depletion, the equation of state, and the sound velocity. For
a pure contact interaction and a vanishing correlation length, we reproduce the seminal results of Huang and
Meng, which were originally derived within a Bogoliubov theory around a disorder-averaged background field.
For dipolar interaction and isotropic Lorentzian-correlated disorder, we obtain results which are qualitatively
similar to the case of an isotropic Gaussian-correlated disorder. In the case of an anisotropic disorder, the physical
observables show characteristic anisotropies which arise from the formation of fragmented dipolar condensates
in the local minima of the disorder potential.
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I. INTRODUCTION

Since the realization of Bose-Einstein condensates (BECs)
in 1995 [1,2] there was significant interest regarding the effects
of the disordered potentials on the properties of ultracold
quantum gases [3]. The reason for this is not only because
of the unavoidable irregularities in the trapping potential
induced by wire imperfections [4,5], but also due to the
fact that disorder can be generated and controlled using laser
speckles [6,7]. It is well known that cold atoms are a promising
tool for simulating other physical systems [8] in the sense of
Feynman’s quantum simulator [9]. This applies also to the
phenomenon of Anderson localization, which was originally
used to microscopically describe the absence of diffusion
in terms of disorder [10]. It has a clear BEC analog [11],
which has been directly observed [7,12]. Also, localization
inside BECs due to disorder created by atomic impurities on
a lattice was studied theoretically [13] and recently observed
experimentally [14].

For a theoretical analysis of global dirty boson properties,
different methods have been used to describe various limits,
ranging from the Bogoliubov theory [15–23], numerical ap-
proaches [24–27], to the Parisi replica method [28–32]. It turns
out that long-range correlations within both the condensate
and the superfluid remain, despite the presence of disorder.
However, both quantities are depleted due to the localization of
fragmented condensates in the local disorder potential minima.
For a strong enough disorder in a homogeneous system, the
depletion increases to such an extent that even a critical dis-
order strength exists above which a Bose-glass phase appears,
consisting only of localized minicondensates [33–38]. Effects
of disorder were also studied for harmonically trapped BECs
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[35,37,39,40] and BECs in optical lattices [20,23,30,41–43],
while the temperature behavior of dirty boson properties was
examined in Refs. [15,19,28,32,38,39,42,44].

Realization of atomic dipolar BECs [45–47] with long-
range anisotropic interaction has generated large interest in
the theory of dipolar quantum gases [48–56]. Increase in the
strength of dipolar interaction is possible by substituting atoms
with magnetic dipoles by heteronuclear molecules, which have
a strong electric dipolar moment in the rovibrational ground
state [57], or by inducing radiative coupling by placing dipoles
into a resonator [58]. Dipolar condensates were studied in the
case of isotropic disorder [36,59], which yields characteristic
anisotropies for both the superfluid density and the sound
velocity at zero temperature due to the anisotropy of the
dipolar interaction. Although a 3D isotropic laser speckle
potential has recently been proposed in Ref. [60], the typical
disorder realized in experiments is cylindrically symmetric
and, to the best of our knowledge, it has so far been examined
only numerically for contact interaction [61,62]. Therefore,
motivated by the experiments with dipolar BECs in anisotropic
disorder potentials, we develop in this paper a mean-field
theory and analytically study the impact of a weak anisotropic
disorder on physical properties of a polarized dipolar BEC at
zero temperature.

To this end we proceed as follows. Following the approach
developed in Ref. [59], in Sec. II we calculate the lowest-order
corrections of BEC properties due to the presence of disorder
within a mean-field theory. For the sake of generality we
consider an arbitrary two-particle interaction and a general
disorder correlation function. In Sec. III we specialize the
developed formalism to dipolar interaction and a Lorentzian-
correlated disorder in Fourier space. This yields for both
the superfluid density and the sound velocity characteristic
anisotropies, which should be measurable in an experiment.
In Sec. IV we present our conclusions and outlook for further
related research. Finally, the Appendix gives analytical results
for the condensate depletion and the disorder correction to the
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chemical potential, while the Supplemental Material [63] gives
complete analytical results for the disorder correction of both
the superfluid density and the sound velocity for the general
case of a BEC with contact and dipole-dipole interaction in an
anisotropic, Lorentzian-correlated disorder.

II. MEAN-FIELD APPROACH FOR WEAK DISORDER

Bogoliubov quasiparticles and disorder-induced fluctua-
tions decouple in the lowest order [15–23], suggesting that
disorder corrections can be calculated at zero temperature
by neglecting quantum fluctuations and using a mean-field
macroscopic wave function ψ(r) governed by the time-
independent Gross-Pitaevskii (GP) equation:(

− h̄2

2m
� +

∫
d3r ′ V (r − r′)ψ∗(r′)ψ(r′)

+U (r) − μ

)
ψ(r) = 0 . (1)

Here m stands for the particle mass, μ denotes the chemical
potential, V (r − r′) represents an arbitrary two-body potential,
while U (r) describes an external disorder potential. Denot-
ing the disorder ensemble average as 〈 • 〉, a homogeneous
disordered system can be described, without any loss of
generality, by a vanishing mean value 〈U (r)〉 = 0 and an
arbitrary correlation function

〈U (r)U (r′)〉 = R(r − r′) . (2)

In this section we present in detail a perturbative theory, which
was developed earlier in Ref. [59], and calculate disorder
corrections to the order parameter, the condensate depletion,
the chemical potential, the superfluid depletion, and the sound
velocity. The range of validity of this perturbation theory is
limited by standard requirements for a mean-field approach:
dilute, weakly interacting BEC at low temperatures, when
quantum fluctuations can be neglected. The perturbation ex-
pansion is performed with respect to the disorder strength, thus
the disorder potential has to be sufficiently small compared to
the chemical potential, i.e., U (r) � μ.

