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We investigate the dynamics of a two-mode laser system by extending the two-mode Tavis-Cummings
model with dissipative channels and incoherent pumping and by applying the mean-field approximation in
the thermodynamic limit. To this end we analytically calculate up to four possible nonequilibrium steady states
(fixed points) and determine the corresponding complex phase diagram. Various possible phases are distinguished
by the actual number of fixed points and their stability. In addition, we apply three time-delayed Pyragas feedback
control schemes. Depending on the time delay and the strength of the control term, this can lead to the stabilization
of unstable fixed points or to the selection of a particular cavity mode that is macroscopically occupied.
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I. INTRODUCTION

Lasers build one of the key technologies in the current
world as their rich dynamical behavior and high degree of
control establish a solid basis for a wide range of applications
[1]. Specifically, time-delayed feedback control [2] can
effectively manipulate short and long time behavior of a laser
system [3]. Typical examples are the control of laser bistability
[4], chaos, and noise [5], as well as the manipulation of the
laser emission [6,7].

A common description of the controlled laser dynamics,
particularly in the case of a quantum dot laser, is based on the
semiclassical rate equations known as the Lang-Kobayashi
model [8]. It provides good agreement with the experiments
if the photon output power is high enough [9]. However,
there exists a more general microscopic quantum treatment
[10,11] which describes successfully the photon statistics of
laser light. It turned out that this microscopic laser theory
also represents an essential ingredient for describing the Bose-
Einstein condensation of photons [12], which has been realized
in dye-filled microcavities in a seminal experiment in Bonn
[13] and recently also in London [14]. Both lasing transition
and Bose-Einstein condensation of light may appear in such
systems under appropriate conditions, although the former
reveals nonequilibrium physics, whereas the latter represents
an equilibrium phenomenon. For low cavity losses and above
the external pumping threshold, the modes of the cavity
become thermally populated according to a Bose-Einstein
distribution with the macroscopically occupied lowest mode
[15]. However, for higher cavity losses the system behavior
switches to be laserlike, where one of the excited cavity modes
becomes macroscopically occupied and all thermal properties
are lost [16].

Here we work out a two-mode laser model which allows us
to study under which conditions one of the two cavity modes
becomes macroscopically occupied. To this end we extend
the Tavis-Cummings model and consider N noninteracting
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two-level atoms in a two-mode optical cavity with incoherent
pumping and decay channels. Starting from a quantum master
equation for the density operator, we apply a mean-field
approximation and determine the equations of motion for
the statistical averages of the respective system operators
in the thermodynamic limit. We find an analytical solution
for the steady states and obtain the resulting complex phase
diagram. Under proper conditions, either the lower or the
excited cavity mode can become macroscopically occupied.
Hence, our model can be seen as a minimalistic precursor of the
detailed model of photon condensation [12,16]. In this sense,
the former case could be referred to as condensatelike and the
latter case as a laserlike state of light, although a direct analogy
is not applicable due to the absence of the temperature scale
in our simplified approach. The richness of possible phases
even within this reduced model indicates that the inclusion of
realistic processes, like the thermalization via phonon dressing
of the absorption and emission of the emitters, can potentially
lead to an even larger variety of states.

Additionally, we design different feedback control schemes
to stabilize or to select one of the two radiating modes. The two-
mode laser, also known as two-color laser, with feedback was
already studied both experimentally [17,18] and theoretically
[19]. However, these studies within the Lang-Koboyashi model
were focused on switching between the two modes using a
non-Pyragas feedback type. In contrast to that, we apply here
the Pyragas type of feedback that was originally designed to
prevent chaos by stabilizing an unstable periodic orbit [20]. It
is generally known as a powerful tool to change the stability
of stationary states without modifying them. This is due to the
fact that the feedback control term vanishes in the stationary
state since it is proportional to the difference of the system
observable at two times, t − τ and t [21,22].

