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Photonic currents in driven and dissipative resonator lattices
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Arrays of coupled photonic cavities driven by external lasers represent a highly controllable setup to explore
photonic transport. In this paper we address (quasi)-steady states of this system that exhibit photonic currents
introduced by engineering driving and dissipation. We investigate two approaches: in the first one, photonic
currents arise as a consequence of a phase difference of applied lasers and, in the second one, photons are injected
locally and currents develop as they redistribute over the lattice. Effects of interactions are taken into account
within a mean-field framework. In the first approach, we find that the current exhibits a resonant behavior with
respect to the driving frequency. Weak interactions shift the resonant frequency toward higher values, while
in the strongly interacting regime in our mean-field treatment the effect stems from multiphotonic resonances
of a single driven cavity. For the second approach, we show that the overall lattice current can be controlled
by incorporating few cavities with stronger dissipation rates into the system. These cavities serve as sinks for
photonic currents and their effect is maximal at the onset of quantum Zeno dynamics.
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I. INTRODUCTION

Understanding the transport properties of photons in differ-
ent media is a prerequisite for future applications, for example
in quantum information processing. This subject has been ad-
dressed from various perspectives [1]. As one notable example
we mention successful experimental realizations of photonic
topological insulators, where emerging edge states provide
robust transport channels [1–5]. Forthcoming experiments
with arrays of coupled photonic cavities [1,6,7] are expected
to feature strong interactions on a single-photon level. The
latest theoretical and experimental progress in this direction
is summarized in two recent review papers [8,9]. Transport
measurements will be the most natural first experiments to
carry out in these systems in order to explore how interactions
affect the propagation of photons. First experimental results in
this direction are already available [10,11].

Theoretically, arrays of coupled photonic cavities can be
described by the Bose-Hubbard model [1,6,7]. However,
photonic cavities exhibit dissipation due to intrinsic loss rates,
which has to be compensated by driving the system with an
external laser. Instead of equilibrium properties, stationary
states that arise from the interplay of driving and dissipation
are thus more naturally studied in this open quantum system
[12–22]. The aim of our study is to explore steady states of
the dissipative-driven two-dimensional Bose-Hubbard model
which exhibit finite photonic currents and are generated by
engineering the driving and dissipation. In particular, we will
analyze how the emerging photonic currents are affected by
the externally controllable parameters, such as intensity and
frequency of the external laser pump, the loss rates, and the
physical parameters of the underlying Bose-Hubbard model.

We note that transport measurements in cold atomic systems
[23] have been reported recently [24–27] and that some of our
conclusions may apply to corresponding bosonic systems of
cold atoms as well. Different possibilities to control stationary
flows of cold atoms by dissipation have been theoretically
addressed in Refs. [28–32].

The structure of the paper is the following. The model we
consider is described in Sec. II, where we also introduce two
setups, which lead to stationary states with finite currents. In
Sec. III we briefly outline the theoretical methods we employ
in this work. In Sec. IV we explore properties of the currents
first in the noninteracting limit, then at weak interactions,
and finally in the regime of strong interactions, where we
use the Gutzwiller mean-field approximation. In the end we
summarize our main conclusions and outline open questions.

II. THE MODEL

We study transparency in the dissipative-driven photonic
Bose-Hubbard model, which describes the dynamics of pho-
tonic or polaritonic excitations in coupled cavity arrays; see
Fig. 1 for a sketch of our setup. The key parameters of the Bose-
Hubbard model are the hopping amplitude J and the on-site
interaction U . The driving of the system via local excitation
by external lasers can be described by F ∗

l al exp(iωLt) + H.c.,
where the amplitudes Fl are set by the laser intensity and al

are the bosonic annihilation operators on site l. We describe
the system in the corotating frame, by applying the uni-
tary transformation U (t) = exp(iωLt

∑
l nl), nl = a

†
l al . This

transformation leads to an additional chemical potentiallike
term proportional to the detuning � = ωL − ωC of the laser
frequency with respect to the cavity mode ωC . The effective
Hamiltonian of the model is [18,21]

H = −�
∑

l

a
†
l al − J

∑
〈l,j〉

(a†
l aj + a

†
j al)