We start with the observation that the GP Eq. (1) represents
a stochastic nonlinear partial differential equation, where the
statistics of the condensate wave function ψ(r) is governed by

the statistics of the disorder potential U (r) [33]. Since ψ(r)
describes the macroscopic occupation of the ground state, we
assume it to be real without loss of generality. In addition to
the statistical properties of the random potential we will also
assume that the macroscopic value of some physical quantity
Amac, obtained by coarse graining of a microscopic quantity
A(r) over a large volume V , gives the same result as the
disorder ensemble average, namely,

Amac = 1

V

∫
V

d3r A(r) = 〈A〉 . (3)

Here the length of the coarse graining � ∼ V 1/3 is assumed
to be larger than both the correlation length σ of the disorder
potential U (r) and the healing length ξ = h̄/

√
2mng, which

represents the characteristic distance at which the condensate
wave function responds to some perturbation in the external
potential:

� 	 σ,ξ. (4)

In the definition of the healing length n represents the density
of the fluid and g = 4πh̄2as/m denotes the strength of the
short-range interaction part of the two-particle interaction
potential V (r − r′) = gδ(r − r′) + · · · , expressed in terms of
the s-wave scattering length as .

We consider the case of a sufficiently small random poten-
tial U (r) � μ ≈ gn, when the perturbative decomposition of
the wave function of the system is justified:

ψ(r) = ψ0(r) + ψ1(r) + ψ2(r) + · · · , (5)

where ψl(r) corresponds to the correction of the wave function
of order l in the disorder. Solving the GP equation (1) in the
zeroth order of U (r) gives

ψ2
0 = μ

V (k = 0)
, (6)

whereas the first-order correction is straightforwardly calcu-
lated and its Fourier transform reads

ψ1(k) = − ψ0U (k)
h̄2k2

2m
+ 2ψ2

0 V (k)
. (7)

We note that its disorder ensemble average vanishes. Therefore
we also have to determine the second-order result, which turns
out to be

ψ2(k) = −
∫

d3k′

(2π )3

U (k − k′)ψ1(k′) + ψ0[2V (k′) + V (k)]ψ1(k′)ψ1(k − k′)
h̄2k2

2m
+ 2ψ2

0 V (k)
. (8)

The results obtained in Refs. [21,64] can be considered as
special cases of the above general approach. For instance,
we point out that Sec. II of Ref. [21] contains a discrete
version of Eqs. (5)–(7) for the case of pure contact inter-
action, which is here generalized to an arbitrary two-body
interaction. Note that the second-order correction (8) is
slightly different since we take the chemical potential to be
constant, whereas in Ref. [21] the density is taken to be
constant.

In the following sections we use the above-outlined system-
atic perturbative approach [59] and calculate several physical
properties of the dirty BEC and their respective disorder
corrections.

A. Order parameter and condensate depletion

In analogy to quantum field theory, the one-particle density
matrix is defined as 〈ψ(r)ψ(r′)〉 [38]. The macroscopic fluid
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density is the diagonal part of the one-particle density matrix
according to n = 〈ψ2(r)〉, whereas the condensate density is
usually defined as the off-diagonal long-range order (ODLRO)
parameter via [38],

n0 = lim
|r−r′|→∞

〈ψ(r)ψ(r′)〉 . (9)

Performing the coarse graining of the one-particle density
matrix 〈ψ(r)ψ(r′)〉 over the fixed volume V before taking
the limit does not change the result,

n0 = lim
|r−r′|→∞

1

V 2

∫
V ⊗V

d3r1d
3r2 〈ψ(r + r1)ψ(r′ + r2)〉.

(10)

The integration commutes with the disorder ensemble average
and using Eq. (3), we obtain

n0 = 〈〈ψ(r)〉〈ψ(r′)〉〉 = 〈ψ(r)〉2. (11)

The last equality follows from the fact that the average of
an already-averaged expression can be omitted. Therefore the
depletion of the condensate due to disorder, which is defined as
n − n0 = 〈ψ2〉 − 〈ψ〉2, is simply identified with the variance
of the wave function. Physically, this condensate depletion
is due to the formation of fragmented condensates in the
respective local minima of the random potential. Defining
a separate Bose-glass order parameter by considering the
ODLRO parameter of the two-particle density matrix [38],

(n0 + q)2 = lim
|r−r′|→∞

〈ψ(r)2ψ(r′)2〉 = n2 , (12)

shows that the density of the fragmented condensates q defined
in Eq. (12) coincides with the condensate depletion n − n0. To
this end the disorder ensemble average is obtained along the
same lines as Eqs. (9)–(11). Thus we conclude that the lo-
calization phenomenon for quenched disorder follows already
from a mean-field description of the dirty boson problem.
Therefore our mean-field approach represents a simplified
derivation of the disorder-induced condensate depletion in
comparison with the Bogoliubov theory of Refs. [15–23].
Note that disorder effects on Bogoliubov quasiparticles have
recently been analyzed in Refs. [21,23].

The perturbative expansion (5) now yields for the particle
density

n = 〈ψ(r)2〉 = ψ2
0 + 〈ψ1(r)2〉 + 2ψ0〈ψ2(r)〉 + · · · , (13)

and, correspondingly, for the condensate density,

n0 = 〈ψ(r)〉2 = ψ2
0 + 2ψ0〈ψ2(r)〉 + · · · . (14)

With this the condensate depletion results to be

n − n0 = 〈ψ1(r)2〉 + · · · . (15)

Using Eq. (7) we arrive at the following expression:

n − n0 = n

∫
d3k

(2π )3

R(k)[
h̄2k2

2m
+ 2nV (k)

]2 + · · · . (16)

Note that this represents a result for the condensate depletion
in second order of the disorder potential for an arbitrary
two-particle interaction potential and an arbitrary disorder
correlation function. Specializing to the δ-correlated disorder

R(k) = R and the contact interaction V (k) = g, Eq. (16)
reduces to

n − n0 = nHM = m
3
2 R

√
n

4πh̄3√g
, (17)

which is the seminal result originally obtained by Huang and
Meng [15] within the Bogoliubov theory of dirty bosons.