The paper is structured as follows. In Sec. II we introduce
the underlying model and apply a mean-field approximation
in the thermodynamic limit. In Sec. III we calculate the fixed
points, investigate their stability, and discuss the resulting
phase diagram. In Sec. IV we suggest several Pyragas feedback
control schemes to stabilize the unstable mode or to select
the mode of interest. Section V contains the summary of the
obtained results with a short outlook.
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II. MODEL

We consider N noninteracting two-level atoms inside a
two-mode cavity. The light-atom interaction is assumed to be
of the Jaynes-Cummings type [23]. Thus, the total Hamiltonian
of the system is

Ĥ =
2∑

i=1

ωiâ
†
i âi + �Ĵz + g√

N

2∑
i=1

(âi Ĵ
+ + â

†
i Ĵ

−) (1)

and represents an extension of the Tavis-Cummings (TC)
model [24,25] from one to two modes. Here, we put � = 1, and
â

(†)
i (i ∈ {1,2}) is a ladder algebra of the first or second cavity

mode with frequency ω1,2, where we assume ω1 < ω2 without
loss of generality. The collective angular momentum operators
are given by the sums Ĵz = 1

2

∑N
k=1 σ z

k and Ĵ± = ∑N
k=1 σ±

k

over all Pauli matrices of each two-level atom with energy-
level splitting �. The population inversion of the atomic
ensemble is directly related to Ĵz, while its dipole moment can
be expressed in terms of Ĵ±. The coupling between the atoms
and the optical mode assumes a rotating wave approximation
(RWA) and has the strength g/

√
N that is taken to be the

same for both modes. In spite of RWA, the TC model for
large values of g has its own physical relevance since it can
be experimentally realized in an ingenious setup using Raman
transitions [26,27].

To generate a lasing behavior and the interesting dynamics
we add decay channels and incoherent pumping to the system.
We note in passing that two-mode Jaynes-Cummings models
were studied in the past either with mode degeneracy [28,29]
or without dissipative effects [30], or without pumping of the
atomic system but in the presence of additional driving of
the cavity mode [31,32]. Following Ref. [33], we couple our
system to three different baths. Both cavity fields are damped
by coupling them to a zero-temperature bath of harmonic
modes with the characteristic decay rate κ , while the atomic
system radiates into the noncavity modes with a rate γ↓.
Additionally, the atomic system is incoherently pumped with
a rate γ↑. Pumping can be formally described as coupling the
atomic system to a bath of inverted harmonic oscillators [34].
All these effects are captured by the following Markovian
master equation of Lindblad type for the density operator ρ̂:

dρ̂(t)

dt
= −i[Ĥ ,ρ̂] − κ L[â1]ρ̂ − κ L[â2]ρ̂

− γ↑
2

N∑
k=1

L[σ̂+
k ]ρ̂ − γ↓

2

N∑
k=1

L[σ̂−
k ]ρ̂, (2)

with the Lindblad operator L[x̂]ρ̂ = x̂†x̂ρ̂ + ρ̂x̂†x̂ − 2x̂ρ̂x̂†.
Pumping effectively occurs provided that γ↑ > γ↓.

The dynamics of the statistical average 〈Â〉 = Tr(Âρ̂) of
an arbitrary system operator Â is described by d〈Â〉/dt =
Tr(Â ˙̂ρ). To obtain a closed set of semiclassical equations,
we perform the thermodynamic limit where the number N

of two-level atoms tends to infinity [35–39]. Therefore, we
factorize the averages of an atomic operator Â and a light
operator L̂ according to 〈ÂL̂〉 ≈ 〈Â〉〈L̂〉 and rescale them with
the atom number N , denoting the rescaled operator averages
by corresponding symbols without the hat symbol, i.e.,
J± ≡ 〈Ĵ±〉/N , Jz ≡ 〈Ĵz〉/N , and a

(∗)
1,2 ≡ 〈â(†)

1,2〉/
√

N , where

the asterisk denotes complex conjugation. The resulting mean-
field equations of the two-mode laser model are then

ȧ1 = (−κ − iω1)a1 − igJ−, (3a)

ȧ∗
1 = (−κ + iω1)a∗

1 + igJ+, (3b)

ȧ2 = (−κ − iω2)a2 − igJ−, (3c)

ȧ∗
2 = (−κ + iω2)a∗

2 + igJ+, (3d)

J̇− = (−	D − i�)J− + 2ig(a1 + a2)Jz, (3e)

J̇+ = (−	D + i�)J+ − 2ig(a∗
1 + a∗

2 )Jz, (3f)

J̇z = 	T (z0 − Jz) + ig(a∗
1 + a∗

2 )J− − ig(a1 + a2)J+,

(3g)

where we have introduced the abbreviations 	T = 2	D =
γ↓ + γ↑ and z0 = γ↑−γ↓

2(γ↑+γ↓) . Note that J− = (J+)∗ and Jz is
a real quantity, and by definition, one has −1/2 � z0 � 1/2.

