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Cloning in nonlinear Hamiltonian quantum and hybrid mechanics
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The possibility of state cloning is analyzed in two types of generalizations of quantum mechanics with nonlinear
evolution. It is first shown that nonlinear Hamiltonian quantum mechanics does not admit cloning without the
cloning machine. It is then demonstrated that the addition of the cloning machine, treated as a quantum or as a
classical system, makes cloning possible by nonlinear Hamiltonian evolution. However, a special type of quantum-
classical theory, known as the mean-field Hamiltonian hybrid mechanics, does not admit cloning by natural
evolution. The latter represents an example of a theory where it appears to be possible to communicate between
two quantum systems at superluminal speed, but at the same time it is impossible to clone quantum pure states.
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I. INTRODUCTION

The impossibility of cloning unknown quantum states is
a fundamental property of quantum systems [1,2]. It has
been used as a basis for information theoretic axiomatization
of quantum mechanics (QM) [3] and is crucial in several
quantum-information-processing tasks [4]. Roughly speaking,
state cloning is a process which involves at least two systems:
an object system whose state is to be cloned and a target
system whose state is transformed into the state which is
equal to the state of the object system. Often, and in order
to allow for the most general type of process, one includes
also an ancilla system, which in the context of cloning is
called the cloning machine. Standard simple proofs of no
cloning involve properties of quantum processes, such as (a)
linearity or (b) preservation of a nontrivial distance between
quantum states, and also use (c) the direct product structure
of composite quantum systems. The properties (a), (b), and
(c) are not independent in QM, but each of them implies
crucial differences between QM and classical mechanics
(CM). Modifying any of the three properties leads to gen-
eralization of QM, which is also different from CM. Some of
generalizations are mathematically inconsistent or in conflict
with other fundamental physical theories like special relativity
or thermodynamics [5,6]. Depending on the modification,
cloning of states in the modified theory might, but need not, be
possible. The possibility of cloning in a modified theory need
not be related to superluminal signaling, like it is in standard
QM. It is the purpose of this paper to discuss possibility of
cloning in two types of modifications of QM. Both types
of modified theories are formulated in the framework of
Hamiltonian dynamical systems (HDSs). Standard QM can
be formulated as a linear HDS on an appropriate phase space
[7,8]. Mathematically consistent generalizations of QM can
be obtained by modifying some of the standard QM properties
but remaining within the framework of HDS. It is known that
cloning is possible in classical mechanics with Hamiltonian
dynamics [9]. Thus, it is interesting to investigate the possibil-
ity of cloning within different Hamiltonian generalizations of
QM. The first class of modified theories that we study retains
all the kinematical properties of QM in HDS formulation
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but allows evolution given by general nonlinear Hamiltonian
equations. Weinberg [10] and Bialynicki–Birula and Mycielski
[11] nonlinear Schrödinger equations are actually of this
type. We abbreviate this type of theories as NHQM, which
stands for nonlinear Hamiltonian QM. The second type of
modified theory assumes that some of the degrees of freedom
(DFs) of the HDS corresponding to a bipartite system are
constrained to behave as classical DF [12,13]. We call this
type Hamiltonian hybrid mechanics (HHM). The constraint
implies nonlinear evolution of both classical-like DF (CDF)
and of quantum DF (QDF) [12,14], but also changes the way
in which the phase spaces of QDF and CDF are composed
to form the phase space of the total hybrid system. Thus, in
these types of theories the evolution is nonlinear and the tensor
product rule is not valid for all DF. Our main results are (a)
self-replication, i.e., a type of cloning in the restricted sense
without the cloning machine, is impossible in NHQM; (b)
inclusion of a quantum cloning machine makes the cloning
in NHQM possible, and (c) cloning with the object and the
target quantum systems and a classical cloning machine is
also possible with nonlinear hybrid evolution. Thus, these two
types of nonlinear generalizations of quantum mechanics, in
which the evolution of the total system is Hamiltonian, allow
the cloning of quantum states by natural evolution. However,
cloning is impossible in a type of HHM with the Hamiltonian
of a special mean-field form. These results are to be contrasted
with the known result that the cloning is impossible within
bipartite classical Hamiltonian systems (object and target),
but becomes possible within three-partite systems [9] (object,
target, and cloning machine). In the latter case the cloning can
be achieved by a linear symplectic map [9]. Thus, it seems
that if the object and the target are quantum (tensor product)
and the evolution of the total system that includes the machine
is Hamiltonian, then the cloning map is necessarily nonlinear,
irrespective of the quantum or classical nature of the cloning
machine. However, if all three systems are classical (Cartesian
product), then the cloning is possible by linear transformations
which are symplectic on the total phase space.

