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Dark-polariton bound pairs in the modified Jaynes-Cummings-Hubbard model
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We investigate a one-dimensional modified Jaynes-Cummings-Hubbard chain of N identical QED cavities
with nearest-neighbor photon tunneling and periodic boundary conditions. Each cavity contains an embedded
three-level atom which is coupled to a cavity mode and an external classical control field. In the case of two
excitations and common large detuning of two Raman-resonant fields, we show the emergence of two different
species of dark-polariton bound pairs (DPBPs) that are mutually localized in their relative spatial coordinates.
Due to the high degree of controllability, we show the appearance of either one or two DPBPs, having the
energies within the energy gaps between three bands of mutually delocalized eigenstates. Interestingly, in a
different parameter regime with negatively detuned Raman fields, we find that the ground state of the system is
a DPBP which can be utilized for the photon storage, retrieval, and controllable state preparation. Moreover, we
propose an experimental realization of our model system.
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I. INTRODUCTION

The interaction between light and matter is one of the
most fundamental and basic processes in nature, and it
represents a milestone in our understanding of a broad range
of physical phenomena. The recent experimental success in
engineering strong interactions between photons and atoms
in high-quality microcavities opens up the possibility to use
light-matter systems as quantum simulators for many-body
physics [1]. Key examples as first-principles proposals are
quantum phase transitions of light in coupled cavities [2–4],
quantum fluids of light (see [5]) and the Mott-insulator-
to-superfluid phase transition of polaritons in an array of
coupled QED cavities [6–11]. Coupled cavities are realized
in a variety of physical systems, among them microcavities
and nanocavities in photonic crystals [12]. These have paved
the way to study strongly correlated phenomena in a controlled
way by using such systems. Richness in these systems emerges
from the interplay of two main effects. At one side, light-matter
interaction inside the cavity leads to a strong effective Kerr
nonlinearity between photons. By controlling the atomic level
spacings as well as the cavity-mode frequency, it is possible
to achieve a photon-blockade regime [13–16] where photon
fluctuations are suppressed in each cavity. On the other
side, photon hopping between neighboring cavities supports
delocalization and competes with the photon blockade.

At the end of the past century, Fleischhauer and Lukin
introduced the theoretical concept of dark-state polaritons
(DSPs), form-stable coupled excitations of light and matter
associated with the propagation of quantum fields in electro-
magnetically induced transparency (EIT), and showed their
potential usage as quantum memories for photons [17,18].
Since then, DSPs have been in the focus of intense theoretical
and experimental investigations [19–33]. The first proposal
for realization of strong interactions among DSPs and Mott-
insulator-to-superfluid phase transition thereof was given by
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Hartmann et al. [9]. They demonstrated the possibility to
generate attractive onsite potentials for polaritons yielding
highly entangled states and a phase with particles much
more delocalized than in superfluids. Moreover, two-polariton
bound states, composite excitations of two polaritons that may
be spatially confined together, were predicted by Wong and
Law [34]. Very recently, two-polariton bound states have been
related to spin-orbit interactions by Li et al. [35]. Both are
features of the systems described by the one-dimensional
Jaynes-Cummings-Hubbard model (JCH) and represent an
important connection between condensed matter physics and
quantum optics. In such systems, it is possible to realize various
many-body effects where the particles of interest are photons
rather than electrons.

In this paper, we present a scheme based on a modified
Jaynes-Cummings-Hubbard model (MJCH) that enables the
formation of two different species of spatially, mutually
localized dark-polariton bound pairs (DPBPs). Our scheme
is based on N identical coupled QED cavities with periodic
boundary conditions. Each cavity embeds a single three-level
atom. A cavity mode and an external control field, which are
in two-photon Raman resonance, drive the transitions from
the two atomic ground states to the excited state. We assume
that a common single-photon detuning of the fields is large
compared to the coupling strengths. Under such conditions, the
description of the three-level atoms is effectively reduced to
ground-state two-level systems with tunable coupling strength
between the ground levels and controllable level Stark shifts.
Hence, our model circumvents the drawbacks of the excited-
state spontaneous emission and provides a tunable extension of
two-polariton bound states of the classical Jaynes-Cummings-
Hubbard model [34]. Furthermore, we find that when the
common detuning of the coupling fields is negative, the
lowest-energy eigenstate of the system becomes a mutually
localized DPBP of a new type that may be used as a quantum
memory of light. This may find potential use in quantum
information processing and controllable state preparation.

This paper is organized as follows. In Sec. II, we recapit-
ulate the standard Jaynes-Cummings model and focus on its
spectrum and eigenstates. In Sec. III, we discuss the modified
Jaynes-Cummings model where we derive the modified
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Jaynes-Cummings Hamiltonian from a bare model. Further,
we analyze the eigenstates and highlight the differences to
the standard Jaynes-Cummings model. In Sec. IV, we present
the considered model system and extend the modified Jaynes-
Cummings model to a modified Jaynes-Cummings-Hubbard
model, highlighting that it features the formation of bound
states of two dark-polaritons. In Sec. V, we present a detailed
discussion of the two-excitation subspace and explain the for-
mation of dark-polariton bound pairs (DPBPs), accentuating
their tunability through the control field Stark shift. In Sec. VI,
we demonstrate an application of a ground-state DPBP as a
quantum memory on which storage and retrieval of a single
photon can be performed, while the second photon remains not
influenced by the storage and retrieval process. Even though
two photons are bound, exactly one photon can be addressed.
The state composition of the ground-state DPBP can be tuned
by the relative importance of the intercavity photon hopping,
e.g., increasing the common single-photon detuning |�|. In
Sec. VII, we propose an experimental realization of our
model system, where we state not only promising candidates
to the creation of one-dimensional chains of N -coupled
QED cavities, but also name single � atoms which can be
considered. In addition, we point out that for Cs the measured
strong-coupling constant gm fits very well with our theoretical
prediction, where the formation of DPBPs as well as the
storage and retrieval process can be seen. Finally, In Sec. VIII
we draw our conclusions.