+ U

2

∑
l

nl(nl − 1) +
∑

l

(Fla
†
l + F ∗

l al), (1)

where the sum over 〈l,j 〉 indicates that we only take into
account tunneling between nearest-neighbor sites of the square
lattice. In addition to the Hamiltonian time evolution we
consider one-body loss described by a Lindblad master
equation. The equations of motion for the density operator
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FIG. 1. (a) Sketch of the phase imprinting setup (6). (b) Sketch
of the source-drain setup (7). Throughout this paper we assume
translational invariance in the y direction, where all sites along the y

axis behave in the same way.

ρ of the dissipative model are given by

i
dρ

dt
= [H,ρ] + Lρ, (2)

where we set � = 1. The dissipator L is

Lρ = i
∑

l

γl

2
(2alρa

†
l − a

†
l alρ − ρa

†
l al), (3)

where γl is the local dissipation rate.
In order to quantify the transparency of the material we

calculate the (local) current density j , which is derived from
the lattice continuity equation and provides a measure for the
photon transport through the system. The current jlj between
sites l and j is given by

jlj = −iJ (a†
j al − a

†
l aj ), (4)

and is the main quantity commonly used to describe transport
in other lattice systems, as for example in Refs. [33–35].
From the experimental side, the two-point correlations 〈a†

j al〉
have already been measured in superconducting circuits
[36], implying that photonic bond currents may be directly
accessible in forthcoming experiments. Another possibility for
probing properties of a photonic flow is through a local loss of
photons, which will be explained in the next section.

In our study we will investigate the photonic transport in
the regime of finite local bosonic coherences given by |〈al〉|. In
this case it is reasonable to approximate the expectation value
of the bond current from Eq. (4) by

〈jlj 〉 ≈ −iJ (〈a†
j 〉〈al〉 − 〈a†

l 〉〈aj 〉), (5)

where the local expectation values 〈al〉 are calculated within
a mean-field approximation. From the last equation it follows
that the current is directly related to the phase ordering of the
complex expectation values 〈al〉 of lattice nearest neighbors,
and that it is enhanced by strong bosonic coherences |〈al〉|. In
the following we consider different spatial distributions of the

dissipation rates γl and the driving amplitudes Fl in order to
find an optimal regime where the steady states exhibit maximal
bond currents. Due to the symmetry of the considered setups
we assume translational invariance in the y direction, where
all sites along the y axis behave in the same way. In this case
there is no current in the y direction and the indices l and j

label x coordinates of the lattice sites; see Fig. 1.
One possibility to realize steady states exhibiting a finite

bond current is by engineering suitable phases of the coherent
driving terms Fl

F PI
l = F exp(i�l), �l = �PIl, γ PI

l = γb, (6)

that will be imprinted onto phases of 〈al〉, thus providing the
finite current. This setup has been introduced in Ref. [14] and
throughout the paper we designate it as phase imprinting (PI),
Fig. 1(a). A second experimentally relevant protocol that leads
to steady states with currents uses drives that inject photons
into the lattice locally, e.g., by shining laser light on one side
only, Fig. 1(b). Steady states in the presence of homogeneous
dissipation in a one-dimensional lattice have been explored
recently in such systems [21]. In particular, stronger loss rates
at the opposite lattice side should serve as photonic sinks

F SD
l = Fδl,N , γ SD

l = γ δl,1 + γb, (7)

thus providing for a stable photonic flow. In both Eqs. (6) and
(7), the index l stands for the site position along the x axis
and there is no explicit dependence on the site position in
the y direction. The aim of our study is to explicate how the
emerging current intensity j is set by the laser amplitude F

and intrinsic loss rates γl , as well as by the parameters of the
underlying Hamiltonian in Eq. (1).

We note that the onset of particle currents in a bosonic
system naturally raises questions about superfluidity in a
dissipative-driven system [37–40]. A definite answer can be
provided by studying how the presence of defects modifies
the photonic flow or by analyzing asymptotics of long-range
correlations in the system. These questions will be addressed
in future work.