In the one-mode limit, the corresponding equations similar
to Eqs. (3) represent a common example of a laser model. For

the critical value of gc = { κ	D

2z0
[1 + (ω1−�)2

(κ+	D )2 ]}1/2
, the optical

mode becomes macroscopically occupied, i.e., a phase transi-
tion occurs from a nonlasing to a lasing state. In the limit of
vanishing pumping and losses, i.e., 	T → 0,κ → 0, Eqs. (3)
describe the quantum phase transition in the Dicke model
with RWA from a normal to a superradiant phase [37,40–43].
Thus, the presence of the two modes and the pumping term
allows the generation of a much more complicated dynamics,
as either of the two modes can be macroscopically occupied.
Moreover, we can influence the dynamical evolution of the
system by applying different Pyragas time delay schemes,
which allows us to stabilize or destabilize the modes and to
select the transition type.

III. DYNAMICS WITHOUT FEEDBACK

Equations (3) describe the dynamical evolution of the two-
mode system depending on decay rates and pumping strength.
A steady state of these equations can be either a stable fixed
point or an oscillating state, i.e., a limit cycle. In the following
we provide an analytical description of the possible steady
states.

A. Steady states

The system (3) has a trivial fixed point a0
1 = a0

2 = (a∗
1 )0 =

(a∗
2 )0 = 0, (J+)0 = (J−)0 = 0, and J 0

z = z0, where no cavity
mode is occupied and the atomic ensemble has a stationary
population inversion with zero dipole moment. Due to the
U (1) symmetry of Eqs. (3), there also exist nontrivial solutions
that can oscillate in time with some characteristic frequency,
so that the observables, like the mode occupation a∗

1a1, reach
a fixed value. To find such steady-state solutions, we have to
determine the frame where also a

(∗)
1,2 and J± reach a fixed value.

Therefore, we switch into a frame rotating with frequency
ω, which has to be determined, i.e., we put ai → aie

−iωt ,
a∗

i → a∗
i e

iωt , J± → J±e±iωt . Note that this transformation
shifts the natural frequencies of both the cavity modes and the
atoms by ω, i.e.,

ωi → ωi − ω ≡ ωi,s , � → � − ω ≡ �s, (4)
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but does not change the observables like a∗
1a1. Setting ȧ

(∗)
1,2 in

the transformed equations (3a)–(3d) to zero, we can express
these cavity quantities in terms of J±. Next, setting J̇± to
zero in the transformed equations (3e)–(3f) with the cavity
quantities being eliminated, we find the requirement

0
!= J±{±2g2Jz[∓2κ + i(ω1,s + ω2,s)]

+ (	D ∓ i�s)(κ ∓ iω1,s)(κ ∓ iω2,s)}. (5)

For J± !
= 0 the previous equation determines the value of the

stationary atomic inversion:

J 0
z = (	D − i�s)(κ − iω1,s)(κ − iω2,s)

2g2(2κ − iω1,s − iω2,s)
. (6)

However, since J 0
z has to be real on physical grounds, its

imaginary part has to be zero. This condition enforces the
characteristic frequency ω to solve the equation

	D(ω1,s + ω2,s)(κ
2 + ω1,s ω2,s)

+ κ�s

(
2κ2 + ω2

1,s + ω2
2,s

) = 0. (7)

Note that, due to Eq. (4), Eq. (7) is a cubic equation in ω and
has up to three real solutions. For each real solution ω, the
real part of the expression for J 0

z in (6) gives the steady-state
expectation value

J 0
z = κ

(
	2

D + �2
s

)(
2κ2 + ω2

1,s + ω2
2,s

)
2g2	D[4κ2 + (ω1,s + ω2,s)2]

. (8)

The remaining transformed equation (3g) can be solved for
J+J− in the steady state, yielding

(J+J−)0 = 	T

(
z0 − J 0

z

)(
κ2 + ω2

1,s

)(
κ2 + ω2

2,s

)
2g2κ

(
2κ2 + ω2

1,s + ω2
2,s

) . (9)

Since J+J− has to be positive, the obtained steady-state values
are physical iff J 0

z � z0. If that is the case, the previous
equation fixes J± up to the phase factor. Therefore, we
may choose (J+)0 = (J−)0 =

√
(J+J−)0 as a steady-state

expectation. Finally, the corresponding expressions for a0
i

and (a∗
i )0 (i ∈ {1,2}) in terms of (J±)0 follow from their

transformed equations

a0
i = − ig(J−)0

κ + iωi,s

, (a∗
i )0 = ig(J+)0

κ − iωi,s

. (10)

With this we have found a complete set of steady-state
solutions for our two-mode model. Each physical solution
for a characteristic frequency ω corresponds to a different
nontrivial fixed point. Thus, together with the trivial fixed
point, the laser model possesses up to four different steady-
state configurations, whose stability properties we are going
to study in more detail in the next section.