II. STANDARD JAYNES-CUMMINGS MODEL

Within this section, we recapitulate the standard Jaynes-
Cummings model (JC). Especially, we focus on its spectrum
and eigenstates. In this model, a two-level atom with ground
level |g〉 and excited level |e〉 having energies ωg and ωe

interacts with a single mode of an electromagnetic field of
frequency ω0 that couples the transition |g〉 → |e〉 with the
strength g0. In the (rotating-wave) approximation (RWA), JC
Hamiltonian has the form (� = 1) [36,37]

Ĥ (JC) = ω0n̂ + δσ̂+σ̂− − g0(âσ̂+ + â†σ̂−), (1)

where ĉ† (ĉ) is the photonic creation (annihilation) operator and
σ̂+ = |e〉〈g| (σ̂− = |g〉〈e|) is the atomic raising (lowering)
operator. n̂ = ĉ†ĉ + σ̂+σ̂− is the number operator of the
combined photonic and atomic excitations (polaritons) which
is a conserved quantity, i.e., [Ĥ (JC),n̂] = 0. δ = ωe − ω0 is the
detuning. Due to the conservation of n̂, Ĥ (JC) in the subspace
{|g,n〉,|e,n − 1〉} is represented with the block matrix hn:

hn =
(

ω0n −g0
√

n

−g0
√

n ω0n + δ

)
, (2)

with n = 1,2,3, . . . being the total number of excitations.
The matrix in (2) is a 2×2 matrix and can be analytically
diagonalized. The eigenenergies are given as

En =
{

En± = ω0n + 1
2 [δ ± χn(δ)], n � 1

E0 = 0, n = 0
(3)

with χn(δ)=
√

δ2 + 4g2
0n being the generalized Rabi fre-

quency and + stands for the higher and − for the lower
eigenenergy, while the eigenstates are

|n,+〉 := sin (θn)|g,n〉 + cos (θn)|e,n − 1〉, (4a)

|n,−〉 := cos (θn)|g,n〉 − sin (θn)|e,n − 1〉. (4b)

n = 0 corresponds to the state of zero polaritons. It takes on
the form

|0,±〉 ≡ |0,g〉 = |0〉, (5)

whereas the occurring mixing angle θn is defined as

θn = 1

2
arctan

(
2g0

√
n

δ

)
. (6)

The eigenstates (4) are called polaritons. Polaritons are low-
energy quasiparticles which are composed of photonic and
atomic excitations in superposition. As we change the mixing
angle θn by a rotation from 0 to π

2 , which basically corresponds
to a change of the detuning δ, we tune the polaritons to either
pure photonic or pure atomic excitations in a reversible manner.
Due to the contribution of the excited atomic state |e,n − 1〉,
these polaritons in a more precise way can be called bright
polaritons similar to [17–19,33].

III. MODIFIED JAYNES-CUMMINGS MODEL

For the subsequent discussion, we need to derive the mod-
ified Jaynes-Cummings (mJC) Hamiltonian which describes
an effective interaction of a � system with a highly detuned
mode of an electromagnetic and classical field. We show that
due to the large, common single-photon detuning �, i.e.,
|�| � |gm|,|
|, it is possible to circumvent the drawback
of the excited-state spontaneous emission that would plague
realizations of the JC model by using atoms and optical
cavities [37]. Moreover, we focus on the discussion of the
eigenstates and eigenspectrum in two specific cases which
naturally arise in our case.

A. Derivation of the modified Jaynes-Cummings
model Hamiltonian

We consider a single photon in a single-mode QED cavity
in which a � three-level atom is embedded. The ground levels
are |g〉 and |f 〉 with their level energies ωg and ωf , whereas
the excited level |e〉 with level energy ωe is detuned by a
large, common single-photon detuning � with respect to two
coupling fields. The cavity field with frequency ωm couples
the transition |g〉 → |e〉 with strength gm. Further, a classical
control field with frequency ωc and Rabi frequency 
 couples
the transition |f 〉 → |e〉. Our bare model Hamiltonian (� = 1)
has the form

Ĥbare(t) = Ĥc + Ĥa + Ĥint(t), (7a)

Ĥc = ωmĉ†ĉ, (7b)

Ĥa = ωgσ̂gg + ωf σ̂ff + ωeσ̂ee, (7c)

Ĥint(t) = −(gmĉσ̂eg + g∗
mĉ†σ̂ge + 
e−iωct σ̂ef

+
∗eiωct σ̂f e), (7d)
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where Ĥc denotes the free-field Hamiltonian of the QED
cavity, Ĥa stands for the free-atomic Hamiltonian, and Ĥint(t)
describes the interaction of the fields with the atom. ĉ† (ĉ) is
the photonic creation (annihilation) operator and σ̂αβ = |α〉〈β|
(α,β ∈ {g,f }) are the atomic operators. Ĥbare(t) in (7) satisfies
the time-dependent Schrödinger equation

i∂t |�(t)〉 = Ĥ ′(t)|�(t)〉. (8)

We move to a rotating frame in which (7) is time independent.
The corresponding gauge transformation [19,33] has the form
(� = 1)

Ĥ T = Û (t)Ĥbare(t)Û †(t) + i∂t [Û (t)]Û †(t), (9)

where Û (t) is a unitary transformation. Under the gauge (9),
Ĥbare(t) reads as

Ĥ T
bare = Ĥc + Ĥa + Ĥint, (10a)

Ĥc = ωmĉ†ĉ, (10b)

Ĥa = ωgσ̂gg + (ωf + ωc)σ̂ff + ωeσ̂ee, (10c)

Ĥint = −(gmĉσ̂eg + g∗
mĉ†σ̂ge + 
σ̂ef + 
∗σ̂f e). (10d)