III. METHODS

In the noninteracting limit U = 0 we solve the exact
equations of motion for the expectation values φl = 〈al〉 =
Trρal :

i
dφl

d(tJ )
= −�

J
φl −

∑
〈l,j〉

φj + Fl

J
− i

γl

2J
φl, (8)

where 〈l,j 〉 denotes summation over nearest-neighbor sites
of the site l. We consider a two-dimensional lattice with N

sites in the x direction and translational invariance in the y

direction implemented using periodic boundary conditions,
and the index l labels x coordinates of the lattice sites. In this
notation we have for example

∑
〈l,j〉 φj = 2φl + φl−1 + φl+1.

Using vector notation �φ = (φ1, . . . ,φN )T , �F =
(F1, . . . ,FN )T the steady-state solution can be written
as [1,41]

φl = −M−1
lj Fj /J, (9)
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where M is a N × N matrix with elements

Mlj = [−2 − �/J − iγl/(2J )]δl,j − δl−1,j − δl+1,j . (10)

To simplify the notation, spatial indices will be omitted jlj →
j from now on whenever the current throughout the lattice is
constant and we implicitly assume the current between two
nearest neighbors in the x direction.

At high densities, provided for example by strong driving,
and for weak U , the interaction term may be treated at the
mean-field level leading to nonlinearities for the φl in their
equations of motion:

i
dφl

d(tJ )
= −�

J
φl −

∑
〈l,j〉

φj + U

J
|φl|2φl + Fl

J
− i

γl

2J
φl.

(11)

To get an estimate of effects of quantum fluctuations
on the mean-field predictions, we follow the approach de-
scribed in Ref. [14]. Using a Fourier transform alx ,ly =

1√
NxNy

∑
�k e−i(kx lx+ky ly )B�k we rewrite the Hamiltonian (1) as

H =
∑

�k
ω�kB

†
�kB�k + √

NxNyF (B�PI,0 + B
†
�PI,0)

+ U

2NxNy

∑
�k1,�k2,�k3,�k4

δ�k1+�k2+2π(z,p),�k3+�k4
B

†
�k1
B

†
�k2
B�k3

B�k4
,

where ω�k = −� − 2J (cos kx + cos ky), and z and p are
integers. In the next step, we expand operators around the
mean-field solution as

B�k = √
NxNyβδkx,�PIδky,0 + b�k, (12)

where |β|2 = nPI is the mean-field density. By taking into
account fluctuations up to the second order we obtain an
effective quadratic Hamiltonian

H̃ =
∑

�k

[
(ω�k + 2nPIU )b†�kb�k + U

2
(β∗2b�kb �kk +β2b

†
�kb

†
�kk

)

]
,

with kkx = 2πz + 2�PI − kx,kky = ky . From the stationarity
condition d

dt
〈b†�kb�k〉 = 0, d

dt
〈b�kb �kk〉 = 0, we find closed-form

equations for the second-order moments

iUβ∗2〈b�kb �kk〉 − iUβ2〈b†�kb
†
�kk
〉 − γb〈b†�kb�k〉 = 0, (13)

−i(ω�k + ω �kk + 4nPIU )〈b�kb �kk〉 − γb〈b�kb �kk〉
− iUβ2(〈b†�kb�k〉 + 〈b†�kk

b �kk〉 + 1) = 0, (14)

that finally yield for m(�k) = 〈b†�kb�k〉

m(�k) = 2(UnPI)2

[(ω�k + ω �kk)2 + 4nPIU ]2 + γ 2
b − 4(UnPI)2

.

Fluctuation effects are quantified by the ratio

m/nPI =
∑

�k
m(�k)/(nPINxNy) (15)

and the expansion up to second order in the fluctuations can
be expected to be a good approximation as long as this ratio
remains small, m/nPI 	 1.

