
PHYSICAL REVIEW A 89, 053614 (2014)

Dissipation through localized loss in bosonic systems with long-range interactions
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In recent years, controlled dissipation has proven to be a useful tool for the probing of a quantum system in
an ultracold setup. In this paper we consider the dynamics of bosons induced by a dissipative local defect. We
address superfluid and supersolid phases close to half filling that are ground states of an extended Bose-Hubbard
Hamiltonian. To this end, we solve the master equation using the Gutzwiller approximation and find that in
the superfluid phase repulsive nearest-neighbor interactions can lead to enhanced dissipation processes. On the
other hand, our mean-field approach indicates that the effective loss rates are significantly suppressed deep in the
supersolid phase where repulsive nearest-neighbor interactions play a dominant role. Our numerical results are
explained by analytical arguments and, in particular, in the limit of strong dissipation we recover the quantum
Zeno effect.
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I. INTRODUCTION

Dissipation arises in condensed matter systems through
a variety of effects. Heating, impurities, and currents can
often be included into these open systems only via dissipative
processes. These can then contribute to the stabilization
or destruction of particular equilibrium phases or produce
relevant nonequilibrium physics such as resistive currents
through materials. For many years, in the field of ultracold
atoms, dissipation has been considered as one of the main
obstacles in the preparation and manipulation of macroscopic
quantum states. This point of view has changed recently, since
it was realized that dissipation enables an additional way of
tuning properties of the system. It has been predicted that
the competition of unitary and dissipative dynamics leads
to steady-state quantum phases [1–7] whose features have
been compared to their equilibrium counterparts. Dissipation
can be either engineered on purpose [1] or naturally present
as, for example, heating processes via two-body loss [8–10],
spontaneous decay of Rydberg atoms [11], or cavity loss [7].

Another beneficial aspect of controlled dissipation is that
it can be exploited as a measurement tool. In this article,
we choose to focus on the realization of dissipation via
an electron beam [12–15] although our system can also be
realized with an optical quantum gas microscope [16,17]. In
all these experiments [12,16,17], application of a controlled
loss process has opened the door to measurement of atoms
in an optical lattice with single-site resolution. The electron
beam experiment [15] operates in the following way: An
electron source is focused into a very tight beam, such that
electrons collide with atoms, imparting a very large amount of
kinetic energy and expelling them from the trap. Both elastic
and inelastic (i.e., ionizing) collisions occur and, by capturing
the ions, the number of atoms in the focus of the beam can
be determined. When applied in the presence of an optical
lattice the loss can be made truly localized, i.e., acting on a
single site, and then the effective loss rate reflects the initial
local density per site in the system.

Although this measurement procedure is not described by
the standard paradigm of projective measurement in quantum
mechanics, it has still been shown to exhibit the quantum Zeno
effect [18]. In a broader context [19], the quantum Zeno effect
can be defined as a suppression of the unitary time evolution

by an interaction with the external environment. Typically, in
cold atomic systems the effect is observed as a nonmonotonic
behavior of the effective loss rate in the presence of an
external periodic optical potential as a function of the bare
loss (dissipation) strength: For weak dissipation, the effective
loss rate is proportional to the dissipation strength, but in the
regime of strong dissipation, the number of expelled particles
decays as the dissipation gets stronger. The basic explanation
of this nonintuitive phenomenon lies in the fact that the system
protects itself from strong dissipation by approaching very
closely a “dark” state that is unaffected by a loss process.
The phenomenon has been theoretically addressed [20] and
experimentally observed in three other setups in the cold atom
context [21–23]. In the case of a two-body or three-body
loss, it was shown that strong dissipation introduces effective
hard-core repulsion into the physical system [20–22,24]
precisely via the mentioned quantum Zeno effect. In recent
experiments on polar molecules in three-dimensional optical
lattices [23,25], the effect has been used to suppress molecular
chemical reactions and to measure the density of the system.

Previous theoretical investigations of localized single-
particle dissipation in bosonic systems have considered
few-site Bose-Hubbard systems with large filling fractions
[26–31]. It has been shown that the dynamics induced by local
dissipation depends strongly on the initial state: A mean-field
Gross-Pitaevskii-like description works well for initial states
that are conventional homogeneous Bose-Einstein conden-
sates. On the other hand, a beyond-mean-field treatment is
necessary when the initial state is a Bose-Einstein condensate
with a macroscopic occupation of the single-particle state
corresponding to a nonzero momentum vector [27,30]. In that
case, states with macroscopic entanglement naturally describe
the long-time dynamics of the system. Localized dissipation
of a one-dimensional strongly correlated system has also been
addressed in a density-matrix renormalization-group (DMRG)
study [32], where excitations created by dissipation as well as
the quantum Zeno effect have been considered in detail.