Û (t) = e−iωctσ̂ff has been chosen as the unitary transfor-
mation in deriving (10). Assume that the � three-level atom is
initially prepared in the state |g,n〉 = |g〉 ⊗ |n〉. n represents
the arbitrary but fixed number of excitations with n = 1,2,3 . . .

and |n〉 the corresponding number state. Under the action of
Ĥ T

bare onto the state |g,n〉 = |g〉 ⊗ |n〉, we get the relations

Ĥ T
bare|g,n〉 = (ωmn + ωg)|g,n〉 − gm

√
n|e,n − 1〉, (11a)

Ĥ T
bare|e,n − 1〉 = [ωm(n − 1) + ωe]|e,n − 1〉

−g∗
m

√
n|g,n〉 − 
∗|f,n − 1〉, (11b)

Ĥ T
bare|f,n − 1〉 = [ωm(n − 1) + ωf + ωc]|f,n − 1〉

−
|e,n − 1〉. (11c)

In the subspace {|g,n〉,|e,n − 1〉,|f,n − 1〉}, Ĥ T
bare has the

matrix representation

hbare =

⎛
⎜⎝

(ωmn + ωg) −gm

√
n 0

−g∗
m

√
n ωm(n−1) + ωe −
∗

0 −
 (ωm(n−1)+ωf +ωc)

⎞
⎟⎠.

(12)

Under Raman resonance condition ωmn + ωg = ωf + ωc =
ωe − �, we get

hbare =

⎛
⎜⎝

(ωmn + ωg) −gm

√
n 0

−g∗
m

√
n (ωm(n−1) + ωe) −
∗

0 −
 (ωm(n−1)+ωf +ωc)

⎞
⎟⎠.

(13)

Under a rotating-wave approximation, (13) is reduced to

hRaman
bare =

⎛
⎜⎝

0 −gm

√
n 0

−g∗
m

√
n � −
∗

0 −
 0

⎞
⎟⎠. (14)

In addition, as we have a far detuned excited state |e,n − 1〉,
i.e., |�| � |gm|,|
| [36,38] we can adiabatically eliminate the

contribution of the excited state |e,n − 1〉 directly on the level
of (14). This yields to

h(mJC) =
(

−|gm|2n
�

− g∗
m


√
n

�

− gm
∗√n

�
−|
|2

�

)
. (15)

Equation (15) represents the matrix form of the modi-
fied Jaynes-Cummings Hamiltonian (mJC) in the subspace
{|g,n〉,|f,n − 1〉}. The operator form of the modified Jaynes-
Cummings Hamiltonian (mJC) reads as

Ĥ (mJC) = ĤS + Ĥint, (16a)

ĤS = −
( |gm|2

�
ĉ†ĉσ̂gg + |
|2

�
σ̂ff

)
, (16b)

Ĥint = −
(

g∗
m


�
ĉ†σ̂gf + gm
∗

�
ĉσ̂fg

)
. (16c)

The term ĤS incorporates the influence of Stark shifts of
the detuned fields, while Ĥint represents the interaction of the
cavity field and the atom, where G = g∗

m
/� is the effective
atom-photon coupling constant. Hamiltonians ĤS and Ĥint

constitute the modified Jaynes-Cummings Hamiltonian. In the
sequel, we are going to discuss the eigenstates of Ĥ (mJC) and
look at the effect of the control field Stark shift.

B. Eigenstates of the modified Jaynes-Cummings
model Hamiltonian

In the following, we calculate the eigenenergies and
eigenstates of Ĥ (mJC). We show that dependent on whether
one compensates the control field Stark shift by using external
fields or not, the eigenenergies, composition of the eigenstates,
and the mixing angle θn differ significantly. First, we consider
the case of noncompensated control field Stark shift. Ĥ (mJC)

of (16) reduces in the subspace {|g,n〉,|f,n − 1〉} as

h(m)
n =

(
−|gm|2n

�
−G

√
n

−G∗√n −|
|2
�

)
, (17)

with n = 1,2,3, . . . the total number of excitations and
corresponding number state |n〉. The eigenenergies are given
as

E
(m)
+,n = 0, (18)

E
(m)
−,n = −

( |gm|2n
�

+ |
|2
�

)
. (19)

The eigenstates to the eigenenergies E
(m)
+,n and E

(m)
−,n read as

|n,DP(+)〉 := sin (θn)|f,n − 1〉 − cos (θn)|g,n〉, (20a)

|n,DP(−)〉 := cos (θn)|f,n − 1〉 + sin (θn)|g,n〉 (20b)

with the occurring mixing angle θn which is defined as

θn = 1

2
arctan

(
2|gm|√n

|
|
)

. (21)

However, |n,DP(±)〉 are called dark-polaritons. A dark-
polariton is a quasiparticle which is a superposition of photonic
and atomic excitations, where the atomic excitations have
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only contributions of ground levels |g〉 and |f 〉 and not
the excited level |e〉. Such dark-polaritons are very similar
to the known dark-state polaritons [17,18], but with one
major difference. Dark-state polaritons are defined at Raman
resonance of two coupling fields and formed independently
of the single-photon detuning. Instead, dark-polaritons, which
are also defined at Raman resonance, are formed for a large
single, common photon detuning � of the two coupling
fields, i.e., |�| � |gm|,|
|. The dependence on � enables
to tune the eigenstate |n,DP(±)〉 from an excited to a ground
eigenstate. This follows from the eigenenergy E

(m)
−,n of the dark-

polariton |n,DP(−)〉. If � > 0 (� < 0), |n,DP(+)〉 is an excited
(a ground) eigenstate and |n,DP(−)〉 a ground (an excited)
eigenstate. Note that |n,DP(+)〉 is a degenerate eigenstate
because the corresponding eigenenergy E