When addressing the limit of strong interactions, we restrict
our description to the well-established bosonic Gutzwiller
approximation [13,17,42], where only local correlations are
taken into account. The time-dependent variational Gutzwiller
mixed state is a product of local mixed states. In other words the
total density operator in the Gutzwiller approximation is given
by a direct product of density operators ρi on the individual
sites:

ρGW(t) =
∏
⊗l

ρl(t) =
∏
⊗l

∑
m,n<Nc

cl
nm(t)|n〉l〈m|l . (16)

In our calculations we truncate the dimension of the local
Hilbert space for every site at a finite value Nc = 10, which
we choose large enough so that our results are independent of
the choice of the cutoff. The accuracy and limitations of this
approximation in describing dissipative systems have been
discussed in Ref. [43]. In brief, by comparing Gutzwiller
results with exact calculations on small lattices it is found
that the method describes local quantities accurately, but
it underestimates phase coherence between different sites.
However, it is expected that the accuracy of the method
improves as the lattice coordination number increases.

Projecting the Lindblad equation (2) onto the local oc-
cupation number bases we obtain equations of motion for
the variational coefficients of the Gutzwiller state, which are
N × Nc coupled first-order differential equations:

ı
dcl

nm(t)

dt
= ηl

√
ncl

n−1,m + η∗
l

√
n + 1cl

n+1,m

− ηl

√
m + 1cl

n,m+1 − η∗
l

√
mcl

n,m−1

+ iγl

√
n + 1

√
m + 1cl

n+1,m+1

+
(

U

2
[n(n − 1) − m(m − 1)]

−�(n − m) − i
γl

2
(n + m)

)
cl
n,m, (17)

where ηl = Fl − J
∑

〈l,j〉 φj takes into account the contribu-
tion of nearest-neighbor sites and the external driving term.
After preparing the system in an initial state we propagate the
equations of motion simultaneously to describe the subsequent
nonequilibrium dynamics. We chose here to investigate the
steady-state solutions by observing the long-time dynamics of
the system.

IV. RESULTS

In the following we present properties of photonic currents
for the setups defined in Eqs. (6) and (7).

A. Phase imprinting

In the noninteracting limit of the setup shown in Fig. 1(a),
phases of the coherent driving terms Fl translate into phases
of φl according to Eq. (9) as

φl = −
∑

k

1

εk − � − i
γb

2

kl

∑
j

k∗
j Fj , (18)
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Δ

FIG. 2. The density nPI [Eq. (22)] as a function of (a) detuning
and (b) driving for the setup (6). Additional parameters used in the
calculations: �PI = π/2, (a) F/J = 1, γb/J = 1, (b) �/J = −1,
γb/J = 1. The thin part of the dotted line in (a) corresponds to
unstable solutions.

where εk and |k〉 are eigenfrequencies and eigenmodes of

H 0
lj = −2Jδl,j − Jδl−1,j − Jδl+1,j , (19)

and we keep in mind that we work in a corotating frame. For
a lattice obeying periodic boundary conditions in both x and
y directions, we find homogeneous steady states with density

nPI = F 2

[2J (1 + cos �PI) + �]2 + γ 2
b

4

, (20)

and bond current

|jPI| = 2JnPI sin �PI. (21)

The maximal current jPI = 8JF 2/γ 2
b occurs at � =

−2J (1 + cos �PI), and the highest ratio jPI/(JnPI) = 2 is
found at �PI = π/2.

We now discuss effects of weak interactions on the currents
for �PI = π

2 . The lattice density is obtained from Eq. (11) by
solving

nPI = F 2

(−2J − � + nPIU )2 + γ 2
b

4

, (22)

while the bond current is still given by Eq. (21). From Eq. (22)
it is clear that the maximal current is the same as without
interactions, only the resonance condition is changed to

�PI
r = −2J + 4U

F 2

γ 2
b

. (23)

This effect is illustrated in Fig. 2(a), where we also see that in
certain regimes the mean-field description predicts up to three

FIG. 3. Top: The density nPI as a function of (a) detuning
and (b) driving for phase imprinting �PI = π/2. Bottom: quantum
fluctuations m/nPI. Additional parameters used in the calculations:
(a), (c) F/J = 1, γb/J = 1, U/J = 0.5, (b), (d) �/J = −1, γb/J =
1, U/J = 0.2.

solutions for the same detuning � [44]. From Fig. 2(b) it is
evident that only in the limit of low filling we find j ∼ F 2 as
in the case of U = 0. At a certain threshold value of F , the
dependence becomes steep and finally turns into j ∼ F 2/3. We
note that even stronger switching from low to high occupation
can be found for the nonlinear waveguide where normal modes
synchronize during this switching process [45].