In this paper we consider the dynamics induced by
localized dissipation for bosons in a two-dimensional lattice
at low filling fractions. To address the problem we apply the
Gutzwiller (GW) mean-field approximation for the density
matrix, which is expected to reasonably capture properties of
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the system in higher dimensions. In our study we also include
repulsive nearest-neighbor interactions, expected in systems
of dipolar or Rydberg-dressed quantum gases [33] and polar
molecules [23,25]. Usually in this context the main features
of the quantum Zeno effect are explained by the balance of
dissipation and hopping, and it is interesting to understand
whether and how repulsive nearest-neighbor interactions can
affect it. With long-range interactions, the model hosts not only
Mott-insulator and superfluid phases, but also density-wave
and supersolid ground states. In the following we choose the
initial state as the ground state and then compare and contrast
the response of superfluid and supersolid phases when exposed
to localized dissipation. While the supersolid phase requires
strong nearest-neighbor repulsion that is still difficult to reach
experimentally, it is certainly important to find the fingerprints
of weaker repulsive interaction in how a uniform superfluid
responds to dissipation.

This paper has the following structure: In Sec. II we first
briefly describe the zero-temperature phase diagram of the
extended Hubbard model and introduce the quantum master
equation that allows us to treat continuous dissipation. Our
method of choice for solving the full problem is the Gutzwiller
mean-field approximation, we discuss its advantages and
shortcomings. However, before solving the full mean-field
master equation, we consider in Sec. III two simpler, but
closely related, quench-type processes that introduce local
defects into the system. From these we learn about intrinsic
time scales and about the dark state of the system. We then turn
to continuous dissipation in Sec. IV and numerically study the
response of different phases in the full range of dissipation
strengths. Conveniently, our numerical results fit well into the
analytical framework of Drummond and Walls [34] for a single
dissipative cavity, and this enables an analytical insight into
our problem. In particular, from the analytical solution we
can directly obtain results in the limit of weak and strong
dissipation. Furthermore, the analytical formula yields a very
reasonable approximation of the numerical data for the whole
range of the dissipation strength for the uniform superfluid.
This is an important simplification that will allow for an
easy and direct comparison of the theoretical prediction with
experimental data, once they are available. We conclude with
a discussion of our results.

II. MODEL AND METHOD

We consider a two-dimensional (2D) bosonic gas, trapped
in a significantly deep optical lattice described by a single-band
Bose-Hubbard model, with local (U ) and nearest-neighbor
(W ) interactions:

H = −J
∑
〈ij〉

(a†
i aj + H.c.) + U

2

∑
i

ni(ni − 1)

−
∑

i

μni + W
∑
〈ij〉

ninj , (1)

where 〈ij 〉 enumerates pairs of nearest neighbors i and j , J is
the hopping integral, and μ is the chemical potential.

The ground state |ψ0〉 of the system without long-range
interaction (W = 0) is the well-known superfluid phase away
from integer filling, or for strong enough hopping. At integer

filling and beneath a critical hopping value, a phase transition
into the Mott-insulator state occurs [35–37]. The inclusion
of long-range interaction has already been investigated in
the context of dipolar gases [38–41] and new phases have
been shown to appear: charge-density-wave (CDW) order for
half-integer filling as well as supersolid (SS) order, which
is characterized by both nonzero CDW order and a finite
condensate order parameter. The CDW order parameter in
this system is given by

CDW = 1

N/2

∣∣∣∣∣
∑

i

(−1)i〈ni〉
∣∣∣∣∣ (2)

and the condensate order parameter is defined locally on each
site by φi = 〈ai〉.