B. Stability of steady states

First, we investigate the stability of the fixed points. This is
checked as usual by linearizing the mean-field equations (3)
in the rotated frame around the fixed point and by determining
the eigenvalues of the linearized system. An eigenvalue with
a positive (negative) real part would support the solution
divergence (convergence) from (to) the fixed point, which

FIG. 1. (Color online) The phase diagram shows the total number
of fixed points and the number of stable fixed points in the g-κ plane.
For small κ , there exist up to four physical fixed points, two of which
are stable. In region (c) all fixed points are unstable. Table I sums
up the main properties of regions (a)–(g). The green color gradient
encodes the mode population ratio n1/n2, where ni = a∗

i ai . The
lower part shows the effect of increased pumping. Parameters: ω1 =
2�,ω2 = 4�,γ↓ = 0.1�,γ↑ = 0.2� (upper),γ↑ = 0.5� (lower).

is then unstable (stable). If not mentioned otherwise, we
choose the following parameter values: ω1 = 2�, ω2 = 4�,
γ↓ = 0.1�, γ↑ = 0.2�.

Figure 1 shows the main result in the form of a complex
phase diagram in the g−κ plane for two different pumping
rates γ↑ = 0.2�,0.5�, encoding the total number and the
number of stable fixed points. We see that, if the atom-field
coupling is too small, only one trivial solution exists which
corresponds to region (a). By overcoming some critical value
for g, at least one nontrivial solution appears; thus the ω1

and ω2 modes become macroscopically occupied. For smaller
κ rates, we see a rich structure in the phase diagram. One
can have different combinations of possible and stable fixed
points, which are represented by a combination of color and
dashing in Fig. 1. For example, the region (d) has two nontrivial
physical solutions, but only one is stable. Table I provides
the corresponding overview. For larger κ and g values, the
phase diagram contains region (c) without any stable fixed
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TABLE I. Overview of the total number of fixed points #(FP) and
the number of stable fixed points #(SFP) within different regions of
the phase diagram in Fig. 1.

Area (a) (b) (c) (d) (e) (f) (g)

#(FP) 1 2 2 3 3 4 4
#(SFP) 1 1 0 1 2 1 2

points. Here the system observables, like the mode occupation,
oscillate with fixed frequency and amplitude; thus a limit
cycle represents the only stable solution in this area. Note
that we have found no stable limit cycles except in region
(c). The coloring in the (b) region shows the ratio n1/n2 of
occupation of both modes, where ni = a∗

i ai . We observe that
the occupation ratio and thus the dominating mode changes
with the dissipation rate κ and the coupling strength g. Note
that in the regions (e) and (g), where we have two stable
fixed points, both ratios n1/n2 ≷ 1 for fixed κ and g values
exist. Especially in this region one of the modes is much more
occupied and vice versa; thus the emitted radiation comes here
mainly from one mode.

The lower part of Fig. 1 shows the effect of increased
pumping. We see that the region with more than two fixed
points (d)–(g) becomes larger, while the limit cycle region (c)
is shifted to higher κ values.

Figure 2 shows the occupation of both modes as a function
of coupling strength g for a fixed value of κ = 0.01�, along the
horizontal gray arrow in the phase diagram of Fig. 1. We plot all
possible stationary solutions including the unstable ones. The
unstable fixed points are dashed, while the occupations, which
belong to the same fixed point, have the same color and the
same thickness. The curves of the second mode are additionally
marked with crosses. We see different types of bifurcations
while increasing g. First, at g = 0.3� a pitchfork bifurcation
occurs, where the trivial solution becomes unstable and a new

FIG. 2. (Color online) All stationary solutions of the mean-field
Eq. (3) for the occupation of both modes (n1,n2) are plotted as a
function of g for fixed κ value along the horizontal dashed arrow in
Fig. 1 (upper). The unstable solutions are dashed, the solution set is
marked by the same color and the same thickness. The trivial solution
with zero-mode occupation is always present but unstable beyond a
critical g. Note that all occupations in the plot are shifted by 10−2 due
to the log scaling. Parameters: κ = 0.01�,ω1 = 2�,ω2 = 4�,γ↓ =
0.1�,γ↑ = 0.2�.