By inspecting the contribution of quantum fluctuations
given in Eq. (15) for different solutions (22), we find that in
the region of coexistence one branch of solutions is unstable
[37,44] [the blue (middle) curve in Figs. 3(a) and 3(b)]. The two
other branches exhibit stronger fluctuations in the intermediate
regime [see Figs. 3(c) and 3(d)], indicating that the accuracy
of the mean-field approach deteriorates and the exact solution
may be a superposition of the two mean-field solutions. This
conclusion is in agreement with a variational solution of Eq. (2)
that captures beyond mean-field effects and exhibits a unique
steady state [46].

In the limit of stronger interactions, in the Gutzwiller
mean-field description (16) our system decomposes into single
cavities with an effective driving

η = F − 2JφPI(1 + cos �PI), (24)

which incorporates contributions from the nearest neighbors
of every site of the square lattice. Our numerical results can be
explained using an analytical result of Drummond and Walls
[44] for a steady state of a single driven cavity. In the steady-
state regime the value of the bosonic coherence φPI satisfies
the equation [17,18,44]

φPI = η

� + iγb/2

F(1 + c,c∗,8|η/U |2)

F(c,c∗,8|η/U |2)
. (25)

The average density is given by

nPI =
∣∣∣∣2η

U

∣∣∣∣2 1

|c|2
F(1 + c,1 + c∗,8|η/U |2)

F(c,c∗,8|η/U |2)
, (26)
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FIG. 4. The current jPI = 2J |φPI|2 sin �PI and local density nPI

in the steady state of the phase imprinting setup (6). Param-
eters: U/J = 20, γb/J = 0.2, (a) �/J = 10,F/J = 2.4,nPI ≈ 1,
(b) F/J = 2.4,�PI = π/2, (c) �PI = π/2. The black solid lines in
(c) are the corresponding analytical results for J = 0.

where c = −2(� + iγb/2)/U ,

F(c,d,z) =
∞∑
n


(c)
(d)


(c + n)
(d + n)

zn

n!

is the generalized hypergeometric function and 
(x) is the
gamma function. Our analysis is analogous to the analysis
performed in Refs. [17,18], with the main difference that we
introduce the parameter �PI, which is a necessary ingredient to
obtain currents. The steady states we obtain by solving Eq. (25)
are also found in real-time evolution of Eqs. (17) starting from
an initial state with a strong bosonic coherence.

Our main results are summarized in Fig. 4. As the strong
interaction U/J = 20 tends to suppress bosonic coherences,
the ratio of jPI/(JnPI) is an order of magnitude smaller
compared to the noninteracting regime. The maximal ratio
is found at �PI ≈ 0.35π , since the bosonic coherence φPI is
higher for this value than at �PI = π/2, Fig. 4(a). The current
jPI is a nonmonotonous function of the detuning �, Fig. 4(b).
This behavior stems from multiphotonic resonances of the
single cavity that occur at [18,44]

�PI
r = U

2
(n − 1), n = 1,2, . . . , (27)

when the energy of n incoming photons is equal to the energy
of n cavity photons. The number of resonances that can
be resolved practically is set by the ratio F/U , which also

FIG. 5. (a) Analytical results from [44] for a steady state of a
single driven cavity. (b) Bosonic coherence as a function of the
detuning for several values of J . Parameters γb/U = 0.01 and
F/U = 0.12,�PI = π/2 in (b).

determines the maximal possible filling of the lattice. For
very weak driving only low-lying resonances can be probed,
as shown in Fig. 4(b) for F/U = 0.12. At stronger driving,
low-order resonances are washed out—as can be seen from
the analytical solution available for J = 0, see Fig. 5(a)—and
replaced by a simpler dependence that is captured by Eq. (11).
Yet, a few high-lying resonances can be resolved clearly even
at strong F ; see Fig. 5(a). In the vicinity of the lowest-order
resonance, maximal jPI is found at some off-resonant negative
value of �, while higher-order resonances can appear either as
peaks or dips in the current intensity. In Fig. 5(b) we observe
a local maximum of the coherence at � = U/2, while at
� = U there is a minimum at J/U = 0.05 and maximum at
J/U = 0.1. When J/U and F/U are comparable, a regime
with multiple stable mean-field solutions can be found [17,18];
however, this topic is beyond the scope of this paper.