(m)
+,n does not depend

on the dark-polariton number n. |n,DP(−)〉 is a degenerate
eigenstate as well for n � 2. Thus, the spectrum is discrete
and degenerate in dependence of the dark-polariton number n.
Now, we switch to the case of compensated control field Stark
shift. Compensation is achieved by using an additional field,
which couples the ground state |f 〉 with some far-off-resonant
excited state [39]. Within (17) we set the control field Stark
shift |
|2

�
to zero. Hence, the new block-matrix representation

h
(m,comp)
n in the subspace {|g,n〉,|f,n − 1〉} reads as

h(m,comp)
n =

(
−|gm|2n

�
−G

√
n

−G∗√n 0

)
, (22)

with n = 1,2,3, . . . the total number of excitations and corre-
sponding number state |n〉. The block-matrix (22) is a 2 × 2
matrix and can be analytically diagonalized. The eigenenergies
are given as

E
(comp,m)
−,n = −|gm|2n + |gm|√n

√
|gm|2n + 4|
|2

2�
,

E
(comp,m)
+,n = −|gm|2n + |gm|√n

√
|gm|2n + 4|
|2

2�
. (23)

The respective eigenstates to the eigenenergies E
(comp,m)
+,n and

E
(comp,m)
−,n are

|n,DP(+)
comp〉 := sin (θn)|f,n − 1〉 + cos (θn)|g,n〉, (24a)

|n,DP(−)
comp〉 := cos (θn)|f,n − 1〉 − sin (θn)|g,n〉, (24b)

with the occurring mixing angles θn which are defined as

θn =1

2
arctan

[
A(
,n)

B(gm,
,n)

]
, (25a)

A(
,n) = 2
√

2 × |
|√n, (25b)

B(gm,
,n) =
√

C(gm,
,n), (25c)

C(gm,
,n) = |gm|n2 + 4|
|2n + D(gm,
,n), (25d)

D(gm,
,n) = |gm|n√
n
√

|gm|2n + 4|
|2. (25e)

|n,DP(±)
comp〉 are dark-polaritons, but of a different type com-

pared to the case of noncompensated control field Stark shift.
First of all, the eigenenergies E

(comp,m)
s,n with s = +,− depend

on the generalized Rabi frequency ξ (n) =
√

|gm|2n + 4|
|2.
Second, |n,DP(±)

comp〉 have a common mixing angle θn that
depends on the generalized Rabi frequency ξ (n) as well. In
addition, the two dark-polariton branches, represented through
|n,DP(±)

comp〉, are separated by the energy amount

E
(comp,m)
−,n − E

(comp,m)
+,n = |gm|√n

√
|gm|2n + 4|
|2

�
. (26)

The separation energy is directly dependent on the generalized
Rabi frequency ξ (n) and the common single-photon detuning
� as well. This separation is related to the photon-photon
repulsion. It is a consequence of the onsite repulsion U (n)
which is a measure of the Kerr nonlinearity [40].

C. Comparison to standard Jaynes-Cummings model

On the level of the individual Hamiltonians, major differ-
ences are that at first, in Ĥ (mJC) the number operator depends
on the projection operator σ̂gg of the ground level |g〉 which is
not the case in Ĥ (JC). Second, in Ĥ (mJC) the atom-cavity field
coupling strength G = gm
/� is rescaled by the common
single-photon detuning � and the Rabi frequency 
, where
G is chosen to be real. Regarding the eigenstates, a key
difference between Ĥ (mJC) and Ĥ (JC) is that in the modified
Jaynes-Cummings model we have eigenstate dependence on
the control field Stark shift. In addition, within the modified
Jaynes-Cummings model, we only have a dependence on
ground levels, whereas in the standard Jaynes-Cummings
model there exists a dependence on the excited level. Hence,
these dependencies affect the coherences. Namely, the bright
polaritons in the standard Jaynes-Cummings model only
consist of optical coherences σ̂eg and are explored to spon-
taneous emission, while in the modified Jaynes-Cummings
model, dark-polaritons only consist of spin coherences σ̂fg

and no exploration to spontaneous emission is present. This
enables the usage of dark-polaritons as a quantum memory
for photons over their spin coherences likewise the dark-
state polaritons [17–33]. Changing the mixing angles in (21)
and (25) over rotations from 0 → π

2 , which corresponds to
an adiabatical change of the Rabi frequency 
, photons are
transferred to and stored in the spin coherences in a reversible
manner. Optical coherences have shorter coherence times
compared to the spin coherences which have longer coherence
times. Coherence times of spin coherences are in the range of
μs to ms in dark-state polaritons [17,18]. Similar is the case for
dark-polaritons. In the sequel, we focus on our model system
and state the effective model Hamiltonian which is based on
our derivation of the modified Jaynes-Cummings model.

IV. MODEL SYSTEM AND EFFECTIVE
MODEL HAMILTONIAN

In the previous sections, we have investigated the stan-
dard and modified Jaynes-Cummings model on the level
of a single QED cavity. In the subsequent step, we extend
the modified Jaynes-Cummings model to a one-dimensional
array of coupled QED cavities. This will lead us to the
modified Jaynes-Cummings Hubbard model as our effective
model Hamiltonian. It includes the hopping between adjacent
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cavities. First, we state the model system and, second, present
the effective model Hamiltonian.

A. Model system

The system we consider consists of a one-dimensional array
of N -coupled QED cavities. We assume periodic boundary
conditions, i.e., the cavity labeled by n = N + 1 corresponds
to the cavity n = 1. Each cavity embeds a three-level atom
with two ground levels |g〉 and |f 〉, and an excited level
|e〉. The level energies are ωg , ωf , and ωe, respectively,
and the excited level |e〉 is detuned by the common single-
photon detuning �. In reality, the levels can be either fine
or hyperfine levels of alkali-metal atoms. Their D1 or D2

line transitions are nowadays easily accessible via available
lasers and optical modes of QED cavities. One mode of a
tunable cavity [41,42] of frequency ωm couples the transition
|g〉 → |e〉 with the strength gm, and the classical control field
of frequency ωc and Rabi-frequency 
 couple the transition
|f 〉 → |e〉. This configuration is known to feature vacuum
induced transparency, as first experimentally demonstrated by
the group of Vuletić [43]. Both gm and 
 are typically in MHz
range for alkali-metal atoms, which are strongly coupled to
QED cavities, and for moderate laser powers.