To study the ground states and unitary dynamics of this
model we use a Gutzwiller ansatz [35,42]:

|ψGW〉 =
∏
⊗i

∑
n

cin(t)|n〉i ,

which captures exactly the physics of the system in both the
noninteracting and atomic limits. The energy functional and
time evolution of the Gutzwiller ansatz treats the hopping at
the mean-field level, while the long-range interaction provides
a mean-field correction to the local chemical potential.
Explicitly we solve

i
d|ψGW〉

dt
= H̃ |ψGW〉, H̃ =

∑
i

H̃i

with the nonlinear effective “Hamiltonian”

H̃i = −J
∑

j∈〈ij〉
(φ∗

j ai + a
†
i φj ) + U

2
ni(ni − 1)

−
⎛
⎝μ − W

∑
j∈〈ij〉

〈nj 〉
⎞
⎠ ni,

where φj = 〈aj 〉 is the local condensate order parameter.
This ansatz restricts the validity of our dynamical simulations
to phases with condensate order. One of its main recent
applications has been in understanding properties of the
amplitude mode. The description has been proven to be able
to capture and explain the main experimental findings [43,44].

The ground-state phase diagram for varying chemical
potential around half filling is shown in Fig. 1, for W = 0.25U .
Numerically exact quantum Monte Carlo studies [40,41] have
shown that mean-field calculations [39,45,46] overestimate the
size of the supersolid region, yet the supersolid phase remains
stable at fillings �0.5 for zW � U (z is the coordination
number of the lattice) in the close vicinity of the density-
wave regime. Therefore, in the following, we will consider
parameter regimes within the uniform superfluid phase with
and without long-range interaction and regimes deep within
the supersolid phase, close to the density-wave lobe, where we
expect that quantitatively correct predictions can be obtained
based on mean-field GW considerations. For this to hold true,
we are also limited to the zero-temperature case. Our units
are set by the choice U = 1, unless otherwise stated. For the
presentation of numerical data we chose a fixed noninteger
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FIG. 1. (Color online) The ground-state phase diagram close to
half filling within the Gutzwiller approximation for the extended
Bose-Hubbard model (1) on the square lattice for W/U = 0.25.
We plot the value of the CDW order parameter CDW , Eq. (2). This
quantity takes the following values: CDW = 1 in the density-wave
phase, CDW = 0 in the uniform superfluid phase, and an intermediate
value in the SS phase. A line of constant density n = 0.52 is also
shown.

density n = 0.52, and either W = 0 or W = U/4, although
we have also tested a range of other parameters.

The final ingredient in our simulation is a loss term that
acts on a single site to remove individual particles. This has
been considered before and can be shown, through a variety
of representations of the loss process, to result [5,6,11] in the
following Lindblad equation:

∂ρ

∂t
= −i [H,ρ] + �

2
(2alρa

†
l − {nl,ρ}), (3)

where in our case a single site l is affected by the loss and
we also apply the Gutzwiller ansatz to the density matrix ρ ≡∏

⊗i

∑
nm cinm|n〉i〈m|i . The constant � describes the strength

of dissipation and can be experimentally tuned by changing
the strength of the applied electron beam [15].

To simulate the time evolution numerically, we will con-
sider several different regimes of parameters J , U , W , and �

for a finite system with open boundaries but without a trap.
We first determine the ground state |ψ0〉 of H̃ using imaginary
time propagation. Finally, starting from ρ(t = 0) = |ψ0〉〈ψ0|
we solve the master equation by propagating it in real time
using standard differential equation solvers.

The accuracy of the above mean-field approximation
improves as the coordination number of the lattice increases.
For this reason, we would expect our final results for the
uniform superfluid state to be even more accurate on the 3D
lattice. On the other hand, the supersolid region in the phase
diagram is expected to shrink as the dimension changes from
two to three [41].

III. WITHOUT DISSIPATION

Before discussing the solution of the master equation in its
entirety, we first probe the unitary dynamics of the system due
to the presence of a defect originating on the lossy site. To this
end, we prepare the system in the ground state |ψ0〉 and either
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FIG. 2. (Color online) Time dependence of the density of the
central site after it has been completely depopulated at t = 0 for
the uniform superfluid state (a) and SS state (b). The insets in (b)
show the densities immediately after the defect has been introduced
and at later moment when the system has recovered.

(a) completely depopulate the site l or (b) turn off the couplings
to the neighboring sites and completely depopulate the site l.
These are quench-type processes that give us an insight into
the intrinsic relevant time scales of different phases.