B. Equation of state

Solving the equation 〈ψ2(μb)〉 = n(μb) for the chemical
potential μb yields its dependence on the average fluid
density μb = μb(n). We have introduced the notation μb,
denoting the “bare” chemical potential, because it diverges
for uncorrelated disorder regardless of the density n, as can be
seen from inserting expressions (6)–(8) into the second-order
correction (13):

μb = nV (k = 0) −
∫

d3k

(2π )3

h̄2k2

2m
R(k)[

h̄2k2

2m
+ 2nV (k)

]2 + · · · . (18)

This unphysical ultraviolet divergence can be removed by
renormalizing the chemical potential [19]. If the density of
the system vanishes, i.e., if there are no particles in the system,
the energy needed for a particle to be added also has to vanish
μ(n = 0) = 0. Therefore we define the renormalized chemical
potential according to

μ(n) = μb(n) − μb(0). (19)

With this we obtain, in second order of the disorder strength,
the renormalized chemical potential:

μ = nV (k = 0) + 4n

∫
d3k

(2π )3

× V (k)R(k)
(

h̄2k2

2m
+ nV (k)

)
h̄2k2

2m

[
h̄2k2

2m
+ 2nV (k)

]2 + · · · , (20)

which does not contain an ultraviolet divergence.
For calculating the sound velocity later on we will also

need the expression for the compressibility of the fluid, or its
inverse, given by ∂μ/∂n. Note that from Eq. (19) it follows
that the obtained result does not depend on whether we use μ

or μb. Thus, from the perturbative expansion (20) we get

∂μ

∂n
= V (k = 0) + 4

∫
d3k

(2π )3

h̄2k2

2m
R(k)V (k)[

h̄2k2

2m
+ 2nV (k)

]3 + · · · .

(21)

C. Superfluidity

Without disorder and at T = 0, the whole system is in a
superfluid state, moving with an arbitrary wave vector kS ,
which corresponds to the superfluid velocity vS = h̄kS/m. By
introducing disorder that moves with the velocity h̄kU/m,
some part of the fluid will be moving together with it. The
normal, i.e., nonsuperfluid, component of the fluid nN is
defined as the part that moves together with the disorder, while
the superfluid component nS is defined as the fraction of the
fluid that moves with the superfluid wave vector kS . Therefore
the macroscopic current density 〈j(r)〉 can be separated in this
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two-fluid picture as follows:

〈j(r)〉 = nSkS + nNkU . (22)

The averaged current density 〈j(r)〉 can be obtained by
analyzing the underlying time-dependent GP equation for the
system:[

− h̄2

2m
� + U

(
r − kU

h̄

m
t

)

+
∫

d3r ′ V (r − r′)
∗
S (r′,t)
S(r′,t)

]

S(r,t)

= ih̄
∂
S(r,t)

∂t
, (23)

where the condensate wave function 
S is a product of some
as-yet unknown function ψS and a plane wave with wave vector
kS that corresponds to the clean-case solution:


S(r,t) = eikSrψS(r,t)e− i
h̄

(
μ+ h̄2k2

S
2m

)
t
. (24)

Substituting the ansatz (24) into Eq. (23), changing variables
via x = r − kU

h̄
m

t , and introducing K = kS − kU leads to
[
− h̄2

2m
� − i

h̄2

m
K · ∇ + U (x) − μ

+
∫

d3x ′ V (x − x′)ψ∗
S (x′)ψS(x′)

]
ψS(x) = 0 . (25)

Although ψS should in general depend on t , it can be shown
via mathematical induction on the perturbative solution that all
orders of ψS(x,t) turn out to be time independent [65]. Note
that ψS does not depend explicitly on the wave vectors kS and
kU , but only on their difference K. Here, we are only interested
in small values of K and therefore perform the expansion ψS =
ψ + pK + · · · , with p = (∂ψS/∂K)K=0. An explicit equation
for p can be obtained by performing the derivative of Eq. (25)
with respect to K, yielding

− h̄2

2m
�p(x) − ih̄2

m
∇ψ(x) + [U (x) − μ]p(x)

+
∫

d3x ′ V (x − x′){[p∗(x′) + p(x′)]ψ(x′)ψ(x)

+ψ(x′)2p(x)} = 0 . (26)

If we take into account Eq. (24), the standard definition of the
current density

〈j〉 = 1

2i
〈
∗

S∇
S − 
S∇
∗
S〉 (27)

transforms into

〈j〉 = 〈ψ∗
SψS〉kS + 1

2i
〈ψ∗

S∇ψS − ψS∇ψ∗
S 〉 , (28)

which then can be further reduced to

〈j〉 = nkS + (〈ψ∇ ⊗ Im p〉 − 〈∇ψ ⊗ Im p〉)K + · · · . (29)

In the last line we have neglected higher than linear orders in
kU and kS .

For small disorder strengths, we expand Eq. (29) with
respect to U up to second order. To this end we take into
account the homogeneity of our problem, which leads to
∂i 〈p2(x)〉 = 0, and note that in zeroth order ψS does not depend
on K, thus leading to p0 = 0. With this we obtain

〈j〉 = nkS + (〈ψ1∇ ⊗ Im p1〉 − 〈∇ψ1 ⊗ Im p1〉)K + · · · ,

(30)

where also p is expanded in the disorder strength according
to p = p0 + p1 + p2 + · · · . Solving the imaginary part of
Eq. (26) in first order in U yields the Fourier transform of
Im p1:

(Im p1)(k) = 2i
k
k2

ψ1(k) . (31)

Thus, together with the solution for ψ1 given by Eq. (7) and a
comparison with Eq. (22), we obtain from Eq. (30) the normal
fluid density in the form

n̂N = 4n

∫
d3k

(2π )3

k ⊗ k
k2

R(k)[
h̄2k2

2m
+ 2nV (k)

]2 + · · · . (32)

Note that in general the nonsuperfluid component is repre-
sented by a tensor [66].

In the case of a cylindrically symmetric system, we can
choose the symmetry axis as the z axis and denote the polar
and the azimuth angle by θ and ϕ, and so integrating Eq. (32)
in spherical coordinates with respect to ϕ yields the angle
dependence

sin θ

∫ 2π

0
dϕekeT

k = sin θ

∫ 2π

0
dϕ

⎛
⎜⎝

sin2 θ cos2 ϕ sin2 θ sin ϕ cos ϕ sin θ cos θ cos ϕ

sin2 θ sin ϕ cos ϕ sin2 θ sin2 ϕ sin θ cos θ sin ϕ

sin θ cos θ cos ϕ sin θ cos θ sin ϕ cos2 θ

⎞
⎟⎠

= sin θ

⎛
⎜⎝

π (1 − cos2 θ ) 0 0

0 π (1 − cos2 θ ) 0

0 0 2π cos2 θ

⎞
⎟⎠ . (33)

If both V (k) and R(k) are θ independent, i.e., if we
have spherical symmetry, integrating Eq. (33) with respect
to θ leads to a solution in second order of the disorder

potential [15–23]:

n̂N = 4
3 (n − n0)Î . (34)
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This result shows that the superfluid depletion will be larger
by a factor of 4/3 than the condensate depletion. Thus the
localized fragmented part of the fluid hinders movement of the
superfluid.