FIG. 3. (Color online) Attraction region of two stable fixed points
from Fig. 2 depending on the initial population of the cavity modes
n1(0) and n2(0). Used parameters: J +(0) = J −(0) = 0.185, Jz(0) =
0.076, g = 2�, κ = 0.01�, ω1 = 2�, ω2 = 4�, γ↓ = 0.1�, γ↑ =
0.2�.

stable solution occurs. Afterwards, an additional bifurcation
takes place at g = �, where an unstable solution splits up
from the trivial one and becomes stable at g = 1.5�. Later, at
g = 3.2�, a third bifurcation with an unstable solution splits
up. For the used parameter values Eq. (7) has three real roots;
nevertheless at least one of the observables in Eqs. (8) and (9)
is unphysical, for instance, a negative mode population ni or
an imaginary J+J− value. Thus we have only two nontrivial
solutions for g > 1.5�. The two solutions allow the lower
or the upper mode to have a high occupation, respectively.
Note that the solution depends crucially on the chosen initial
condition. Figure 3 shows an example of this behavior where
we vary the initial state of the cavity modes n1(0),n2(0) for a
given initial state of the atomic system. In the light blue area
(diagonal lines) the system converges to the fixed point FP 1,
in the dark blue area (vertical lines), to the fixed point FP 2
from Fig. 2.

In the next section we present different Pyragas feedback
schemes. They allow us to switch between a macroscopic occu-
pation of the two cavity modes irrespective of the chosen initial
condition and also to change further dynamical properties like
the fixed point attraction region of the considered model.

IV. DYNAMICS WITH FEEDBACK

We now demonstrate the impact of time-delayed feedback
control on the system. As a feedback signal we always use
one of the system properties and restrict ourselves only to
Pyragas-type feedback [20]. Therefore, we insert into the
mean-field equations, Eqs. (3), an additional control term,
which is conditioned on the difference of a system property at
two different times t − τ and t , where τ represents a time delay
between the signal determination and the feedback into the
system. Due to the rich phase diagram, even without feedback
in Fig. 1, it seems impossible to engineer one feedback scheme
which works in every part of the phase diagram. Hence, we
have to find for each part of the phase diagram a scheme
which produces the desired results, such as mode selection or
stabilization. However, the chosen feedback may not work in
other parts of the phase diagram or will have other influences
onto the system dynamics. In the following, we present three
feedback schemes for different purposes and parts of the
phase diagram, give a possible implementation picture for each
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FIG. 4. (Color online) (left) Pyragas feedback control of Jz (11)
stabilizes the nontrivial fixed point in region (c) of phase diagram
Fig. 1. Without feedback the stationary solution is a limit cycle
(gray dotted curves). With feedback the solution converges to a fixed
point (solid curves). Parameters: τ = �−1, λ = 0.4�. (right) Control
diagram in τ -λ plane. Vertical scale bar gives the largest real part
of the eigenvalues of the linearized equations. In the blue region the
fixed point becomes stable. Green dots show the boundaries from an
analytical expression [see Eq. (A7)]. Parameters: κ = 0.5�, g = 5�,
ω1 = 2�, ω2 = 4�, γ↓ = 0.1�, γ↑ = 0.2�.

scheme, and demonstrate exemplarily their influence onto the
system evolution.

A. Stabilization of fixed points

The phase diagram in Fig. 1 has regions with nontrivial
unstable steady states, which do not attract the solution. If no
stable point exists, the solution oscillates periodically. This
occurs only in the region (c); see gray dotted curve in Fig. 4
(left) obtained using the parameters κ = 0.5�, g = 5�. To
stabilize the unstable nontrivial fixed point, we suggest the
following feedback scheme of Pyragas type [20]:

J̇z → J̇z − λ[Jz(t − τ ) − Jz(t)]. (11)

Thus we modify the population inversion by a difference of the
Jz spin component at two different times t − τ and t , where τ

denotes the time delay parameter. Additionally, this difference
is scaled by λ. The feedback term in Eq. (11) can be realized,
for instance, by extra pumping of the atomic system or by
opening additional decay channels, depending on the value of
the feedback signal λ[Jz(t − τ ) − Jz(t)].

The solid lines in Fig. 4 (left) show feedback actions for
a point in the region (c). We see that for t � 1/�, the mode
occupations become constant; thus the fixed point is stabilized
and the feedback signal vanishes. In contrast, without feedback
the oscillations with finite amplitude are always present (gray
dotted line). The right part of Fig. 4 shows the control diagram
[44] in the τ−λ plane. The color encodes the largest real part of
all existing eigenvalues, obtained from the linearized equation
of motion [21] (see Appendix A 1). The fixed point is stable
if this value is negative, which is the case in the blue area
(Fig. 4, right). For the boundaries (green dots in Fig. 4, right)
an analytical expression can be derived (see Appendix A 1).