In the first protocol we monitor the time dependence of the
density of the central site after complete depopulation at t = 0,
Fig. 2. In the superfluid phase [Fig. 2(a)] we observe persisting
oscillations with the period 1/J . The oscillation amplitude
decays faster when there are no long-range interactions in the
system. From the data presented in Fig. 2 we may conclude
that the system recovers from the initial defect on a time scale
approximately proportional to the inverse hopping rate. On
the contrary, the healing time of the typical SS phase is much
longer [see Fig. 2(b)], on the order of ∼10/J . These time
scales will have direct implications on the dynamics in the
limit of weak dissipation strength.

In the second protocol we suddenly remove the four central
links of the lattice at the same time as depopulating the central
lattice site, Fig. 3. The recovery of the system with this type
of defect is much more rapid than the sudden depopulation
alone that we studied above, as can be seen in Fig. 4(a). In
this figure, we show the change in the particle density on
the sites next to the decoupled site [nl+1(t)] as a function
of time. As we see, without any nearest-neighbor repulsion,
sites next to the defect lose some of their initial density,
while strong enough nearest-neighbor repulsion leads to the
opposite effect. The reason for the quick response is visible in
the long-term behavior: The system approaches the ground

(a) (b) (c)

FIG. 3. (Color online) Density distributions realized by the
quench-type process in which four central lattice links are suddenly
removed and the central site is completely depopulated. The system
is initially in the ground state in the SS phase (left), then the defect
is introduced (middle), and finally, the system adjusts to this change
(right). Parameters used are J = 0.06U and W = 0.25U .
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FIG. 4. (Color online) Left: Time dependence of the density on
the nearest-neighbor site nl+1(t) induced by the second quench
protocol. Right: Saturated averaged values limt→∞ nl+1(t) and
limt→∞ |φl+1(t)| as functions of J with and without repulsive nearest-
neighbor interactions.

state with the four links removed (which we will refer to as
|ψimp〉). For nonzero W this state exhibits a “screening” effect
[see Fig. 3(c)]. Simply, the density can become much larger at
these neighboring sites, due to the lack of long-range repulsion
from the central site and the bulk of the system is only weakly
affected by the quench process.

We will show in the next section that the process of
removing the central links is directly related to the limit of
strong dissipation. For this reason it is important to understand
in more detail how the saturated values of density and
condensate order parameter of these nearest neighbors depend
on J , U , and W . As can be seen in Fig. 4(b), in the case of
W = 0 the condensate shows a monotonic increase in the order
parameter on the neighboring sites with increasing J , but there
is only a very weak dependence on J throughout the studied
range. More complicated behavior is found for W = U/4.
For the total initial density fixed at n = 0.52 and J less than
≈0.103U , the ground state is a supersolid and we always
choose to remove links around the site of higher initial density.
First we notice that saturated values of nl+1 are always higher
than the initial values [see Fig. 4(a)] a result of the above-
mentioned “screening.” Now, we compare what happens for
J = 0.06U to J = 0.07U . Initial values of nl+1 are of the same
order, but stronger effective repulsion in the first case yields
a higher saturated value of n

imp
l+1. In our simulations, the local

condensate fractions f = |φl+1|2/nl+1 of neighboring sites
are very high, i.e., close to 1, and the change in the density
is followed by the related change in φl+1. This explains the
decrease of n

imp
l+1 and φ

imp
l+1 with J observed for weak J . On

the other hand, the initial value of nl+1 is significantly higher
for J = 0.09U compared to J = 0.06U , corresponding to a
smaller density-wave order parameter CDW, and this leads
also to the higher saturated value. Hence, the decrease in the
initial value of the density-wave order parameter leads to the
increasing saturated values for J = 0.08U − 0.1U . Finally,
for strong enough J , the initial state is a uniform superfluid
and exhibits similar qualitative behavior as found for W = 0.

IV. CONTINUOUS LOSS PROCESS

We now introduce dissipation by the use of the master
equation (3). Similar to the above scenarios, we choose to
affect only the central site of the lattice. This localized impurity
produces several effects: a continuous loss of particles from
the system, a disturbance of the bulk and a restructuring of

the density profile around the lossy site. In our finite-sized
systems the disturbance in the bulk will eventually be reflected
from the boundary but, as we are interested in the properties
of an infinitely large system we consider only time scales
smaller than this limit. Achieving larger times in our simulation
hence requires larger systems. Although we consider a finite
system and the only true “steady-state” solution is that of zero
particle density, the solutions we obtain can be considered to
be quasisteady state, as long as the loss rates are much smaller
than the total number of particles.