D. Sound velocity

In the mean-field approach, we can also define the sound
velocity by perturbing the time-independent solution with
a small time-dependent variation. It is expected that sound
waves with wavelengths of the order of the correlation length
would scatter and interfere due to disorder hills and valleys,
making the sound velocity impossible to define precisely.
Locally, the sound waves would have the same speed as
in the clean case. For sound waves with wavelengths much
larger than the disorder correlation length, the sound velocity
can be calculated using the hydrodynamical approach [59].
Hydrodynamic equations are valid in the macroscopic regime
and can only be used for slowly varying quantities that do
not depend on the specific microscopic realization. Spatial
averaging over distances much larger than the correlation
length and much smaller than the wavelength solves the
problem. Assuming that it gives the same result as the disorder
ensemble average, we obtain the hydrodynamic equations for
the macroscopic, i.e., disorder averaged, quantities in the form

∂n(x,t)

∂t
+ ∇[n̂S(x,t)vS(x,t)] = 0 , (35)

m
∂vS(x,t)

∂t
+ ∇

[
mvS(x,t)2

2
+ μ(n(x,t))

]
= 0 , (36)

where n denotes the macroscopic density, and the disorder
velocity kU is taken to be zero. If we write densities and
the superfluid velocity as sums of homogeneous equilibrium
values and small variations,

n(x,t) = n + δn(x,t), (37)

n̂S(x,t) = n̂S + δn̂S(x,t), (38)

vS(x,t) = δvS(x,t), (39)

as well as neglect second-order terms in the variations, we get
the following linearized system of equations:

∂δn(x,t)

∂t
+ ∇ [n̂SδvS(x,t)] = 0 , (40)

∂δvS(x,t)

∂t
= − 1

m
∇μ [n + δn(x,t)]

= − 1

m

∂μ

∂n
∇δn(x,t) . (41)

Taking the time derivative of Eq. (40) and substituting the
expression for the superfluid velocity variation from Eq. (41),
we obtain the generalized wave equation

∂2δn(x,t)

∂t2
− 1

m

∂μ

∂n
∇[n̂S∇δn(x,t)] = 0. (42)

From the above equation we deduce that the sound velocity in
the direction of some unit vector q is given by

c2
q = 1

m

∂μ

∂n
qT n̂Sq , (43)

where the tensorial property of the superfluid density has been
taken into account. In order to further evaluate the sound
velocity (43) for small disorder, the perturbative results for
both the inverse compressibility (21) and the superfluid density
following from (32) have to be taken into account.

III. DIPOLAR INTERACTION AND
LORENTZ-CORRELATED DISORDER

In this section we will specialize the previously developed
perturbative formalism and consider BEC systems in the
presence of two different anisotropies, namely, an anisotropic
dipolar interaction between the analyzed particles and an
anisotropic disorder potential. The latter is widely studied
and physically motivated, for instance, by the anisotropy of
the laser-speckle potential [6,7]. In order to obtain analytical
results, we model the disorder correlation function by a
cylindrically symmetric Lorentzian in Fourier space:

R(k) = R

1 + σ 2
ρ k2

ρ + σ 2
z k2

z

. (44)

The lengths σρ and σz denote the perpendicular and the parallel
correlation length, respectively, and their experimentally real-
istic values are typically in a broad range from a few to several
hundred healing lengths ξ . The function (44) is not physically
realistic, but the corresponding results qualitatively coincide
with the case of an isotropic Gaussian-correlated disorder,
which was numerically calculated in Ref. [59]. Therefore we
expect that all phenomena that appear here would also appear
qualitatively for a true laser-speckle correlation function in a
setup where it decays monotonously with distance.

Assuming that the van der Waals forces between the atoms
can be approximated at low energies by an effective contact
interaction, the interaction potential in the presence of an
external field that aligns the dipoles in a direction m takes
the form [67]

V (r) = gδ(r) + Cdd

4πr3
[1 − 3 cos2 φ(m,r)] , (45)

where φ(m,r) represents the angle between vectors m and
r, and Cdd denotes the dipole-dipole interaction strength. In
the case of magnetic dipoles Cdd = μ0m

2, with μ0 being
the magnetic permeability and the magnetic dipole moment
m, whereas for electric dipoles we have Cdd = d2/ε0, with
the vacuum permeability ε0 and the electric dipole moment
d. Introducing the ratio of the dipole-dipole and the contact
interaction ε = Cdd/3g , and taking the Fourier transform of
the potential, we obtain [48]

V (k) = g{1 + ε[3 cos2 φ(m,k) − 1]}. (46)

The interaction ratio ε takes values as small as 0.008 for 87Rb,
while for 52Cr it is around 0.16. For a BEC of heteronuclear
molecules, its value would be much higher, namely, of the
order of 100.

The Huang and Meng result [15] for the condensate
depletion (17) is linear in R, and therefore we will compare
the relative change of physical quantities due to disorder
to the relative change of the condensate density. To this
end we will define a dimensionless disorder correction for
each relevant quantity: condensate density, chemical potential,
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superfluid density, and sound velocity. Corrections defined in
this way are expressed in terms of only three parameters: the
relative dipole-dipole interaction strength ε, and the correlation
lengths in units of the healing lengths, i.e., zρ,z = √

2σρ,z/ξ .
We consider systems with an overall cylindrical symmetry,
where the disorder symmetry axis is parallel to the direction
of the dipoles. Otherwise the angle between them would be a
fourth parameter that would have to be taken into account.

The general case can be calculated analytically for all
observables of interest, but the results are too cumbersome to
be displayed here [65], and we present them in the Appendix
as well as in the Supplemental Material [63]. In this section
we derive analytical results for the two special cases, namely,
the pure contact interaction with anisotropic disorder and the
dipolar interaction with isotropic disorder. We also present and
discuss numerical results for the special cases, as well as for
the general case with contact and dipole-dipole interaction as
well as anisotropic disorder.