In order to infer the dependence of the current on the driving
amplitude in the regime of strong U , we expand the analytical
result [44] for J = 0 in the limit of weak F and obtain

n ∼ 1

U 6

[(
γ 2

b + 4�2
)(

(U − 2�)2 + γ 2
b

)
F 2

+ 8U (4� − U )F 4 + · · · ]. (28)

If the dissipation rates are low (γb/U 	 1), at � = U/2
the term proportional to F 4 will dominate the F 2 term
even at very weak F , as we clearly observe in Fig. 4(c) at
�/J = 10,U/J = 20. Except for this special resonant case,
we typically have an F 2 dependence in the weak F limit. In
the regime of strong F , we recover the result obtained in the
previous section j ∼ F 2/3.
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γ/J = 1,  γb/J = 0

FIG. 6. The currents jl,l+1 between nearest-neighbor sites along
the x direction for the source-drain setup (7). Parameters used:
F/J = 1, �/J = −2.

B. Source-drain setup

Typical spatial distributions of the bond currents in the
noninteracting regime of the setup defined in Eq. (7) are
presented in Fig. 6 for a lattice size of N = 100 in the
x direction and assuming translational invariance in the y

direction, where a single site is repeated periodically. The
driving is applied at the rightmost lattice sites, and in the
presence of uniform dissipation rates the intensity of the bond
currents decays roughly linearly as we approach the leftmost
sites. In order to enhance overall currents, we consider the
leftmost cavities to exhibit a stronger dissipation rate. In the
idealized case of γb = 0 we find a uniform current throughout
the lattice. Hence, in the following we will explore the
source-drain (SD) setup Eq. (7) with open boundary conditions
in the x direction and periodic boundary conditions in the y

direction. The differences of this setup with respect to the
model studied in Ref. [21] are the following: we consider
a two-dimensional lattice and we take into account spatially
varying dissipation rates of cavities; see Eq. (7). Moreover,
we investigate a regime of high lattice density and weak
interactions, which was not addressed in Ref. [21].

In the steady-state regime with constant total number of
photons, it holds true that

−2F ImφN = γ n1 + γb

N∑
j=1

nj , (29)

i.e., the flux of incoming particles on the right is equal to the
flux of the particles leaving the system (continuity equation).
In the special case of γb = 0 we find a uniform current:

jSD = γ n1 = −2F ImφN. (30)

In the noninteracting limit of the setup (7), both the total
density

∑
l〈nl〉 and the intensity of the bond current are

proportional to F 2 according to Eq. (9). In Fig. 7(a) we show
that the transport occurs if there is an eigenmode of H 0 in
Eq. (19) at the given value of � to support it. In our case the
range of resonant driving frequencies is � ∈ [−4J,0], as the
frequency of the lowest mode of a two-dimensional lattice is
−4J and we only consider transport in the x direction. To infer
effects of local dissipation γ , we invert the matrix M (10), first

FIG. 7. The current (4) for the setup (7) as a function of
(a) detuning and (b) local dissipation. Additional parameters:
(a) γ /J = 1, F/J = 1, (b) �/J = −2.1, F/J = 1. Insets in (a)
show the spatial distribution of |φl | over the site index l in the
x direction. Typical distributions range from (top) “conducting”
behavior (�/J = −2.1,γb = 0) to (center) the situation without
bulk current (�/J = 5,γb = 0.0). Bottom: Conducting behavior with
bulk dissipation (�/J = −2.1,γb/J = 0.02). The lattice consists of
N = 100 sites in the x direction.