A. Numerical results

We first present results for parameter regimes with and
without long-range interaction, whose ground state is a ho-
mogeneous superfluid. Two examples, with snapshots of their
time-dependent density profiles, are shown in Fig. 5, where we
immediately see that the effect of long-range interaction is to
enhance the charge-density-wave order in the bulk disturbance.
To estimate the speed of propagation of this perturbation, we
monitor the density of an arbitrary bulk site as a function of
time as shown in Fig. 6. We choose a site which is ten sites
away from the center and observe that it has a nearly constant
density for initial times and then exhibits weak oscillations.
The defect propagation velocity is obviously set by J , but it
seems to be slightly higher in the presence of repulsive W .
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FIG. 5. (Color online) Real-space density profiles after time
propagation showing the bulk properties, starting from an initial
homogeneous superfluid. Parameters used are J/U = 0.12, � =
0.2U , and W = 0 (on the left) and W = 0.25U (on the right).
Although the profiles share many similarities, note the enhancement
of the charge-density-wave pattern in the bulk disturbance with the
inclusion of long-range interactions.
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FIG. 6. (Color online) Density of a site in the bulk (ten sites
away from the central lossy site) in the presence of continuous local
dissipation, � = 0.2U .

Quantitatively, it is more useful to look at the density on
both the lossy site and its neighbors, as shown in Figs. 7(a)
and 7(b). We see here that these sites very quickly reach their
steady-state values within a few hopping time scales, and that
the steady-state particle density on the lossy site itself mono-
tonically decreases with increasing �, approaching zero in the
large-� limit. This means that strong loss prevents hopping to
the lossy site and is evidenced in our results in the limit � � 1,
where we see that the steady-state density of neighboring sites
approaches that of the ground state with central links removed,
|ψimp〉, as discussed in Sec. III. As is to be expected, in the
opposite limit � → 0 the saturated values of both lossy site
and neighboring sites are close to their initial values.

We now turn to the supersolid phase, for which density
profiles of lossy site and neighbours are presented in Figs. 7(c)
and 7(d). We fix the lossy site to be an initially high density
site of the checkerboard distribution. The most striking point
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FIG. 7. (Color online) Temporal evolution of the local densities
starting from an initially homogeneous superfluid W = 0, J = 0.1U

(top row) or starting from an initial supersolid state W = 0.25U ,
J = 0.06U (bottom row). Left: Density of the lossy site as a function
of time. Right: Density of the site next to the lossy site as a function
of time. The horizontal line in the right plots shows the asymptotic
value of n

imp
l+1, which is reached for strong �.

that we observe here is the behavior for weak loss. Even for
loss rates of � = 0.02U , we see that the steady-state values
are significantly altered compared to the initial values. This
behavior can be related to the time scales considered in Sec. III,
where we found that complete recovery of a supersolid state
requires many hopping times. Instead, for the shorter time
scales considered here, a steady state with different density
distribution becomes the relevant one. For all values of � we
observe an increase of the density on the neighboring site. This
behavior reflects the “screening” effect that was found for the
ground state with central links removed, |ψimp〉, as discussed
in Sec. III, which we again obtain in the limit � � 1.

We must also mention that our results for weak loss may not
truly reflect the limit of � → 0. While in the superfluid the re-
laxation rate at which the density profiles return to equilibrium
is related to J , yielding the criterion � < J which is satisfied
in our simulations, relaxation rates in the supersolid phase
are slower and may also depend on higher-order processes in
perturbation theory (e.g., J 2/W ). Unfortunately the rigorous
investigation of even weaker loss rates requires accessing very
large simulation times and consequently infeasibly large lattice
sizes in order to neglect finite-size effects.

B. Analytical insight

1. Density profiles

Within our approach, the study of local dissipation reduces
to a set of coupled single-site Hamiltonians. In particular, the
Hamiltonian of the central site that is directly exposed to the
dissipation has an effective pumping term F (t):