The structure of the paper is as follows: The next section
serves to recapitulate, very briefly, the Hamiltonian formu-
lation of QM and of the HHM, and then to formulate the
definitions of the the cloning and self-replication processes in
NHQM and in HHM. In Sec. III we prove our main results
concerning the cloning (and self-replication) in NHQM and in
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HHM. Section IV contains several remarks which provide a
discussion of our results. A summary is given in Sec. V.

II. FORMULATION OF CLONING IN HAMILTONIAN
QUANTUM AND HYBRID THEORIES

A. Hamiltonian formulation of quantum mechanics
and of hybrid mechanics

1. Hamiltonian quantum mechanics
and nonlinear generalizations

Quantum and classical mechanics can be formulated by
using the same mathematical framework of Hamiltonian
dynamical systems (M,ω,H ), where M is a symplectic
manifold, ω is the corresponding symplectic structure, and
H is the Hamilton’s function. Formulation of the classical
mechanics of isolated conservative systems using (M,ω,H )
is standard [15]. The formulation of quantum mechanics in
terms of (M,ω,g,H ), where g is an appropriate Riemann
structure, is perhaps less well known but shall not be presented
here in any detail since there exist excellent reviews [7,8].
Very briefly, the basic observation beyond the Hamiltonian
formulation of quantum mechanics is that the evolution of
a pure quantum state in a Hilbert space HN , given by the
Schrödinger equation, can be equivalently described by a HDS
on an Euclidean manifold M = R2N . Here N is the complex
dimension of the relevant Hilbert space. The manifold M is
just the Hilbert space considered as a real manifold, with the
symplectic and Riemann structures given by the real and the
imaginary parts of the Hilbert scalar product. The manifold
also possesses an almost complex structure J 2 = −I such that
g(x,y) = ω(x,Jy). Normalization and global phase invariance
of quantum states can be incorporated into the formulation of
the phase space of quantum states which is the projective
space PHN−1 ∼ S2N−1/S1, with the corresponding symplec-
tic, Riemann, and almost complex structures. However, in
our computation we shall use the Hamiltonian formulation
based on R2N , so that, when treating the problem of cloning,
we shall have to take care of the global phase invariance
explicitly. Representing a normalized vector |ψ〉 ∈ HN in
an arbitrary basis {|ej 〉}Nj=1 as |ψ〉 = ∑N

j=1 cj |ej 〉, one can

introduce the real canonical coordinates xj = (c̄j + cj )/
√

2�,
yj = i(c̄j − cj )/

√
2�, j = 1,2, . . . ,N , where bar indicates

complex conjugation. Change of the basis by a unitary map
involves a linear symplectic transformation of the canonical
coordinates. A generic point from M will also be denoted by
X or Xa , where a = 1,2, . . . ,2N is an abstract index, such that
Xa = xa , a = 1,2, . . . ,N and Xa = ya , a = N + 1, . . . ,2N .
If we want to stress that the point X corresponds to the vector
|ψ〉 ∈ HN we write Xψ , and vice versa |ψX〉 for the vector
corresponding to the point X. It should be stressed, perhaps,
that the canonical coordinates (xj ,yj ) have nothing to do with
the canonical coordinates of the classical system that after
quantization gives the considered quantum system with the
Hilbert space HN . The Hamilton’s function H (X) is given by
the quantum expectation of the Hamiltonian Ĥ in the state
|ψX〉: H (X) = 〈ψX|Ĥ |ψX〉. The Schrödinger dynamical law
is that of Hamiltonian mechanics:

Ẋa = ωab∇bH, (1)

where ωab is the standard unit symplectic matrix

ω =
(

0 1
−1 0

)
, (2)

where 0 and 1 are zero and unit matrices of dimension N .
In the Hilbert space QM and in Hamiltonian CM the

dynamical variables can be introduced formally as generators
of the isomorphisms of the respective relevant structures.
In QM these are self-adjoined operators generating unitary
transformations that preserve the Hilbert scalar product. In
the Hamiltonian formulation of QM the Hilbert scalar product
generates both the symplectic and the metric Riemann struc-
tures. The symplectic structure is preserved by Hamiltonian
vector fields of arbitrary smooth functions, but the metric
is preserved only by the Killing vector fields, i.e., by the
Hamiltonian vector fields generated by quadratic functions
of the canonical variables. In particular, the unitarity of the
QM evolution implies that the Hamilton equations (1) are
linear. All observables are represented by quadratic functions
A(X) on M and are the quantum-mechanical expectations of
the corresponding quantum observables A(X) = 〈ψX|Â|ψX〉.
On the other hand, the canonical coordinates of the quantum
phase space do not have physical interpretation. It is important
to observe that the Poisson bracket between two quadratic
functions is also a quadratic function and satisfies

{A1(X),A2(X)} = 1

i�
〈ψX|[Â1,Â2]|ψX〉. (3)

In what follows we shall need to consider a bipartite
quantum system composed of two systems with Hilbert spaces
HN1

1 and HN2
2 . The phase space of the total system is the

manifold M12 = R2N1N2 ∼ HN1
1 ⊗ HN2

2 . Of course, the space
M12 is much larger than the Cartesian product M1 × M2,
which is relevant for the formation of classical compound
systems. If |e1

j 〉 and |e2
k〉 are basis vectors in HN1

1 and HN2
2

respectively, with the corresponding canonical coordinates
(x1

j ,y
1
j ) and (x2

k ,y
2
k ), then the canonical coordinates (x12

l ,y12
l )

corresponding to the basis |e1
j 〉 ⊗ |e2

k〉 in HN1
1 ⊗ HN2

2 are given
by rather complicated formulas in general. Fortunately, we
shall need only the formulas in the most simple cases, further
simplified by a special choice of the target system state before
the cloning transformation. In what follows we denote the
composition of phase spaces of two systems with phase spaces
M1 andM2 byM1 	 M2, which meansM12 in the quantum
and M1 × M2 in the classical case.

The Hamiltonian formulation of QM suggests natural
formal generalizations [7]. Several such generalizations could
be seen as special cases of the theory called extended quantum
mechanics which was introduced and extensively studied in
Ref. [16]. The most obvious one is to consider a theory where
the evolution can be generated by functions which are not
quadratic [7,10,17] but to retain the assumption that only
the quadratic functions correspond to physical observables,
and to retain the composition rule for compound systems.
This would correspond to a nonlinear Schrödinger evolution
equation. Such a theory, which we abbreviate by NHQM, is
still a HDS with the same set of states and observables as in
QM, but the Hamiltonian evolution equations are nonlinear
and the metric is not evolution invariant. Since the proofs
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of the no-cloning property in QM are based on linearity or
unitarity of the QM evolution, it is interesting to investigate if
the cloning is possible in NHQM.

2. Hamiltonian hybrid theory

There is no unique generally accepted theory of interaction
between micro and macro degrees of freedom, where the
former are described by quantum and the latter by classical
theory. The reason is primarily because each of the suggested
theories has some unexpected or controversial features (see
Ref. [13] for an informative review). Partial selection of hybrid
theories can be found in Refs. [18–23]. Some of the suggested
hybrid theories are mathematically inconsistent, and “no-go”
type theorems have been formulated [24], suggesting that
no consistent hybrid theory can be formulated. Nevertheless,
mathematically consistent but inequivalent hybrid theories
exist [13,22,23]. The Hamiltonian hybrid theory, as formulated
and discussed, for example, in Refs. [12,13], has many of the
properties commonly expected of a good hybrid theory. In
fact, the dynamical formulas of the Hamiltonian theory are
equivalent to the well-known mean-field approximation, the
main novelty being that the theory is formulated entirely in the
framework of the theory of Hamiltonian dynamical systems,
which enables useful insights and methods of analysis [25–27].
Analysis of cloning in the Hamiltonian hybrid system is one
such application. In fact, we analyze the possibility of cloning
in general HHM where the Hamiltonian is not necessarily of
mean-field form and contrast the results with the HHM of the
restricted type where the Hamiltonian is of mean-field form.