A. Condensate depletion

We now use the disorder correlation function and the
interaction potential defined by Eqs. (44) and (46) in order to
calculate the disorder correction of the condensate density. To
this end we introduce the dimensionless condensate depletion
as follows:

�n0 = lim
R→0

n0 − n

nHM
. (47)

By taking into account Eq. (17), making a substitution k →
kξ/

√
2, denoting the direction of the cylindrical symmetry

of the disorder by d, and introducing direction-dependent
anisotropy functions r and v by

r =
√

z2
ρ sin2 φ(d,k) + z2

z cos2 φ(d,k) , (48)

v =
√

1 + ε[3 cos2 φ(m,k) − 1] , (49)

Eq. (16) yields the dimensionless value of the condensate
depletion in second order in the form

−�n0 = 8π

∫
d3k

(2π )3

1

(k2 + v2)2(1 + k2r2)
. (50)

Assuming that the direction of dipoles is parallel to the
disorder symmetry, i.e., d||m, the whole system will also
become cylindrically symmetric. Writing Eq. (50) in spherical
coordinates (k,θ,ϕ), integrating with respect to k and ϕ, and
changing the variable t = cos θ leads to

−�n0 =
∫ 1

0
dt

1

v(1 + vr)2
, (51)

with functions r and v from Eqs. (48) and (49) having the new
form

r =
√

z2
ρ + (

z2
z − z2

ρ

)
t2 , (52)

v =
√

1 − ε + 3εt2 . (53)

The two special cases, with pure contact interaction (ε = 0,

v = 1) and with isotropic disorder (zρ = zz = r), can be
solved explicitly using Euler substitutions r = xt + zρ and
v = xt + √

1 − ε, respectively, in Eq. (51), which leads to an

integral of a rational function with respect to x. The analytic
results for the two special cases are

−�n0 |ε=0 = 1

(zρ − 1)(zρ + 1)

[
2z2

ρ

(zρ + 1)(zρ + zz)

× T

(
zρ − 1

zρ + 1

zz − zρ

zz + zρ

)
− 1

zz + 1

]
, (54)

−�n0 |zρ=zz=z = z(1 − λ)

(−1 + z2δ2)[1 − λ + zδ(1 + λ)]

+ (−1 + λ)

δ(−1 + zδ)(1 + zδ)2
T

(
zδ − 1

zδ + 1
λ

)
,

(55)

where, for brevity, we introduced δ and λ by δ2 = 1 − ε and
ε = 4λ

1−2λ+3λ2 , and T (x) = arctan
√

x√
x

is a new function, well
defined for positive values of x and analytically continuable
for −1 < x � 0.

In Fig. 1 we have displayed the results for the condensate
depletion. Figure 1(a) corresponds to the special case of
pure contact interaction (ε = 0), described by Eq. (54), and
Fig. 1(c) corresponds to the special case of isotropic disorder
(κ = zρ/zz = 1), given by Eq. (55). Note that for ε = 0 and
zρ = zz = 0 the dimensionless condensate depletion is 1,
which coincides with the Huang and Meng result. For
increasing correlation lengths the depletion decreases and
vanishes for infinite correlation length, which is expected since
then the disorder is flat. The tiny asymmetry in Fig. 1(a) comes
from the fact that zρ describes two spatial dimensions and,
therefore, has a more pronounced effect on the depletion than
zz, which represents only one spatial dimension. As we see
in Fig. 1(c), increasing the relative dipole-dipole interaction
leads to a larger depletion and, eventually, when it reaches the
same order as the contact interaction, the BEC collapses, which
corresponds to the divergence of the depletion for ε → 1.

The general case with both contact and dipole-dipole
interaction as well as anisotropic disorder is shown in Figs. 1(b)
and 1(d) for κ = 1/5 and κ = 5. Compared to the isotropic
disorder case, the depletion decays faster with increasing
the correlation length for small values of κ . In the opposite
case, when the radial correlation length is larger than the
longitudinal one, the depletion decays much slower with
increasing correlation lengths. This can be explained by the
fact that, for a fixed value of zρ , the value of zz is given by
zz = zρ/κ , which effectively corresponds to a larger disorder
correlation length in Fig. 1(b) and leads to a faster decay,
while the effective correlation length in Fig. 1(d) is smaller
and, hence, the decay is slower. Therefore we conclude that
the ratio of correlation lengths κ has a significant impact on
the condensate depletion and, thus, can be used for its control.
Note that the condensate depletion can be measured in matter
interference experiments, where the fragmented part of the
fluid contributes with a random phase and therefore reduces
correspondingly the contrast of the interference pattern.

B. Equation of state

We now proceed with the perturbative calculation of
the chemical potential and the inverse compressibility using
Eqs. (20) and (21). Their dimensionless disorder corrections
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FIG. 1. (Color online) Condensate depletion due to weak disorder: (a) as a function of the correlation lengths zρ and zz for anisotropic
disorder and pure contact interaction (ε = 0), expressed by Eq. (54); (b) as a function of the correlation length zρ and the ratio of the dipole-dipole
and the contact interaction ε for anisotropic disorder with κ = zρ/zz = 1/5 (general expressions given in the Appendix); (c) κ = 1, expressed
by Eq. (55); (d) κ = 5 (general expressions given in the Appendix).

are defined as

�μ = lim
R→0

μ − nV (k = 0)

g nHM

, (56)

�∂μ

∂n
= lim

R→0

∂μ

∂n
− V (k = 0)

g nHM/n
, (57)

and can be calculated in the similar way as the condensate
depletion. Analytical results for the general case are given in
the Appendix and in the Supplemental Material [63], while
disorder corrections to the chemical potential for the special
cases of a pure contact interaction (ε = 0) and isotropic

FIG. 2. (Color online) Correction to the chemical potential due to weak disorder: (a) as a function of the correlation lengths zρ and zz for
anisotropic disorder and pure contact interaction (ε = 0), expressed by Eq. (58); (b) as a function of the correlation length zρ and the ratio
of the dipole-dipole and the contact interaction ε for anisotropic disorder with κ = zρ/zz = 1/5 (general expressions given in the Appendix);
(c) κ = 1, expressed by Eq. (59); (d) κ = 5 (general expressions given in the Appendix).
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disorder (zρ = zz = z) are given by