Hl = −(μ − 4Wnl+1)a†
l al + U

2
a
†
l a

†
l alal

+F (t)a†
l + F ∗(t)al, (4)

where F (t) = −4Jφl+1(t) represents the incoming parti-
cles from the neighboring sites, obtained in the complete
Gutzwiller simulation. From the numerical data presented in
the previous section, we find that after an initial transient
regime both nl+1(t) and |φl+1(t)| reach nearly constant values.
Weak oscillations around averaged values are present even at
later times, but this turns out to be a subleading effect and we
may safely approximate nl+1(t) and |φl+1(t)| by constants.
The local Hamiltonian (4) for constant F in the presence
of dissipation has been explored in the context of isolated
driven photonic cavities [34]. In that other context, the F terms
represent the incident laser field, the dissipation � is a cavity
dissipation rate, and a balance between unitary and dissipative
dynamics leads to a local steady state. The exact solution for
the single cavity is known [7,34] and it gives a steady-state
density on the lossy site through

nl = 〈a†
l al〉 =

∣∣∣∣2F

U

∣∣∣∣
2 1

|c|2 × F(1 + c,1 + c∗,8|F/U |2)

F(c,c∗,8|F/U |2)
,

(5)
where c = 2[−(μ − 4Wnl+1) − i�/2]/U ,

F(c,d,z) =
∞∑
n

�(c)�(d)

�(c + n)�(d + n)
× zn

n!

053614-5
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is the hypergeometric function and �(x) is the Gamma
function. Given the a posteriori numerical values of φl+1

and nl+1, the analytical formula (5) matches very well with
our numerical results for nl . Equation (5) can be used to
directly determine the particle number on the lossy site, given
the condensate order parameter and density on the nearest
neighbors.

To employ this analytical solution, we must, however, fix
the chemical potential μ. Although the value of μ affects the
propagation of the Hamiltonian only by a global phase factor,
the analytical derivation of (5) relies on a time-independent
value of F , which in turn requires φi(t) = φi . If we assume
that our numerical results have reached a steady state, then it is
clear that |φi | must be time independent; however, the choice of
μ affects the time dependence of the phase of φi . Fortunately,
the value of μ obtained by fixing the required particle number
in the ground state has exactly this property, which one can see
through d〈âi〉|ψ0〉/dt = i〈[Ĥ ,âi]〉|ψ0〉 = 0. As this value of μ

reproduces the steady-state density profiles in both the limit of
� → 0 (corresponding to the homogeneous ground state) and
the limit of � � 1 (corresponding to the ground state with
central site and links removed), we can assume it is a good
approximation for all values of � between these limits. Note
that this value of μ is independent of the description of the
“bath” to which the master equation is coupled—any relative
offset between the system and bath, e.g., a chemical potential
difference, which would appear in the derivation of the master
equation, has already been assumed to be absorbed into the
parameter �.

2. Effective loss rates

The experimentally accessible quantity relevant to
our simulations is the total number of expelled atoms
N (t) = Ntot(t = 0) − Ntot(t) per time. We determine this
through

dN(t)

dt
= −Tr

(
N̂tot

dρ

dt

)
= �nl(t), (6)

where N̂tot = ∑
i n̂i is the total number of particles and we have

made use of the vanishing trace Tr([N̂tot,H̃ ]ρ) = 〈[N̂tot,H̃ ]〉 =
0. Hence, we see that the global loss rate is determined by nl(t).

We show plots of the total number of particles lost in Fig. 8
and of the loss rate dN/dt in Fig. 9 for both the superfluid

0

20

40

60

80

100

0 10 20 30 40 50

N
(t

)

t J

Γ/U=0.08
Γ/U=0.2
Γ/U=0.8
Γ/U=2.4

Γ/U=0.08
Γ/U=0.2
Γ/U=0.8
Γ/U=2.

0

1

2

3

4

5

0 2 4 6 8 10 12

N
(t

)

t J

(a) (b)

FIG. 8. (Color online) Time dependence of the total number of
particles lost in the (a) superfluid phase (W = 0, J = 0.1U ) and
(b) supersolid phase (W = 0.25U , J = 0.06U ). After a brief transient
of strong loss as the central site is depleted, the system quickly reaches
a quasisteady state, from which an approximately constant loss rate
can be extracted.
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FIG. 9. (Color online) Off-site density and condensate order pa-
rameter (left column) and decay rate dN/dt (right column) as
functions of dissipation strength for a homogeneous superfluid
with (a),(b) W = 0, J = 0.1U and (c),(d) W = 0.25U , J = 0.12U ,
and (e),(f) supersolid with W = 0.25U , J = 0.06U . The quantum
Zeno effect is apparent as the decay rate vanishes in the limit of
strong dissipation in all cases. Using analytical arguments and the
given off-site condensate order parameter, we can obtain near exact
agreement with the numerical loss rate. For weak loss, there is a
linear dependence on � [dotted line; for clarity, shown only in
(b)] whereas for strong loss we observe the asymptotic form (7)
(continuous line). The dashed blue line represents the full Eq. (5)
used in (6), with off-site parameters taken directly from numerical
simulations, as shown in the left column. The dot-dashed line gives
a simplification—large � values for off-site parameters are used
throughout the whole range of � in Eq. (5).