The phase space in the Hamiltonian theory of a hybrid
classical-quantum system, denoted by M, is considered as a
Cartesian product M = Mc × Mq of the classical subsystem
phase space Mc with dimMc = 2Nc and of the quantum
subsystem phase space Mq with dimMq = 2Nq . Local
coordinates on the product are denoted (q,p,x,y), where
(q,p) ∈ Mc are called the classical degrees of freedom (CDF)
and (x,y) ∈ Mq are called the quantum degrees of freedom
(QDF). Notice that the classical and the quantum parts are
composed as if both were classical, i.e., there is no possibility
of entanglement between CDF and QDF. Generalized Hamil-
tonian hybrid theory is given by a Hamiltonian dynamical
system on the phase space M = Mc × Mq . In the general
case, nothing is supposed about the total Hamiltonian, and
it is only the structure of the phase space that justifies the
terminology of hybrid quantum-classical systems. The Poisson
bracket on M of arbitrary functions of the local coordinates
(q,p,x,y) is defined as

{f1,f2}M =
Nc∑
i=1

(
∂f1

∂qi

∂f2

∂pi

− ∂f2

∂qi

∂f1

∂pi

)

+ 1

�

Nq∑
j=1

(
∂f1

∂xj

∂f2

∂yj

− ∂f2

∂xj

∂f1

∂yj

)
. (4)

Thus, the Hamiltonian form of the hybrid dynamics on M as
the phase space reads

q̇ = {q,H }M, ṗ = {p,H }M,

ẋ = {x,H }M, ẏ = {y,H }M, (5)

where H is an arbitrary smooth function on the total phase
space M.

A particular case of HHM, treated, for example, in
Refs. [12,13] and equivalent to the mean-field approach,
is obtained by further assumptions about the form of the
Hamiltonian. The evolution equations of the hybrid system
are in this type of HHM given by the Hamiltonian of the
following form:

Ht (q,p,x,y) = 〈ψx,y |Ĥq + V̂int(q,p)|ψx,y〉 + Hc(q,p)

= Hc(q,p) + Hq(x,y) + Vint(q,p,x,y), (6)

where Hc is the Hamilton’s function of the classical
subsystem, Hq(x,y) = 〈ψx,y |Ĥq |ψx,y〉 is the Hamilton’s
function of the quantum subsystem, and Vint(q,p,x,y) =
〈ψx,y |V̂int(q,p)|ψx,y〉, where V̂int(q,p) is a Hermitian operator
in the Hilbert space of the quantum subsystem which depends
on the classical coordinates (q,p) and describes the interaction
between the subsystems. Despite the fact that the Hamiltonian
is a quadratic function of QDF (and arbitrary function of CDF)
the evolution of the QDF is nonlinear because of the coupling
between QDF and CDF.

It is important to mention the evolution of statistical ensem-
bles of hybrid systems in this type of HHM. Such an ensemble
is described by a probability distribution ρ(q,p,x,y), which
evolves by the Liouville equation with the Hamiltonian (6).
The following expression:

ρ̂(t) =
∫
M

ρ(q,p,x,y; t)�̂(x,y)dxdydqdp

=
∫
M

ρq(x,y; t)�̂(x,y)dxdy =
∫
M

ρ̂cl(q,p; t)dqdp,

(7)

where �̂(x,y) is a normalized projector onto the vector |ψx,y〉,
is a well-defined density matrix representing a state of the
QDF at each t . There are many ρq(x,y; t) giving the same
density matrix ρ̂(t). From the evolution equation satisfied
by Eq. (7), or from Eq. (5), it is seen that a pure state
|ψ(t)〉〈ψ(t)| obtained from an initial ensemble ρ(q,p,x,y) =
δ(q − q0)δ(p − p0)δ(x − x0)δ(y − y0) with CDF (and QDF)
in pure states is always a pure state of QDF. The evolution
equation satisfied by this pure state is in the form of a
(linear) Schrödinger equation with the Hamiltonian which is a
Hermitian operator that depends explicitly on (q(t),p(t)). On
the other hand, if the CDF are initially in a mixed state, a pure
state of the QDF will evolve into a mixed state. Furthermore,
it was shown in Ref. [26] that the evolution of a general ρ(t)
will involve explicitly the convex expansion (7), and not only
ρ(t). Therefore, it seems that this type of HHM can be used
for superluminal communication between distant subparts of
the quantum DF.

Discussion of cloning within the restricted type of HHM
with the classical part playing the role of the cloning machine
requires special treatment as compared with the general HHM.