B. Effective model Hamiltonian

As we consider a one-dimensional chain of N identical
coupled QED cavities, the derived modified Jaynes-Cummings
model for a single QED cavity is valid for all QED cavities
in the one-dimensional chain. Therefore, our effective model
Hamiltonian (modified Jaynes-Cummings Hubbard model)
(� = 1) has the form

Ĥ (mJCH) = Ĥ (mJC) + Ĥhop, (27a)

Ĥ (mJC) = ĤS + Ĥint, (27b)

ĤS = −
N∑

μ=1

(
g2

m

�
ĉ†μĉμσ̂ (μ)

gg + 
2

�
σ̂

(μ)
ff

)
, (27c)

Ĥint = −G

N∑
μ=1

(
ĉ†μσ̂

(μ)
gf + ĉμσ̂

(μ)
fg

)
, (27d)

Ĥhop = −J

N∑
μ=1

(ĉ†μ+1ĉμ + ĉ†μĉμ+1), (27e)

where ĉ†μ (ĉμ) is the photonic creation (annihilation) operator

and σ̂
(μ)
αβ = |α〉μ〈β| (α,β ∈ {g,f }) are the atomic operators

for the site number μ. The term ĤS incorporates the
influence of Stark shifts of the detuned fields, while Ĥint

represents the interaction of the cavity field and the atom,
where G = gm
/� is the effective atom-photon coupling
constant which is set to be real. Hamiltonians ĤS and Ĥint

constitute the modified Jaynes-Cummings Hamiltonian. As
will be shown in the sequel, the Stark shifts have profound
influence on the energy eigenspectrum. Ĥhop describes the
photon hopping between adjacent cavities, based on evanes-
cent field coupling, with J as the intercavity photon hopping
strength. Similar effective Hamiltonian has been previously
used to describe a network of fiber coupled cavities, embedded
with three-level atoms [39]. However, while that scheme
requires the compensation of the level Stark shifts, here we
utilize the individual Stark shifts to achieve tunability. Our
effective model Hamiltonian (27) supports the formation of
dark-polariton bound pairs. We will see that the different
dark-polaritons, which have been discussed in Sec. III, are
actually involved in the formation of the energy bands and the
bound states. Moreover, we show and discuss that the bound
states are formed due to the presence of a force called Kerr
nonlinearity which is determined by the onsite repulsion.

V. FORMATION OF DARK-POLARITON BOUND PAIRS

In the following, we discuss the formation of dark-polariton
bound pairs in our system. In order to exploit the invariance of
the system under cyclic permutations of the sites, we introduce
the following operators via discrete Fourier transforms:

b̂k = 1√
N

N∑
μ=1

e− 2πi
N

μk ĉμ, (28a)

ŝ
(k)
gf = 1√

N

N∑
μ=1

e− 2πi
N

μk σ̂
(μ)
gf , (28b)

where k = 0,1, . . . ,N−1 is related to the (discrete) quasimo-
mentum of the excitation. Similarly to [34], we work in the
two-excitation subspace that is spanned by the states |kj 〉F ≡
b̂
†
kb̂

†
j |�0〉, |k〉F |j 〉A ≡ b̂

†
k ŝ

(j )†
gf |�0〉, and |kj 〉A ≡ ŝ

(k)†
gf ŝ

(j )†
gf |�0〉.

The subscripts F and A stand for the photonic and atomic
excitations, respectively. The state |�0〉 = ⊗N

μ=1|g〉μ|0〉μ is
the ground state of the system, where |0〉μ denotes the vacuum
state of the cavity number μ. We note that the excitations
(polaritons) are in our case dark in a sense that they do not
have the contribution of the excited levels |e〉 and are not
subjected to spontaneous emission. The atomic excitations
|kj 〉A are in general not orthogonal to each other because
of A〈k′j ′|kj 〉A = δk,k′δj,j ′ + δk,j ′δj,k′ − 2

N
δk+j,k′+j ′ . b̂k and

b̂
†
j fulfill the bosonic commutation relation [b̂k,b̂

†
j ] = δkj ,

while the atomic operators fulfill the commutation relation
[ŝ(k)

gf ,ŝ
(j )†
gf ] = − 1

N

∑N
μ=1 e

2πi
N

μ(j−k)σ̂
(μ)
z with σ̂

(μ)
z as the Pauli z

matrix for the atom in the μth cavity. Under the action of Ĥ

on the states which form the two-excitation subspace, we get
the relations

Ĥ |kj 〉F = (ωk + ωj − 2a)|kj 〉F − G(|k〉A|j 〉F + |j 〉A|k〉F ), (29a)

Ĥ |k〉A|j 〉F = (ωj − a − b)|k〉A|j 〉F − G(|kj 〉A + |kj 〉F ) + a

N

∑
(k′,j ′)∈SP

(|k′〉A|j ′〉F + |j ′〉A|k′〉F ) + 2G

N

∑
(k′,j ′)∈SP

|k′j ′〉A, (29b)
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Ĥ |j 〉A|k〉F = (ωk − a − b)|j 〉A|k〉F − G(|kj 〉A + |kj 〉F ) + a

N

∑
(k′,j ′)∈SP

(|k′〉A|j ′〉F + |j ′〉A|k′〉F ) + 2G

N

∑
(k′,j ′)∈SP

|k′j ′〉A, (29c)