�μ|ε=0

= − 4
(
z2
ρ − 2

)
(
z2
ρ − 1

)
(zρ + 1)(zρ + zz)

T

(
zρ − 1

zρ + 1

zz − zρ

zz + zρ

)

+ 8

zρ + zz

T

(
zρ − zz

zρ + zz

)
, (58)

�μ|zρ=zz=z

= 2
−1 + λ + 2zδ{−1 − λ + zδ[1 − λ + zδ(1 + λ)]}

z(−1 + z2δ2)[1 − λ + zδ(1 + λ)]

+ 2(−1 + λ)

z2δ
T (−λ) + 2(−1 + λ)

z2δ(−1 + zδ)(1 + zδ)2

× T

(
zδ − 1

zδ + 1
λ

)
. (59)

The analytically calculated disorder corrections to the
chemical potential are shown in Fig. 2. The two special
cases (58) and (59) correspond to Figs. 2(a) and 2(c), re-
spectively, while Figs. 2(b) and 2(d) correspond to the general
case with both contact and dipole-dipole interaction as well
as anisotropic disorder. The disorder correction increases with
increasing disorder strength R, regardless of the strength of
the dipolar interaction and disorder correlation lengths. This is
due to the repulsive interparticle interaction, which has a higher
potential energy when the fluid is less uniform. The correction
of the chemical potential in the case of the pure contact
interaction, shown in Fig. 2(a), has a similar dependence on
the correlation lengths as the condensate depletion in Fig. 1(a),
while, according to Fig. 2(c), the dipole-dipole interaction
does not have a significant effect. This is because the dipolar
interaction contributes partially as attractive and partially as
repulsive, thus leading only to a small net effect. Note that
the chemical potential in the clean case is anisotropic, as
can be seen from Eq. (20) and the directional dependence
of the limit k → 0 in Eq. (46). This peculiar behavior is
discussed in more detail in Ref. [56]. For the general case
of anisotropic disorder, we see from Figs. 2(b)–2(d) that
increasing anisotropy κ = zρ/zz leads to a slower decay of
the disorder correction with increasing correlation lengths for
the same reasons as for the condensate depletion.

The corresponding results for disorder corrections of the
inverse compressibility are

�∂μ

∂n

∣∣
ε=0 = 2(−1 + z2

ρ

)
2

[
3 + zz

(
2 + z2

ρ

)
2(1 + zz)2

+ z2
ρ

(−4 + z2
ρ

)
(1 + zρ)(zz + zρ)

T

(
zρ − 1

zρ + 1

zz − zρ

zz + zρ

)]
, (60)

�∂μ

∂n

∣∣
zρ = zz = z

= (−1 + λ){1 − λ + z2δ2[2 − 2λ + 3zδ(1 + λ)]}
z(−1 + z2δ2)2[1 − λ + zδ(1 + λ)]2

.

(61)

They represent intermediate results for calculating later on the
sound velocity in Sec. III D, using Eq. (43).

C. Superfluidity

Now we turn to the calculation of the dimensionless
disorder correction to the superfluid density tensor, which is
defined by

�̂nS
= lim

R→0

n̂S − nÎ

nHM

. (62)

It can be separated into a perpendicular and a parallel
component after integration with respect to the azimuthal
angle ϕ. Using Eq. (33), we get

−�̂nS
= −2�n0

⎛
⎝ 1 0 0

0 1 0
0 0 0

⎞
⎠ + 2Isd

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠ , (63)

where �n0 is already calculated in Eqs. (54) and (55), and Isd

is a new integral of the form

Isd =
∫ 1

0
dt

t2

v (1 + vr)2 . (64)

The solution of this integral for the general case is given in the
Supplemental Material [63], while for the two studied special
cases the solutions are

Isd

∣∣
ε=0 = 1

(−zz + zρ)(zz + zρ)

[
−2 + zz

1 + zz

+ 2
( − 2 + z2

ρ

)
(1 + zρ)(zz + zρ)

T

(
zρ − 1

zρ + 1

zz − zρ

zz + zρ

)

+ 4

zz + zρ

T

(
zρ − zz

zρ + zz

)]
, (65)

Isd

∣∣
zρ=zz=z

= (−1 + λ)3

4zδ2λ[1 − λ + zδ(1 + λ)]
− (−1 + λ)3

4z2δ3λ

× T (−λ) + (−1 + λ)3

4z2δ3(λ + zδλ)
T

(
zδ − 1

zδ + 1
λ

)
.

(66)

In an arbitrary direction of a unit vector q, the superfluid
density can be calculated by describing the tensorial superfluid
density according to nS(q) = qn̂Sq. In the case of cylindrical
symmetry this reduces to

nS(q) = nSρ
sin2 φ(q,ez) + nSz

cos2 φ(q,ez) . (67)

Thus obtaining the disorder corrections for nSρ
and nSz

is sufficient for recovering the superfluid depletion in any
direction. From Eq. (63) we directly read off

−�Sρ
= −2�n0 − 2Isd , (68)

−�Sz
= 4Isd . (69)

Note that the negative signs in front of �Sρ,z
and �n0 suggest

that the changes of the superfluid densities and the condensate
density are negative or, equivalently, that the depletion is
positive. For isotropic systems �Sρ

and �Sz
, both are equal

to 4
3�n0 , as can be seen from Eq. (34). Due to an anisotropy,

however, there is a range of correlation lengths and relative
dipolar interaction strengths where the superfluid depletion is
smaller than the condensate depletion. Some particles from
the fragmented fluid contribute to superfluidity, suggesting
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FIG. 3. (Color online) Correction to the perpendicular superfluid density due to weak disorder: (a) as a function of the correlation lengths
zρ and zz for anisotropic disorder and pure contact interaction (ε = 0); (b) as a function of the correlation length zρ and the ratio of the
dipole-dipole and the contact interaction ε for anisotropic disorder with κ = zρ/zz = 1/5; (c) κ = 1; (d) κ = 5. Red lines in panels (a) and (b)
show values of parameters where the perpendicular superfluid depletion becomes equal to the condensate depletion.

that they are not localized indefinitely but have some finite
localization time. This localization time was exemplarily
calculated in Ref. [38] within the Hartree-Fock theory of dirty
bosons with δ-correlated disorder.