B. Definitions of cloning and self-replication

Cloning is a process involving three systems: the object
system So with the state space So, a target system St with the
state space St the same as that of So, and an auxiliary system,

042115-3
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the cloning machine Sm, with the state space of dimension M

that is not specified in advance. It is said that cloning of some
arbitrary object state Xo ∈ So is possible if there is a state of
the target Xt,in ∈ St and a state of the machine Xm,in ∈ Sm

such that

Xo 	 Xt,in 	 Xm,in → Xo 	 {Xt = Xo} 	 Xm (Xo) . (8)

The arbitrary state of the object system is conserved by cloning;
one fixed state of the target and another fixed state of the
machine are chosen as initial, independently of the object state.
The fixed initial target state is mapped into the initial state
of the object. The final state of the machine might depend on
the object state Xo. It is not assumed that the final machine
state is uniquely related to Xo. Observe that the possibility
of cloning does not imply that the cloning is achieved with
any initial target and machine states, but only with a specific
choice of these states. The domain and the range of the cloning
map (8) are proper subsets of the sets of possible states of the
object + target + machine system.

The system So

⋃
St

⋃
Sm is characterized by its natural

evolution, and the question is if the cloning map belongs
to that class. In our case the natural evolution is given by
a Hamiltonian flow on So 	 St 	 Sm and thus preserves the
symplectic structure on So 	 St 	 Sm. In NHQM all three
systems are quantum and, as was stated in the previous section,
	 is the tensor product. In HHM we shall consider the case
when the object system and the target are quantum and the
machine is classical. Thus, in this case, 	 between the machine
and object + target is the Cartesian product. Alternatively,
which we shall not do, one could analyze cloning with all
three systems of the hybrid nature. The only fixed property
of the cloning problems within the Hamiltonian framework
is the canonical Hamiltonian evolution and the fact that pure
states are represented by points in the corresponding phase
spaces. If Xo and Xt represent phase space points in the
Hamiltonian formulation corresponding to the vectors |ψo〉
and |ψt 〉, respectively, then it is natural to assume that the
cloning is successful if at the output |ψt 〉 exp(iθ ) = |ψo〉, i.e.,

xi
t cos θ − yi

t sin θ = xi
o,

yi
t cos θ + xi

t sin θ = yi
o,

i = 1,2, . . . ,N. (9)

The role of the machine DF can be justified from two
different points of view. One is the operational point of view,
where the appearance of the cloning machine is natural. The
other role of the cloning machine is to actually enable the
object + target subsystem to evolve in a non-Hamiltonian way.
Quite analogously to the role of the machine in the standard
QM formulation of cloning, here the presence of the cloning
machine enables the total object + target + machine system
to evolve canonically while enabling a more general type of
evolution of the subsystem object + target. In this respect a
related more restrictive problem with no cloning machine
is sometimes considered. Such a process has been termed
self-replication and consists of mapping a fixed state of the
target system into an arbitrary state of the object system,
the latter remaining unchanged, but without any influence
of the third system. In the self-replication process the
object + target system is considered as isolated. Together

with the problem of proper cloning within NHQM (with the
cloning machine) we shall also analyze the possibility of
self-replication in such theories.

III. MAIN RESULTS

Our strategy to analyze the possibility of self-replication
and cloning will be the same in NHQM and HHM. Let us
denote by Motm the total phase space of the object + target +
machine system. By Min ⊂ Motm we denote the submanifold
of the total phase space of the form Mo 	 Xt,in 	 Xm,in,
where Xt,in and Xm,in are specific initial vectors representing
states of the target and the machine, respectively. We shall
all the time deal with vectors of unit norm. Similarly, we
denote by Mf ⊂ Motm the submanifold which is the image
of Min by the cloning map. Points in Mf are of the
form Xo 	 Xo 	 Xm,f (Xo), Xo ∈ Mo, and thus dimMf =
dimMin = dimMo. We then choose an arbitrary point X ∈
Min and two arbitrary normalized tangent vectors gX,hX ∈
TX(Min) ⊂ TX(Motm). The value of the symplectic area
ωX(gX,hX) is then computed. Cloning (or self-replication) is
represented by the mapping φ : Min → Mf with the tangent
map φ
 : TX(Min) → Tφ(X)(Mf ). Symplectic area between
the images of the two vectors ωφ(X)(φ
gX,φ
hX) is then
computed. If φ is a symplectic map, i.e., can be generated
by a piecewise smooth Hamiltonian flow, then