B. Selection of the dominantly occupied mode

We now focus on region (e), which features two stable
nontrivial fixed points. The main interest in this region is the

occupation of the respective cavity modes. In each of both
solutions one mode has a high occupation, whereas the other
one has a low occupation (see Fig. 2). In that way, the light
leaking out from a cavity is generated by mostly one of the
two modes. Without feedback the dominating mode is selected
by the initial condition (see Fig. 3), which is usually hard
to control. Interestingly, we found a feedback scheme which
allows one to select the mode of interest, i.e., to select the
frequency of the radiated light, which was also achieved for a
quantum dot laser in Ref. [19] with a non-Pyragas feedback
type. We argue that our feedback type can switch the system
behavior between a macroscopic occupation of the higher or
the lower cavity mode.

To select the lower mode ω1 we modify its frequency in
Eqs. (3) as

ω1 → ω1 + λ[n2(t − τ ) − n2(t)], (12)

where n2 = a∗
2a2 represents the occupation of the second

mode. This feedback type is also measurement based, as the
mean photon flux is proportional to the mean occupation of
the photonic modes [45,46]. Thus, the frequency of the first
mode has to be changed according to the difference of mean
photon fluxes of the second mode at times t − τ and t .

However, the previous (or similar) feedback scheme does
not work well for selecting the upper mode ω2. For that purpose
we modify the feedback scheme according to [47]

ȧ1 → ȧ1 − λ[a1(t − τ ) − a1(t)], (13)

which is now a coherent type of feedback, as one can interpret
it as a direct control without measurement [47]. One possible
realization is the back coupling of emitted photons by a mirror,
where the mirror distance fixes the time delay τ [48]. This
scheme works for a properly chosen τ parameter [21] as,
for instance, τ = 2π/ω (or multiples of it), where ω denotes
the characteristic frequency of the rotated frame determined
by Eq. (7). This choice guarantees that the feedback term in
Eq. (13) vanishes for t � 1/�.

The action of both feedback types is shown in Fig. 5 for
the system parameters κ = 0.005�,g = 2� and the feedback
parameters λ = 0.01�,τ = �−1 (upper) or λ = �,τ = 2π/ω

(lower), where ω denotes the rotating frame frequency deter-
mined from Eq. (7). Solid marked curves show the cavity mode
occupations with feedback, dashed curves without feedback.
Both feedback schemes destabilize only one fixed point in
region (e) of Fig. 1; thus the system converges to the other
one. In the top figure we see the action of feedback Eq. (12).
Without the feedback, the excited mode ω2 has a dominant
population (dashed violet line), whereas with control its
occupation becomes low (violet line with markers) and instead
the ground mode ω1 (red line with markers) is macroscopically
occupied. The bottom figure shows the opposite behavior.
Instead of the lower mode (red, dashed), the higher mode
is macroscopically occupied (violet line with markers). Note
that both stable steady states exist without feedback in region
(e) of Fig. 1. However, their attraction regions depend on the
initial condition, as is shown without feedback in Fig. 3. We
emphasize that with feedback the selection of modes works
independently of the chosen initial condition for the tested
parameter values.
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FIG. 5. (Color online) Usage of feedback schemes in region (e)
of Fig. 1 for driving the system toward a macroscopic occupation
of the lower (top) or higher cavity mode (bottom). (Top) Feedback
scheme Eq. (12) selects highly populated ground mode (red line
with markers), whereas (bottom) control type Eq. (13) selects highly
populated excited mode (violet line with markers). The inset (bottom)
shows the zoom for small photon numbers. Without feedback the
other modes have a macroscopic population (dashed violet and red
lines in both figures). Parameters: λ = 0.01� (top), λ = � (bottom),
κ = 0.005�, g = 2�, ω1 = 2�, ω2 = 4�, γ↓ = 0.1�, γ↑ = 0.2�.