The superfluid depletion in the case of a pure contact
interaction and anisotropic disorder shows a similar behavior
as the condensate depletion, as can be seen in Figs. 3(a)

and 4(a). In the presence of disorder as well as both contact
and dipole-dipole interaction, Figs. 3(b)–3(d) show that the
depletion of the perpendicular component is similar to the
condensate depletion, but the depletion of the parallel compo-
nent decreases as the relative interaction strength increases, as
is depicted in Figs. 4(b)–4(d). The red lines in Figs. 3 and 4
show where the corresponding superfluid depletion component

FIG. 4. (Color online) Correction to the parallel superfluid density due to weak disorder: (a) as a function of the correlation lengths zρ and
zz for anisotropic disorder and pure contact interaction (ε = 0); (b) as a function of the correlation length zρ and the ratio of the dipole-dipole
and the contact interaction ε for anisotropic disorder with κ = zρ/zz = 1/5; (c) κ = 1; (d) κ = 5. Red lines show values of parameters where
the parallel superfluid depletion becomes equal to the condensate depletion.

013624-9
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FIG. 5. (Color online) Critical values of the ratio of the dipole-dipole and the contact interaction ε at which the superfluid depletion becomes
equal to the condensate depletion as a function of the correlation lengths zρ and zz for (a) perpendicular and (b) parallel superfluid density.

becomes equal to the condensate depletion. This is illustrated
in more detail in Fig. 5, which presents the values of the
interaction ratio ε for which the superfluid depletions become
equal to the condensate depletion.

Although defined only for systems without a trap, the
above-calculated superfluid density could be extended to the
trapped case in the simplest way by assuming that it depends
only on the local density. If we turn on a slowly moving
disorder for a short time τ , such that vτ is much smaller than
the size of the trap, before switching off the trap, this would
change the momentum distribution which could be afterwards
reconstructed from a time-of-flight measurement. In this way
our predictions for the superfluid density in such a system
might become observable in experiment.

D. Sound velocity

The corresponding disorder correction of the sound velocity
in the direction of the unit vector q can be calculated using
Eq. (43):

c2
q = gn

m

[
Vq(0)

g
+ nHM

n

(
Vq(0)

g
qT �̂nS

q + �∂μ

∂n

)
+ · · ·

]
.

(70)

If we define the dimensionless disorder correction as

�c2
q
= lim

R→0

c2
q − nV (k = 0)/m

g nHM/m
, (71)

from the previous equation we get

�c2
q
= Vq(0)

g
qT �̂nS

q + �∂μ

∂n
, (72)

where Vq(0) = limk→0 V (kq) denotes the directional depen-
dence of the potential V on q, according to Eq. (46).

The anisotropy of disorder comes into play in a simple way.
From Eqs. (43) and (67) it follows that the sound velocity
can also be separated into a parallel and a perpendicular
component,

c2(q) = c2
ρ sin2 φ(q,ez) + c2

z cos2 φ(q,ez) , (73)

with

c2
ρ,z = 1

m

∂μ

∂n
nSρ,z

(74)

and the corresponding dimensionless disorder correction

�c2
ρ,z

= �∂μ

∂n
+ �Sρ,z

. (75)

Figure 6 shows disorder corrections to the perpendicular
and the parallel component of the sound velocity for a pure
contact interaction. The red lines correspond to the values of
correlation lengths for which the disorder corrections vanish.

For the general case, the anisotropy factor due to the
dipolar interaction cd = Vq(0)/g [59] is plotted in Fig. 7(a).
By introducing weak disorder, the sound velocity changes via
two competing effects: the decrease of the compressibility,
i.e., the increase in the inverse compressibility, from Eq. (21),
which tends to increase the sound velocity, and the decrease
of the superfluid density corresponding to a negative value
of �Sρ,z

, which tends to decrease the sound velocity. The
corresponding results are shown in Figs. 7(b)–7(d). For small
disorder correlation lengths the decrease in compressibility is
dominant. These corrections can be experimentally measured,
for instance, by determining the phonon dispersion relation by
using Bragg spectroscopy [2,68,69].

FIG. 6. (Color online) Corrections to (a) perpendicular and (b) parallel sound velocity for weak anisotropic disorder and pure contact
interaction (ε = 0) as a function of the correlation lengths zρ and zz. The red lines show values of the correlation lengths for which the
correction vanishes.
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FIG. 7. (Color online) (a) Sound velocity for the clean case (no disorder) as a function of the ratio of the dipole-dipole and the contact
interaction ε and the azimuthal angle θ = φ(q,ez). (b) Correction to the sound velocity due to weak δ-correlated disorder as a function of
the ratio of the dipole-dipole and the contact interaction ε and the azimuthal angle θ = φ(q,ez) for zρ = 0.4, zz = 2; (c) zρ = zz = 1; and
(d) zρ = 2, zz = 0.4. The red lines show values of the parameters ε and θ for which the correction vanishes.

IV. CONCLUSIONS

We have analyzed in detail how the anisotropy of both the
dipolar interaction and the presence of disorder affects the di-
rectional dependence of different physical observables of dirty
Bose-Einstein condensates. Using the mean-field approach at
zero temperature, we have calculated the condensate depletion
due to disorder, as well as the corresponding corrections to
the equation of state, the superfluid density, and the sound
velocity. In particular, we have discussed the consequences
for the superfluid density, which becomes a tensorial quantity
as a linear response to the moving disorder. Whereas Ref. [59]
analyzed a dipolar BEC in isotropic disorder potential, we
have shown here that the anisotropic disorder provides a
separate origin for the tensorial nature of the superfluid density.
We have found that a large enough disorder anisotropy can even
make both the parallel and perpendicular superfluid density
component larger than the corresponding condensate density,
which happens in the case of dipolar interaction and isotropic
disorder only for the parallel component [59].