ωφ(X) (φ
gX,φ
hX) = ωX (gX,hX) . (10)

If Eq. (10) is not satisfied, for any choice of Xt,in,Xm,in, and
Xm,f , then the cloning (self-replication) map φ cannot be
realized by a Hamiltonian flow. To apply the procedure, we
shall write explicitly the cloning map φ and its tangent map
φ
, corresponding to the phase spaces Min and Mf with a
specific choice of the initial target and machine states in the
NHQM and HHM. The only difference will be in the way
the machine phase space Mm is added to the phase space
of the object + target.

In our discussion, we consider the simplest possible systems
as object, target, and machine. The object and the target are
each taken to be a single qubit. An arbitrary state of the object
qubit is a normalized C2 vector with complex coefficients
(α,β) corresponding to some basis of So. Furthermore, the
initial state of the target qubit will be represented by vector
(1,0) in a basis of St chosen in the same way as the basis
in So. This does not seem to be a restriction with crucial
consequences, but grossly simplifies explicit formulas for the
self-replication (and later cloning) map.

In the case of NHQM the machine is also a quantum system
and the coupling of it with the object + target is via tensor
product. In order to demonstrate that, in NHQM, cloning by a
symplectic (nonlinear) transformation is possible, it is enough
to assume that the cloning machine is also a qubit, set initially
in the state (αm,βm) = (1,0), represented in some basis of Sm.
Cloning is also possible by a symplectic map in the case of
general HHM, when the machine is a classical system with
two degrees of freedom and is coupled to the object + target
via the Cartesian product. However, an additional argument is
used to show that in the specific HHM with the Hamiltonian of
the form (6), i.e., quadratic in the QDF, cloning of the quantum
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state is impossible by symplectic transformation generated by
the Hamilton functions of the stated form.

A. Impossibility of self-replication in NHQM

Let us first illustrate the computations for the case of
self-replication in NHQM. The real dimension of Min with
normalized object states is three. In the complex notation the
initial point in Min representing the state of object + target
before self-replication is

Xin = (α,0,β,0), |α|2 + |β|2 = 1. (11)

Two normalized tangent vectors g and h in T (Min) at Xin are
given as

gre = (−g1αim + g3βre,0, − g3αre − g2βim,0), (12a)

gim = (g1αre + g3βim,0, − g3αim + g2βre,0), (12b)

with arbitrary real numbers g1, g2, and g3 chosen to respect
the unity norm. Analogous formulas apply to hre and him.
Subscripts re and im stand for real and imaginary parts. The
skew product of the two tangent vectors is

ω(g,h) = [g3(h1 − h2) + (g2 − g1)h3](αreβre + αimβim).

(13)

In formulas (12) and (13) we have, for the sake of brevity,
skipped the subscript indicating the related point Xin.

Image by the self-replication map φ of Xin, again in the
complex coordinates, is given by

Xf = (α2,αβ,βα,β2) exp[iθ (α,β)]. (14)

Notice the arbitrary phase factor added to the result of the
self-replication operation. Images of g and h by the tangent
map φ
 are given by rather long formulas which we do not
reproduce here. However, the skew product of φ
g and φ
h at
the point Xf is given by

ω(φ
g,φ
h) = 2[g3(h1 − h2) + (g2 − g1)h3]

× (αreβre + αimβim)(|α|2 + |β|2). (15)

Notice that the previous result is independent of arbitrary phase
factor. The ratio of the symplectic areas after and before the
application of the self-replication map is

ω(φ
g,φ
h)

ω(g,h)
= 2(|α|2 + |β|2) = 2. (16)

Thus, the self-replication map does not preserve the skew
product and therefore cannot be realized by any symplectic
map between Min and Mf .

B. Possibility of cloning in NHQM

Consider now the proper cloning map in NHQM with the
quantum machine included. Since we shall see that the cloning
map is symplectic with the cloning machine given by a qubit,
it is enough to assume this simplest realization of the machine.
The final state of the machine (αmf ,βmf ) is free to chose, and
the choice can be done such that the factor of two appearing
in the result of self-replication (16) can be canceled.