and supersolid phases. In all cases, initially the number of
expelled particles grows rapidly as the lossy site is emptied.
In the quasisteady state, when the dissipation is balanced by
hopping, a constant current of expelled particles develops, and
therefore constant loss rates dN/dt can be directly extracted
from numerical data.

To prove that our system has indeed reached the local
quasisteady state, we compare numerical results for effective
loss rates with results obtained by using numerical values
for off-site parameters (Fig. 9, left) in Eqs. (5) and (6). We
find complete agreement as shown in Fig. 9, right, except
for very weak dissipation in the supersolid phase. In this
case, the dynamics is very slow and the system has not yet
reached the steady state during the monitored time interval.
But, although this mapping works perfectly, it still requires
complete knowledge of the off-site expectation values. We can
obtain a more applicable approximation through some further
simplifications. In the case of uniform superfluid phases, we
obtain nearly perfect agreement between analytical estimates
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and the numerical simulations by using a constant φl+1 in
the whole range of �, which is shown in Fig. 9 as the green
(dot-dashed) line. The analytical estimate (5) has only one
problem: We must know the value of φl+1 exactly. This is
often not available a priori in experiment and is of course
modified by the presence of the dissipation. However, we
can easily perform a nondissipative Gutzwiller calculation for
given experimental parameters, to determine the value of φl+1

in the ground state, and use this as an approximate value of φl+1

to estimate the steady-state loss rate. Similarly, we may also
calculate the ground state with central links removed, which
is relevant in the limit � � 1. In the case of the supersolid
phase, we find stronger dependence of φl+1 and nl+1 on � that
cannot be simply replaced by a constant value.

When describing the regime of strong dissipation, the
analytical result (5) turns out to be very useful. Simply, by
taking the limit � → ∞ in Eq. (5) and using (6) we obtain

dN

dt
≈ 4z2

∣∣φimp
l+1

∣∣2 J 2

�

(
1 + 4(μ − zWnl+1)2

�2

)−1

, (7)

where we have explicitly indicated that the condensate order
parameter is to be taken from the ground-state solution with
central links removed, φ

imp
l+1, and z is the lattice coordination

number. This limit can be seen in Fig. 9 where it agrees well
with the full numerics for � > 1. In the opposite limit of
� → 0, the expected behavior is a linear dependence in � and
this is clearly a good approximation, as can also be seen in
Fig. 9.

The result captured in Eq. (7) describes the quantum Zeno
regime and is to some extent general. The leading J 2/�

dependence has been previously derived using an extended
perturbative approach [20] and by considering simplified
few-site Bose-Hubbard systems [27,29]. The essence of the
formalism in [20] is to consider the dark state of the system
which is, in our case, |ψ imp〉. The nonzero decay rate of this
state stems from the hopping events that couple it to states
with finite density on the lossy site. This effect is captured,
within the Gutzwiller ansatz, by Eq. (7). In the formalism
of [20], however, the coupling is not the Gutzwiller mean-field
hopping term but the original full hopping term. This leads
us to conjecture that the loss rates beyond mean-field theory
would depend also on the particle density of the neighboring
sites, not only on the condensate density, and hence be larger
than our results. Unfortunately, explicit calculations cannot be
performed without knowledge of the exact state.

When considering local dissipation as a measurement tool,
the main question is which properties of the observed system
we can extract from the measured effective loss rates. The
straightforward answer is given by Eq. (6)—effective loss
rates are directly related to the density of the lossy site. In
the limit of weak dissipation, this density closely corresponds
to the initial bulk density. However, our results indicate that
this limit is not always easy to reach, as for example in
the case of the supersolid phase. On the other hand, in the
large-� limit the effective loss rate is proportional to J 2/� and
related to the corresponding dark state. Within our description,
further dependence on microscopic parameters of the model
is contained in the proportionality constant |φimp

l+1| and in the
leading correction term (μ − 4Wnl+1)2. At approximately half
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FIG. 10. (Color online) Loss rates dN/dt for large dissipation
(�/U = 6) for varying J obtained by numerical calculations within
the Gutzwiller approximation and the analytical result in Eq. (7),
which requires the knowledge of the condensate order parameter at
the neighboring sites, taken directly from the numerical calculations
of Sec. III. Dashed lines show the J 2 dependence, while the vertical
line marks the supersolid-superfluid transition.