Ĥ |kj 〉A = −G(|k〉A|j 〉F + |j 〉A|k〉F ) − 2b|kj 〉A, (29d)

where ωl = −2J cos( 2πl
N

) for l ∈ {k,j}, a = g2
m/�, and b =


2/�. Within Eqs. (29b) and (29c), we have a sum over the
set SP = {(k,j ) | 0 � k < j � N − 1, k + j ≡ P (mod N )}
that is determined by the quasimomentum P . From
Eqs. (29a)–(29d) we can deduce that the quasimomentum
P is a conserved quantity and hence a good quantum
number. Apart from the quasimomentum, the total number
of excitations (dark-polaritons) N̂ = ∑N

μ=1(ĉ†μĉμ + σ̂
(μ)
ff ) is a

conserved quantity.
We can construct the complete set of eigenvectors by

solving the eigenproblem within each of the subspaces P =
0,1, . . . ,N−1. Following [34], we restrict the discussion to
the case of even N and odd P . A general dark two-polariton
eigenvector |�(D)

P 〉 has the form∣∣�(D)
P

〉 =
∑

(k,j )∈SP

(αkj |kj 〉F + βkj |k〉A|j 〉F

+β ′
kj |j 〉A|k〉F + γkj |kj 〉A). (30)

|�(D)
P 〉 satisfies the time-independent Schrödinger equation

Ĥ |�(D)
P 〉 = λ|�(D)

P 〉 which yields within each of the subspaces
P = 1,3, . . . ,N−1 an eigenproblem that is given by the
subsequent set of linear equations

λαkj = (ωk + ωj − 2a)αkj − G(βkj + β ′
kj ), (31a)

λβkj = −Gαkj + (ωj − a − b)βkj − Gγkj

+ a

N

∑
(k′,j ′)∈SP

(βk′j ′ + β ′
k′j ′) + 2G

N

∑
(k′,j ′)∈SP

γk′j ′ (31b)

λβ ′
kj = −Gαkj + (ωk − a − b)βkj − Gγkj

+ a

N

∑
(k′,j ′)∈SP

(βk′j ′ + β ′
k′j ′ ) + 2G

N

∑
(k′,j ′)∈SP

γk′j ′ , (31c)

λγkj = −G(βkj + β ′
kj ) − 2bγkj , (31d)

where λ is the corresponding eigenvalue. As it was demon-
strated in [34], for various values of the quasimomentum P

the majority of eigenvalues are at most distributed among three
bands. When all three bands are well resolved, it was shown
that each of the two band gaps contains an eigenenergy of the
single two-polariton bound state. For sufficiently large inter-
cavity photon hopping strength J comparing to the strength of
the atom-photon interaction, the bands start to overlap.

However, since we are not dealing with the standard JCH
model, but rather with a modified one, we find some important
differences and new features. Namely, as opposed to [34] there
is only one mutually localized DPBP within one of the existing
band gaps, while the other one joins the adjacent outer band.
The other DPBP can reappear provided that the Stark shift of
the control field is compensated. In both cases, when � < 0,
gm � 
 and g2

m/|�| � 1.5 J , the ground state of the system
is DPBP of a different type than the aforementioned ones. In

the sequel, we report on the state composition of the different
DPBP types.

The Kerr nonlinearity is a known force in light-atom
interactions which depends on the atomic level structure as
well as on the coupling strength of light-atom interactions. In
our case, the strength of light-atom interaction is described
by the effective coupling strength G = gm
/�. Tuning gm

and/or 
 directly affects the Kerr nonlinearity. Compared
to [34], we can not only tune and control the Kerr nonlinearity
by the cavity-mode coupling strength gm, but also by the Rabi
frequency 
. This force can be attractive or repulsive [1,13–
16]. This force generates the bound state of two dark-polaritons
in our case. A measure of the Kerr nonlinearity is the onsite
repulsion U (n) which is in general defined as

U (n) := (E+ − E−)(n + 1) − (E+ − E−)(n) (32)

with E± the eigenenergies of the considered eigenstates. In
case of the standard Jaynes-Cummings model, the onsite
repulsion U (n) = χ (n + 1) − χ (n) is determined by the
generalized Rabi frequency χ (n) [3]. This will be different
in our case as we will see in the following. In our DPBPs
we have bound photons and bound atoms. In [44], they have
experimentally shown bound states of atoms in coupled QED
cavities, when atoms occupy the same site.

A. Dark-polariton bound pairs in the regime
of noncompensated control field Stark shift

We focus on the single DPBP solution of Eqs. (31) which
is given in red color within Fig. 1(a) representing the energy
eigenspectrum of the model Hamiltonian Ĥ in dependence
of odd values of quasimomentum P . Three energy bands
are visible for the used parameter values. We define the gap
between the two upper energy bands as the high-energy band
gap and in accordance the gap between the two lower-energy
bands as the low-energy band gap. The dark-polaritons, which
are involved in the formation of energy bands and the single
DPBP in Fig. 1(a), are given in (20). This can be seen by
solving Eqs. (31) for intercavity hopping J = 0. Note that
the bands are a consequence of repulsively interacting dark-
polaritons of different types with respect to the eigenenergies
E

(m)
±,n. By different types here, we mean that the dark-polariton

with eigenenergy E
(m)
+,n interacts with the dark-polariton of

eigenenergy E
(m)
−,n in a repulsive way at the same site μ. This

is a consequence of the onsite repulsion U (n). On different
sites, dark-polaritons with eigenenergies E

(m)
+,n and E

(m)
−,n are

noninteracting. Instead, the mentioned Kerr nonlinearity,

expressed through the onsite repulsion U (n) = g2
m

�
, enables

the single DPBP state formation by the two dark-polaritons
with eigenenergies E

(m)
−,n which is placed at the same site μ in

case of � > 0. There is an additional DPBP, formed by the
two dark-polaritons with eigenenergies E

(m)
+,n in case of � > 0,

but is not visible in the spectrum as it is attached to the central
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(a) (b)

(c) (d)