Formulas for the initial point and its image by the cloning
map for the indicated choice of initial states of the target and

the machine in the complex notation are given by:

Xin = (α,0,0,0,β,0,0,0), (17)

Xf = (α2αmf ,α2βmf ,αβαmf ,αββmf ,

×αβαmf ,αββmf ,β2αmf ,β2βmf ), (18)

where (αmf ,βmf ) denote the final state of the machine. The
tangent vector g is given by

gre = (−g1αim + g3βre,0,0,0,−g3αre − g2βim,0,0,0),

(19a)

gim = (g1αre + g3βim,0,0,0,−g3αim + g2βre,0,0,0),

(19b)

and analogously for h. The skew product between g and h

is

ω(g,h) = [g3(h1 − h2) + h3(g2 − g1)](αreβre + αimβim).

(20)

The images of g and h by the tangent map, their skew
product, and the ratio ω(φ
g,φ
h)/ω(g,h) are given by rather
long formulas, which depend on the final machine state.
However, we have found that the choice of final machine
state as (αmf ,βmf ) = (ᾱ,β̄), where the bar indicates complex
conjugation, renders the ratio equal to unity for the normalized
state (α,β) of the object. Therefore, the cloning map can be
realized by a symplectic transformation. From the standard
QM it follows that the symplectic cloning transformation in
NHQM must be nonlinear.

C. Possibility of cloning in general HHM

We chose the object and the target to be the same systems
and to be in the same states as in the case of NHQM. The
machine is chosen to be a convenient classical system with
two DF and coordinates (q1m,q2m,p1m,p2m) or in complex
notation (q1m + ip1m,q2m + ip2m) = (αm,βm). Formulas for
the initial point for the indicated special choice of initial target
and machine states are given in the complex coordinates by

Xin = (α,0,β,0,1,0) . (21)

The machine final state is free to choose. With the choice
(αmf = αim + iαre,βmf = βim + iβre) the state after cloning
operation is

Xf = (α2,αβ,βα,β2,αim + iαre,βim + iβre). (22)

Tangent normalized vector g is given by

gre = (−g1αim + g3βre,0,−g3αre − g2βim,0,0,0), (23a)

gim = (g1αre + g3βim,0,−g3αim + g2βre,0,0,0), (23b)

and similarly for tangent vector h. The skew product
between g and h is given by

ω(g,h) = [g3(h1 − h2) + h3(g2 − g1)](αreβre + αimβim).

(24)

The images of the normalized tangent vectors and their skew
product are again given by rather long formulas. However, the
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above choice of the machine final state renders the ratio
ω (φ
g,φ
h)

ω (g,h)
= 1, (25)

for normalized initial object states. Again, the cloning map can
be realized by a symplectic transformation.

D. Impossibility of cloning in the HHM with the
specific form of the Hamiltonian

Special form of the hybrid Hamiltonian (6) implies special
status of the cloning operation in this type of HHM, as
compared with the general case. In fact, due to the properties
of the evolution of pure hybrid states, summarized in Sec. II,
pure states of QDF remain pure if the initial state of CDF
is also pure. Furthermore, the scalar product between two
QDF pure states is preserved. Therefore, the standard no-
cloning argument from linear QM applies. Thus, cloning of
quantum states is impossible within the specific HHM with
Hamiltonian (6), and with classical DF assuming the role of
the cloning machine. Here we have an example of a theory
that does not admit cloning of pure quantum states, but whose
natural extension that includes ensembles admits superluminal
communication.

IV. DISCUSSION

Remark 1: Physical interpretation and consequences.
Cloning is commonly considered as an information-processing
task. From this point of view, the problem formulated in Sec.
II and discussed in Sec. III is rather formal and is concerned
with an idealized system that could never occur in information-
processing protocols with real systems. Pure states of isolated
systems and their idealized evolution are only probabilistically
related to information and its processing. Therefore, the
relation between the system’s states and information must be
probabilistic, and the processing of such information necessary
involves stochastic perturbations. This has been analyzed
in the standard QM [28]. The question of cloning in real,
experimentally available systems was not studied in the present
publication but is important in analyzing the fundamental
and practical consequences. In order to do that, one needs
to use probability ensembles, represented by distributions on
the relevant phase spaces and stochastic evolution equations.
We believe that only with such an analysis could one attempt
to draw conclusions as to the physical consistency of the
nonlinear HQM and HHM.