filling, as considered throughout our paper, the correction term
does not play a major role, yet at higher filling fractions it can
become more pronounced. The influence of a similar term
has been denoted as the nonlinear Zeno effect [27], since the
dissipation rate is reduced by interactions. We again emphasize
that the full interplay of U and � is captured by Eq. (5).

We now turn to further implications of Eq. (7) to understand
how the effective loss rate in the large-� limit is modified
by the presence of interactions. The answer is directly based
on the results for φ

imp
l+1 presented in Fig. 4(b) which we now

use in combination with Eq. (7). Semianalytical results are in
good agreement with full numerical calculations throughout
the entire supersolid regime and through the transition to the
superfluid phase with and without long-range interaction, as
shown in Fig. 10. Here we take a fixed value of �/U = 6 and
vary J to show that the form of Eq. (7) fits the numerical
data well. The trend of J 2 is clearly visible for W = 0
through the whole range of J . This is a direct consequence
of the fact that we are close to half filling. Without long-
range interactions, no quantum phase transition occurs at this
filling, and hence the condensate fraction is only weakly
dependent on J . Close to unity filling for example, the
condensate fraction would depend more strongly on J and
affect the J 2 behavior. The J 2 dependence is also apparent
in the presence of repulsive interactions in the superfluid,
where we find that effective loss rates are enhanced by W . On
the contrary, deep in the supersolid phase the J 2 dependence
is strongly suppressed and effective loss rates are much
weaker.

Based on the previous considerations, for a fixed value of
J and � we expect an increase of the effective loss rate with
increasing W , as shown in Fig. 11. However, eventually for
strong enough W , in our mean-field calculations we reach the
supersolid regime that finally leads to a suppression of the
dissipative loss.
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V. CONCLUSIONS

In this paper, we have addressed the dynamics of the ex-
tended Bose-Hubbard model induced by localized dissipation.
We have solved the master equation using the mean-field
Gutzwiller approximation and complemented our numerical
study by the analytical description of Drummond and Walls.
We have observed a regime of weak dissipation where effective
loss rates are almost linearly proportional to the initial density
and a regime of strong dissipation which exhibits the quantum
Zeno effect, where stronger dissipation leads to smaller
effective loss rates.

We have demonstrated that at the mean-field level, reason-
ably accurate loss rates in the quantum Zeno regime can be
calculated without the need for explicit numerical solutions of
the full dissipative problem. This can be achieved by taking a
single result from the simpler nonlossy Hermitian calculation
(regarding a quench-type process) as an input parameter for the
analytical theory of Drummond and Walls [34]. In particular,
in the case of a superfluid, this approximation turns out to be
a very good description of the effective loss rates for the full
regime of applied dissipation.

Based on these considerations, we have then estimated
effects of nearest-neighbor repulsive interactions in the regime
of strong dissipation: in the superfluid these interactions
lead to enhanced effective loss rates due to a mechanism
of screening of the local defect. On the other hand, when
nearest-neighbor interactions are dominant over the hopping,
and induce a supersolid phase, the process of dissipation is
strongly suppressed and effective loss rates decrease.

We expect our mean-field results to be even more quanti-
tatively accurate for the three-dimensional optical lattice and
uniform superfluid phase. From comparison to [20] which
introduces an effective model in the limit of strong dissipation,
we expect that corrections to the mean-field theory would
produce increased loss rates. Finally, we need to mention that
time-dependent nonequilibrium calculations within mean-field
theory are more accurate for superfluid rather than supersolid
systems, due to the contribution of higher-order hopping
processes.
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[20] J. J. Garcı́a-Ripoll, S. Dürr, N. Syassen, D. M. Bauer, M. Lettner,

G. Rempe, and J. I. Cirac, New J. Phys. 11, 013053 (2009).
[21] N. Syassen, D. M. Bauer, M. Lettner, T. Volz, D. Dietze, J. J.

Garcı́a-Ripoll, J. I. Cirac, G. Rempe, and S. Dürr, Science 320,
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