FIG. 1. (a) Normalized eigenvalues dependence on the quasi-
momentum P for N = 30 cavities. Dark-polariton bound pair state
(red curve) appears in the low-energy band gap. The eigenvalues are
joined by lines for ease of visualization. (b)–(d) Joint probabilities
for different types of double excitations associated to DPBP state for
P = 1. Used parameters: � > 0, gm = 0.05 |�|, 
 = 0.06 |�|, and
J = 0.001 |�|.

band. On the contrary, formation of single DPBP interchanges
for � < 0. Our determined U (n) from [3] is mainly affected
by the cavity field coupling strength gm. By increasing gm we
increase the onsite repulsion U (n) which directly enhances the
interaction between the two dark-polaritons with eigenenergies
E

(m)
−,n at the same site μ with � > 0. Thus, single DPBP is

strengthened. Due to the interaction, the single DPBP lies
inside the energy band gaps. Depending on the sign of the
common single-photon detuning �, DPBP lies either in the
high- or low-energy band gap. In the case � > 0, DPBP lies
in the low-energy band gap, whereas in the opposite case it
resides within the high-energy band gap. In order to get some
information on the inherent state composition of the single
DPBP, we calculate, in line with [34], the joint probabilities

pFF =
∣∣∣∣∣〈�(D)

P

∣∣ ĉ
†
nĉ

†
m√

1 + δnm

|�0〉
∣∣∣∣∣
2

, (33a)

pAF = ∣∣〈�(D)
P

∣∣ĉ†nσ̂ (m)†
gf |�0〉

∣∣2
, (33b)

pAA = ∣∣〈�(D)
P

∣∣σ̂ (n)†
gf σ̂

(m)†
gf |�0〉

∣∣2
(33c)

of finding pure photonic, photon-atom, and pure atomic
excitations, respectively, in cavities at positions n and m. These
excitations (pure photonic, pure atomic, and photon-atom)
reflect the unique property of dark-polaritons in which the
superposition of photonic and collective atomic excitations
can be tuned by changing 
 in first place. In our case,
we can not only change 
, but also gm as we use tunable
cavities [41,42]. For a given value of quasimomentum P , all
three joint probabilities only depend on the relative distance
|n − m| within the cavities.

In Figs. 1(b)–1(d) we present the joint probabilities for the
single DPBP state of Fig. 1(a). We have chosen the number
of coupled QED cavities to be N = 30, single-photon detun-

ing � > 0, cavity-mode coupling strength gm = 0.05 �, the
control field Rabi frequency 
 = 0.06 �, intercavity photon
hopping strength J = 0.001 �, and subspace P = 1. One can
see that the DPBP excitations are well confined together,
and all three possible excitation types coexist with roughly
equal contributions. The state composition gradually changes
by decreasing the contribution of double atomic excitations
when P approaches the midrange values. This regime is
roughly characterized by gm ≈ 
 and (g2

m + 
2)/|�| > 5J .
The energy band gaps close when decreasing the ratio of
(g2

m + 
2)/|�| and J . At the same time, DPBP becomes
relatively delocalized, similarly as in [34].

B. Dark-polariton bound pairs in the regime of compensated
control field Stark shift

The tunability of our model enables not only the control
of the shape of the energy bands, but also the emergence
of an additional DPBP state. Namely, if the control field
Stark shift is compensated by using an additional field, which
couples the ground state |f 〉 with some far-off-resonant excited
state [39], another DPBP state appears in the formerly empty
energy band gap. Such an add reflects in the removal of the
parameter b from Eqs. (31). The energy bands in Fig. 2(a),
shown for discrete and distinct quasimomenta P , are formed
by the dark-polaritons in (24). This can be seen by solving
Eqs. (31) for the intercavity hopping strength J = 0 and set
the parameter b equal to zero. The onsite repulsion U (n),
which ensures the formation of the two DPBPs, is given as

U (n) = gm

√
n+1

√
g2

m(n+1)+4
2−gm

√
n
√

g2
mn+4
2

�
for positive and

negative common single-photon detuning �. Thus, the onsite
repulsion U (n) is invariant under the sign change of �.
Distinctly to the DPBP formation under noncompensated
control field Stark shift, the onsite repulsion U (n) apart
from the cavity field coupling strength gm directly depends
on the Rabi frequency 
. This gives the opportunity to
effectively control and enhance the interaction through gm

and 
. Further, in Fig. 2(a) one can observe that each of
the two energy band gaps now contains a single DPBP state
(blue and red curves). We used the same parameter values
as in Fig. 1, but with compensated control field Stark shift.
In Figs. 2(b)–2(d) and Figs. 2(e)–2(g) we characterize the
state composition of lower- and higher-energy DPBP states,
respectively, by considering the joint probabilities as in the
previous subsection. The DPBP in the lower-energy band gap
is dominantly composed of two-photon excitation, while in the
other DPBP state atom-photon excitation prevails. Moreover,
higher-energy DPBP state is further apart from the outer energy
band and it is relatively more localized than the lower-energy
DPBP state. We checked that the same behavior persists for
other values of quasimomentum P . Note that the described
situation is for � > 0, while it interchanges for � < 0.

VI. QUANTUM MEMORY OF LIGHT IN
A DARK-POLARITON BOUND PAIR

In the parameter regime where the common single-photon
detuning � is negative and the cavity-atom coupling strength
gm is significantly larger than the control field Rabi frequency

, we have a single DPBP state which is the ground state
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(b)

(c)

(d)

(f)

(g)

(a)

(e)

FIG. 2. (a) Normalized eigenvalues dependence on the quasi-
momentum P for N = 30 cavities. Two dark-polariton bound pair
states (blue and red curves) appear in both energy band gaps. The
eigenvalues are joined by lines for ease of visualization. (b)–(d) Joint
probabilities for different types of double excitations associated to
lower-energy DPBP state. (e)–(g) Joint probabilities for different
types of double excitations associated to higher-energy DPBP state
for P = 1. Used parameters: � > 0, gm = 0.05 |�|, 
 = 0.06 |�|,
and J = 0.001 |�|.

of the system. It is well separated from the rest of the
energy spectrum when g2

m/|�| � 1.5 J . This is presented in
Fig. 3(a). DPBP state composition, given in Figs. 3(b)–3(d)
by the corresponding joint probabilities, reveals that the state
is dominantly composed of combined atomic and photonic
excitations which are localized in their relative spatial coordi-
nates. Note that this DPBP state is of a completely different
type than the ones found in the previous section.