Figure 6 shows the control diagram in the τ -λ space
with κ = 0.005�, g = 2� for the feedback type Eq. (12)
obtained from a linear stability analysis. We see that there
are parameter regions where only one of the fixed points
becomes unstable and also where both fixed points become
unstable. In the blue-dotted area the fixed point with n2 � n1

becomes unstable, whereas in the green-dashed region another
fixed point with n1 � n2 is destabilized. The boundaries are
calculated analytically (see Appendix A 2). In order to reach
the fixed point with a macroscopic occupation of the lower
cavity mode, we have to choose the parameters in the region
having only blue dots. Fixing the feedback parameter in the
region having only green dashes (arrow in the diagram) should
select the fixed point with a macroscopic population of the
higher cavity mode. However, there are some exceptions. The
fixed point with n2 � n1 attracts the solution if the initial
condition is rather close to it; otherwise the solution converges

FIG. 6. (Color online) Stability diagram for Pyragas feedback
type Eq. (12). In the dashed (dotted) region the first (second) fixed
point (FP), related to a macroscopic population of the lower (higher)
cavity mode as in Fig. 2, becomes unstable. Parameters: κ = 0.005�,
g = 2�, ω1 = 2�, ω2 = 4�, γ↓ = 0.1�, γ↑ = 0.2�.

to a limit cycle, which appears in this case in the presence of
Pyragas control [22]. Limit cycle solutions are also present in
the parameter area where both fixed points become unstable
due to the time-delayed feedback control.

V. SUMMARY AND OUTLOOK

In this paper we have investigated the mean-field dynamics
of a two-mode laser model based on an extended Tavis-
Cummings model in the thermodynamic limit without and
with time-delayed feedback. The corresponding mean-field
equations can be solved analytically in the steady state. Even
without feedback control this model exhibits a complex phase
diagram with multiple stable fixed points. Our Pyragas feed-
back schemes allow us to drive the system to different phases
by selecting or stabilizing one preferred stationary solution.

We studied also other feedback schemes of the Pyragas
type, but they led to similar results as already shown. However,
especially in phases with a combination of unstable and stable
nontrivial fixed points, it is difficult to design a feedback
scheme which stabilizes or selects one stable configuration
for a wide range of initial conditions. The reason for this is
that the Pyragas control type affects the stability of all fixed
points. For example, the stabilization succeeds only close to the
corresponding fixed point in the sense of the linear stability
analysis. Farther away from the fixed point, we have often
observed the appearance of limit cycles with large attraction
regions or even chaotic solutions, which is a known feature
in laser systems with feedback [49] and also occurs for other
nonlinear dynamical systems with time delay [50–53].

Since our calculations were done at a semiclassical level
by restricting ourselves to first-order cumulants, we expect
that the results should hold in the thermodynamic limit,
where the number N of two-level atoms tends to infinity.
On the one hand, the fluctuations scale like 1/

√
N with

the number of atoms N [34]. On the other hand, the laser
dynamics or a condensation is usually studied at this level.
Furthermore, the semiclassical regime of the quantum-optical
models like Dicke [54] or Lipkin-Meshkov-Glick [55] predicts
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correctly their main properties, like observable averages or
the occurrence of a quantum phase transition [37,39,56].
However, going beyond the factorization assumption could
be performed by including higher-order cumulants, e.g., by
using the Gaussian approximation, which involves first- and
second-order cumulants [36,38,57].

It would be certainly interesting to analyze the impact
of control on the quantum fluctuations. This could be
investigated with other approaches to feedback [58,59], which
usually requires a high numerical effort. In this respect a
promising feedback scheme was introduced in Refs. [60]
and [61], which allows one to control the entanglement and
light bunching by structured environment and converges to a
Pyragas control type in the one excitation limit. However, the
general quantum version of Pyragas control type remains an
unsolved question. A new, conceptually significant approach
has been recently introduced in Ref. [62], although it appears
to be numerically demanding.

Finally, we note that it would be worthwhile to extend
our two-mode laser model with the thermalization mechanism
along the lines of Refs. [12] and [16]. This would yield a
minimal model to study the transition between a condensate-
like and a laserlike state, which originate from a macroscopic
occupation of the lower and higher cavity mode, respectively.
Adding Pyragas feedback control terms as suggested here
should thus allow one to switch the system behavior between
condensatelike and laserlike.
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APPENDIX

In the following we show how to determine the boundary
condition in the stability diagrams Fig. 4 (right) and of Fig. 6 in
the presence of time-delayed Pyragas feedback control terms
Eq. (11) and Eq. (12), respectively.