Remark 2: Cloning vs superluminal signaling. It is well
known that, if cloning would be possible in the standard QM
then, also in the framework of this theory, it would also be
possible to communicate information at superluminal speed.
It has also been claimed that the condition of no superluminal
signaling puts an upper bound on the fidelity of cloning, in
effect excluding the perfect cloning in QM [29]. The condition
of no superluminal signaling is in Ref. [29] expressed in terms
of convex expansions of mixed states. In the opposite direction,
it has been argued [2,17] that a nonlinear evolution of pure
quantum states would enable signaling at superluminal speed.
This is consistent with our results which show the possibility of
cloning in NHQM. However, the argument does not exclude
theories in which pure quantum states cannot be perfectly

cloned, but the superluminal signaling is possible. Mean-field
HHM with the special form of the Hamiltonian (6) is an
example of such a theory.

Remark 3: Cloning in classical mechanics. It is commonly
understood that perfect cloning of classical information con-
tained in a classical pure state is possible. Of course, in order to
discuss the possibility of cloning, one needs a precise definition
of the state space and the type of dynamics characterizing the
classical system. One formulation of the problem, particularly
relevant in fundamental physics and for comparison with
our results, is for the classical system modeled by using the
framework of classical Hamiltonian dynamical systems. States
of the system, the target, and the machine are described by the
corresponding symplectic manifolds, their union is given by
the Cartesian product and the symplectic structure on the total
space is such that the symplectic structures on the components
are obtained by the corresponding projections. It is known
that the self-replication is not, but the cloning is possible by
symplectic mappings on the total phase space, provided that
the machine space has enough dimensions [9]. The proof of
no self-replication is similar to the case in nonlinear quantum
mechanics, presented in Sec. III. The possibility of cloning
in Hamiltonian CM is established and discussed by concrete
examples of symplectic cloning maps. It should be stressed
that cloning is performed by linear symplectic mapping. On
the other hand, cloning in NHQM and general HHM can
be achieved by a symplectic map which must be nonlinear.
This seems to be the crucial difference between the theories
involving tensor or Cartesian products between the target and
the object systems.

Remark 4: Cloning in classical statistical mechanics.
Evolution of a probability distribution generated by a measure
preserving mapping of a phase space is by definition linear and
preserves the relative entropy between two distributions. These
two properties, i.e., preservation of a nontrivial (quasi) distance
between states and linearity are features of the Schrödinger
evolution of pure quantum states. Also, the space of statistical
states of a compound system, for example, L1(M1 × M2) can
be considered as the tensor product of L1(M1) and L1(M2).
Thus, all three ingredients that are used in the standard
proofs of no cloning in QM are also properties of classical
statistical mechanics. Therefore, one expects, and it has been
proved to be true [30], that cloning in classical statistical
mechanics is impossible. Due to the creation of correlations
between the subsystems, it is also possible to formulate the
question of cloning in a more general way, more akin to the
notion of broadcasting in QM. The answer to the question
of possibility of broadcasting in Hamiltonian CM is also
negative [30].

V. SUMMARY

We have analyzed the possibility of exact cloning of
unknown quantum states in two types of nonlinear general-
izations of quantum mechanics. Both types of generalizations
were formulated as Hamiltonian dynamical systems on appro-
priate phase spaces. In the first type, which we called nonlinear
Hamiltonian quantum mechanics (NHQM), the object, the
target and the machine are treated as quantum systems, and it
is shown that cloning can be realized by a nonlinear symplectic
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mapping. On the other hand, the process of self-replication,
involving only the system and the target, cannot be realized by
any symplectic transformation in NHQM. The other type of
nonlinear generalizations of QM which we treated describes
hybrid quantum-classical systems, again using the framework
of Hamiltonian dynamical systems. Here, the object and the
target are quantum, but the machine is a classical system. We
show that there exists a nonlinear symplectic transformation
which realizes the cloning operation. However, the cloning
transformation cannot be realized in the Hamiltonian hybrid
theory of the mean-field type, in which case the Hamiltonian
must be a quadratic function of the quantum degrees of
freedom and an arbitrary one of the classical degrees of

freedom. It would be interesting to try to extend these
results to the problem of broadcasting of mixed states in the
nonlinear generalizations. This would require analysis of the
Liouville evolution of densities and might result in possibility
of broadcasting also in the mean-field Hamiltonian hybrid
theory.
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