It is important that this state also enables the storage
of a single photon in the form of a collective atomic spin
coherence excitation to which the other photon is closely
bound. Namely, when 
 → 0 adiabatically, a DPBP becomes
a pure combination of an atomic and photonic excitation.
From this we can deduce that one photon remains attached

(a) (b)

(c) (d)

FIG. 3. (a) Normalized eigenvalues dependence on the quasi-
momentum P for N = 30 cavities. Dark-polariton bound pair state
(red curve) appears as the ground state. The eigenvalues are joined
by lines for ease of visualization. (b)–(d) Joint probabilities for
different types of double excitations associated to DPBP state for
P = 1. Used parameters: � < 0, gm = 0.05 |�|, 
 = 0.001 |�|, and
J = 0.00125 |�|.

to the atomic spin coherence wave. This is reminiscent of the
atom-photon molecule [36].

The state composition can be tuned by increasing the
relative importance of the intercavity photon hopping, e.g., by
increasing |�|. This is achieved gradually for distinct values
of quasimomentum, starting from the values P = 1, N − 1
and proceeding towards the midrange values of P . Figure 4(a)
shows the energy spectrum in such a case. For P ∈ {1,3,N−3,

N − 1} the DPBP state is predominantly composed of two-
photon excitations which become delocalized in their relative

(a) (b)

(c) (d)

FIG. 4. (a) Normalized eigenvalues dependence on the quasi-
momentum P for N = 30 cavities. Dark-polariton bound pair state
(red curve) appears as the ground state. The eigenvalues are joined
by lines for ease of visualization. (b)–(d) Joint probabilities for
different types of double excitations associated to DPBP state for
P = 1. Used parameters: � < 0, gm = 0.05 |�|, 
 = 0.001 |�|, and
J = 0.002 |�|.
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spatial positions, as can be seen in Figs. 4(b)–4(d). The reason
for such behavior can be traced back to the emergence of the
avoided crossings of the ground state and the first excited state
near the edges of the quasimomentum zone. The crossings
shift towards the P -zone center as the influence of the photon
hopping is being increased. For the quasimomentum values
between the crossings, the DPBP state remains dominantly
of the atom-photon type. In the case when the control field
strength adiabatically reduces to zero, the DPBP state becomes
of a pure two-photon type. Therefore, this corresponds to the
retrieval procedure of the previously stored photon excitation.

VII. EXPERIMENTAL REALIZATION

Our model system is a large, one-dimensional mJCH
chain of N -coupled QED cavities. In order to realize it,
we need a structure, in which large arrays of coupled QED
cavities can be realized. Promising candidates are photonic
band-gap cavities [12,45]. It is manageable to produce and
position them with high precision and in large numbers. A
tempting alternative are photonic crystals as they offer the
possibility of fabricating large arrays of QED cavities in one- or
two-dimensional lattices as well as networks [46–48]. A third
possibility would be the use of toroidal micro-QED cavities
that are coupled via tapered optical fibers [49]. Single atoms,
embedded in each QED cavity, are three-level atoms where
the excited level is far detuned by the common single-photon
detuning with respect to the two coupling fields. In real
experiments, Cs and ultracold 87Rb atoms have shown to
be very suitable [44,50,51]. For Cs in a toroidal micro-QED
cavity it has be shown that gm in the strong-coupling regime
reaches the value of ∼ 50 MHz [50]. This fits pretty well with
our theoretically chosen value for the formation of individual
DPBP inside the energy band gaps, but also for the ground
DPBP at � < 0 with its potential use as a quantum memory
for a single photon.

VIII. CONCLUSION

To summarize, we have derived a modified Jaynes-
Cummings model from the bare model under two conditions:
(i) two-photon Raman resonance of the cavity mode and

classical control field, (ii) common single-photon detuning
|�| � gm,
. We have shown that the eigenstates on one
hand depend on the common single-photon detuning and,
on the other hand, their composition differs with respect to
the control field Stark shift. Moreover, we have extended
the modified Jaynes-Cummings model to a modified Jaynes-
Cummings-Hubbard model where an array of N -coupled QED
cavities, each having an embedded single three-level atom, is
considered. The modified Jaynes-Cummings-Hubbard model
supports DPBPs. The formation of two different species of
spatially localized dark-polariton bound pairs (DPBPs) has
been elaborated when there are exactly two excitations in
the system. It was shown that the onsite repulsion U (n) as a
consequence of the Kerr nonlinearity represents the attractive
force between interacting dark-polaritons and enables the
existence of DPBP states. Furthermore, it is demonstrated
that our model system offers a high degree of tunability
that can affect both quantitative and qualitative behavior. In
particular, the number of DPBP states can be controlled by
(not) compensating the Stark shift due to the control field.
Further, in the regime when cavity-atom coupling overwhelms
the influence of the control field, and the common single-
photon detuning of the fields is negative, we obtained a
ground DPBP eigenstate on which the storage and readout of
a single photon can be effectively performed. An experimental
realization is proposed for our model system. Cs atom has
been mentioned as a promising candidate as its value of the
cavity-mode coupling strength gm fits very well with our
theoretically chosen and determined one. We expect that future
investigations of this kind of system under different settings,
i.e., with distinct and alternating hopping strengths between
the cavities, in the presence of disorder, or in two-dimensional
lattice configurations, may lead to various effects and rich
physics.
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