1. Stabilization of fixed points

Linearizing the equation of motion (3) together with the
feedback condition Eq. (11) we obtain the equation

δv̇(t) = A δv(t) + B δv(t − τ ), (A1)

where v = (a1,a
∗
1 ,a2,a

∗
2 ,J+,J−,Jz), δv gives a deviation from

the fixed point v0 determined via the procedure given in
Sec. III A, and we have introduced the matrices

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−iω1,s − κ 0 0 0 0 −ig 0
0 iω1,s − κ 0 0 ig 0 0
0 0 −iω2,s − κ 0 0 −ig 0
0 0 0 iω2,s − κ ig 0 0
0 −2igJ 0

z 0 −2igJ 0
z i�s − 	D 0 −2ig((a∗

1 )0 + (a∗
2 )0)

2igJ 0
z 0 2igJ 0

z 0 0 −i�s − 	D 2ig
(
a0

1 + a0
2

)
−ig(J+)0 ig(J−)0 −ig(J+)0 ig(J−)0 −ig

(
a0

1 + a0
2

)
ig((a∗

1 )0 + (a∗
2 )0) −	T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B = λ · (0,0,0,0,0,0,1)T ⊗ (0,0,0,0,0,0,1).

The stability condition is then [21]

0 = det [(A − B) − B · e−τ − 1]. (A2)

The fixed point is stable if all possible solutions for 

have a negative real part. From Eq. (A2) the equation for
phase boundaries can be obtained as follows. At the phase
boundaries,  has a vanishing real part. Thus, by replacing
 → i� (� ∈ R) in Eq. (A2) and calculating the determinant,
we obtain

0 = e−i�τ

6∑
j=0

cjAj�
j +

7∑
j=0

cjBj�
j , (A3)

cj =
{

1, j even,

i, j odd,
(A4)

where Ai , Bi , i ∈ {1,2, . . . .7} are real coefficients which
depend on the system parameters both explicitly and implicitly
via the fixed point solution, and on the feedback strength

λ. However, the corresponding expressions are too long for
showing them here.

Splitting the equation into real and imaginary parts, we
obtain the following two equations:

0 = C1 + C2 cos(�τ ) + C3 sin(�τ ),
(A5)

0 = C4 + C3 cos(�τ ) − C2 sin(�τ ),

where

C1 = B0 + B2�
2 + B4�

4 + B6�
6,

C2 = A0 + A2�
2 + A4�

4 + A6�
6,

(A6)
C3 = A1� + A3�

3 + A5�
5,

C4 = B1� + B3�
3 + B5�

5 + B7�
7.

Squaring and summing Eqs. (A5), we can eliminate the τ

dependence and obtain a 14th-order polynomial equation in
�. This provides up to 14 solutions for �, but only two of
them turn out to be real. Next, we sum both of the Eqs. (A5)
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together in a suitable way in order to eliminate the sin term.
The resulting equation can then be solved for τ as

τ = 1

�
arccos

(
−C3C4 + C1C2

C2
2 + C2

3

)
+ 2π

�
z, z ∈ Z. (A7)

This yields the boundaries in Fig. 4 (right), which perfectly
agree with the corresponding numerical calculations. Two
valid solutions for � build the

⋃
-shaped structure in the

diagram, whereas z is responsible for its periodic structure.

2. Selecting the fixed point

The procedure is similar to Appendix A 1, but the feedback
condition is given now by Eq. (12). The matrix B is then
redefined as

B = −iλ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 (a∗
2 )0a1

0 (a∗
2 )0a1

0 0 0 0

0 0 −a2
0(a∗

1 )0 −a2
0(a∗

1 )0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The further procedure is the same. First we calculate the
determinant Eq. (A2) and write it in a similar form as

Eq. (A3):

0 = e−i�τ

4∑
j=0

cj Ãj�
j +

7∑
j=0

cj B̃j�
j , (A8)

cj =
{

1, j even,

i, j odd.
(A9)

As the parameters Ãj ,B̃j are real, Eq. (A8) can be split into
real and imaginary parts, which yields

0 = C̃1 + C̃2 cos(�τ ) + C̃3 sin(�τ ),
(A10)

0 = C̃4 + C̃3 cos(�τ ) − C̃2 sin(�τ ),

where

C̃1 = B̃0 + B̃2�
2 + B̃4�

4 + B̃6�
6,

C̃2 = Ã0 + Ã2�
2 + Ã4�

4,
(A11)

C̃3 = Ã1� + Ã3�
3,

C̃4 = B̃1� + B̃3�
3 + B̃5�

5 + B̃7�
7.

From the upper equations one can then eliminate the τ

dependence to determine possible � values. With this τ can
be calculated as in Eq. (A7), but Ci is then replaced by C̃i . The
resulting (�,τ ) combinations are the boundaries in Fig. 6.

[1] A. E. Siegman, Lasers (University Science Books, Mill Valley,
CA, 1986).

[2] W. Just, A. Pelster, M. Schanz, and E. Schöll, Philos. Trans. R.
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