These initial results necessitate further studies, as they con-
tribute to the overall physical picture in which the localization
of bosons in the respective minima of the disorder potential
occurs at a characteristic time scale [38]. This localization time
remains to be analyzed in more detail in a forthcoming publica-
tion. We also plan to study the effects of disorder on nonlinear
oscillation modes and Faraday waves in BEC [70–72].
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APPENDIX: EXPRESSIONS FOR �n0 , �μ IN
GENERAL CASE

This Appendix contains expressions for the dimensionless
condensate depletion �n0 due to disorder and the dimen-
sionless disorder correction to the chemical potential �μ

in the general case, when both contact and dipole-dipole
interaction are present and characterized by the ratio ε =
Cdd/3g. We assume that disorder is cylindrically symmetric
and Lorentzian correlated, characterized by the dimensionless
correlation lengths zρ and zz. These expressions, as well
as the expressions for the integral Isd and the dimension-
less disorder correction to the inverse compressibility �∂μ

∂n
,

which define the dimensionless disorder corrections to the
superfluid density and the sound velocity, are given in the
Supplemental Material [63] as a Mathematica notebook.

The expressions for disorder corrections are given in terms
of auxiliary functions:

T (x) = arctan
√

x√
x

, (A1)

A(x,y) = T (x + √
y) + T (x − √

y) , (A2)

B(x,y) = √
y [T (x + √

y) − T (x − √
y)] , (A3)

and their values Ai = A(xi,yi), Bi = B(xi,yi), where argu-
ments xi , yi (i = 1,2) are given by
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x1 = 2z2
ρ − (1 + 2ε)z4

ρ + z2
z

[ − 2 − (−1 + ε)z2
ρ

]
2z2

z

[
1 + (−1 + ε)z2

ρ

] , x2 = −6ε − (−1 + ε)2z2
z + (1 + ε − 2ε2)z2

ρ

2(1 + 2ε)[1 + (−1 + ε)z2
ρ]

,

y1 = z2
z

[
12ε + (−1 + ε)2z2

z]z4
ρ + 2

[ − 6ε + (−1 + ε)(1 + 2ε)z2
z

]
z6
ρ + (1 + 2ε)2z8

ρ

4z4
z

[
1 + (−1 + ε)z2

ρ

]
2

, (A4)

y2 = (−1 + ε)2(
√

1 − ε − √
1 + 2ε)4

{
(−1 + ε)2z4

z − 12εz2
ρ + (1 + 2ε)2z4

ρ + 2z2
z

[
6ε + (−1 + ε)(1 + 2ε)z2

ρ

]}
4(−1 − 2ε + √

1 + ε − 2ε2)4
[
1 + (−1 + ε)z2

ρ

]
2

.

The dimensionless condensate depletion �n0 due to disorder, defined by Eq. (47), is given by

�n0 = A1

{−z2
z

[
18ε + (−1 + ε)2z2

z

]
z2
ρ + 2

[
9ε + (1 + 4ε − 5ε2)z2

z

]
z4
ρ + [−1 + 2(−5 + ε)ε

]
z6
ρ

}
2zz

[
1 + (−1 + ε)z2

ρ

]
2
{
(−1 + ε)2z4

z − 12εz2
ρ + (1 + 2ε)2z4

ρ + 2z2
z

[
6ε + (−1 + ε)(1 + 2ε)z2

ρ

]}
+A2

((√
1 − ε − √

1 + 2ε
){[−12ε + 3(−1 + ε)εz2

z − (−1 + ε)3z4
z

]
z2
ρ + [

3ε(1 + 2ε) − (2 − 3ε + ε3)z2
z

]
z4
ρ

+ (−1 + ε)2(1 + 2ε)z6
ρ + 12εz2

z

})/(
2(−1 − 2ε +

√
1 + ε − 2ε2)

[
1 + (−1 + ε)z2

ρ

]
2
{
(−1 + ε)2z4

z − 12εz2
ρ

+ (1 + 2ε)2z4
ρ + 2z2

z

[
6ε + (−1 + ε)(1 + 2ε)z2

ρ

]}) + B1
[
zz

(
z2
z

(−48ε + 24(−1 + ε)εz2
z − (−1 + ε)3z4

z

)
z2
ρ

+ 3
(
8ε + 8ε(2 + ε)z2

z + (−1 + ε)2(−1 + 4ε)z4
z

)
z4
ρ + 3

(−8ε(1 + 2ε) + (1 − 9ε + 8ε3)z2
z

)
z6
ρ

+ (−1 + 4ε(3 − 2(−3 + ε)ε))z8
ρ + 24εz4

z

)]/[(
1 + (−1 + ε)z2

ρ

)(
z2
z

(
12ε + (−1 + ε)2z2

z

)
zρ

+ 2
(−6ε + (−1 + ε)(1 + 2ε)z2

z

)
z3
ρ + (1 + 2ε)2z5

ρ

)2] + B2
[
(−1 − 2ε +

√
1 + ε − 2ε2)

(
(−1 + ε)4z6

zz
2
ρ

+ 12(1 − 7ε)εz4
ρ + 3ε(1 − 8(−2 + ε)ε)z6

ρ − (1 + ε − 2ε2)2z8
ρ + 3z2

zz
2
ρ

(
8ε(−1 + 4ε) + 2(−1 + ε)ε(1 + 8ε)z2

ρ

+ (−1 + ε)2(1 + 2ε)z4
ρ

) + 3(−1 + ε)z4
z

(−4ε + (−1 + ε)z2
ρ

(
ε + (−1 + ε2)z2

ρ

)))]/[
(−1 + ε)(

√
1 − ε − √

1 + 2ε)

× (
1 + (−1 + ε)z2

ρ

)(
(−1 + ε)2z4

z − 12εz2
ρ + (1 + 2ε)2z4

ρ + 2z2
z

(
6ε + (−1 + ε)(1 + 2ε)z2

ρ

))
2
]

+ [√
1 + 2ε(−1 + 4ε)z4

ρ − √
1 + 2εz4

z

(
1 + 5ε + 3(−1 + ε)εz2

ρ

) + √
1 + 2εz2

zz
2
ρ

(
2 + ε − 3ε(1 + 2ε)z2

ρ

)
+ zzz

2
ρ

(−6ε + (1 + ε − 2ε2)z2
ρ
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. (A5)

The disorder correction to the chemical potential, defined by Eq. (20), is given by
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