for γb = 0. The bond current is given by

j = γ
F 2

J 2

p
(
2 + �

J

)
q
(
2 + �

J

) + γ 2

4J 2 r
(
2 + �

J

) , (31)

where p(x), q(x), and r(x) are polynomials that can be
expressed in terms of determinants of the matrix M and its
submatrices with γ set to zero. The last dependence is plotted
in Fig. 7(b) and we see that the bond current is maximal when
the dissipation rate γ is of the same order of magnitude as the
hopping rate J , i.e., γ /J ∼ 1. Beyond this value, the current
is suppressed as the quantum Zeno effect takes place [43].
If the resonant condition � = εn is fulfilled, the matrix M in
Eq. (10) is singular for vanishing γb and we find j ∼ γ −1. As
expected, the intensity of j is suppressed by the presence of
finite bulk dissipation γb. In Fig. 7(b) at finite γb we plot the
current between the leftmost site and its nearest neighbor in the
x direction. The insets of Fig. 7(a) show density distributions
in different regimes. In the conducting regime density profiles
are typically nonuniform.

Now we address effects of weak interactions first with
γb = 0. To access the steady states, we perform a real-time
propagation of Eq. (11). This method raises an important
question about if and how the steady states depend on the

013809-6



PHOTONIC CURRENTS IN DRIVEN AND DISSIPATIVE . . . PHYSICAL REVIEW A 94, 013809 (2016)

chosen initial conditions [47]. For very weak U , such that
nU/J 	 1, the noninteracting steady states from the previous
section provide a good starting point. States obtained in this
way exhibit nonuniform density distributions. As U becomes
stronger, our numerical results suggest that in the bulk of the
system, where γl = 0 and Fl = 0, the steady states are given
by φl =

√
nSD exp(i�l). The density is uniform in the bulk

nSD(�) = � + 2J (1 + cos �)

U
, (32)

and so is the bond current

jSD(�) = 2JnSD(�) sin �, (33)

where � is a constant phase difference between φl of nearest
neighbors. Unlike the phase imprinting setup, where the value
of � is fixed by the external drive, here the phase difference is
set by the boundary conditions (30). In the following, we set
the initial state for the real-time propagation of Eq. (11) to a
steady state for fixed values of �, F , and γ , then adiabatically
change one of the parameters and monitor how this change
affects the steady state.

As in the phase imprinting setup, for very weak U it holds
that j ∼ F 2. In contrast, in the steady state (32) the driving F

affects only the rightmost sites and not the bulk features. As
F gets smaller, only the occupancy of the rightmost sites nN

decreases. Eventually, densities on the leftmost and rightmost
lattice site become equal nN ≈ n1 and at this point the steady
state is no longer supported. This occurs approximately at
F ∗ = 1

2γ
√

n1 and we have j ∼ θ (F − F ∗), where θ (x) is a
step function. With further decrease of the driving intensity
F , our numerical results exhibit strong oscillations that persist
up to the longest integration time. In this regime, numerical
simulations fail to converge to a stationary regime and the
average intensity of the bond current is zero.

The steady states (32) exist if � � −4J . Above this
threshold the lattice filling exhibits a roughly linear increase
with �. The detuning also affects the phase difference �, as
evidenced by the change in the ratio j/n; see Fig. 8(a). The
current per particle saturates at large � and it turns out that
at large enough �, when the lattice filling is too high, the
steady state is no longer supported for it requires stronger
driving F .

In the source-drain setup the value of � can be changed
by tuning the intensity of the local dissipation γ [29]. Unlike
F , γ affects both the bulk density of a steady state as well
as the strength of the bond current. For example, in the case
presented in Fig. 8(b) an optimal ratio j/(Jn) ≈ 1 is found
at γ /J ≈ 2. By additionally optimizing the detuning �, this
ratio can be enhanced further; see Fig. 8(a). In a similar way as
for the phase imprinting, effects of quantum fluctuations can
be estimated and we find them to be reasonably small. Finally,
we find that the states (32) are stable with respect to the bulk
dissipation for moderate values of γb/J ∼ 0.01.

We now investigate features of the current for stronger
interactions at a fixed ratio U/J = 4 as a function of the
external system parameters γ,F (γb = 0) by solving Eq. (17)
for long times. In Fig. 9 we show the average current at large
times tJ ∼ 104, where we identify quasisteady states, which
yield approximately constant current and particle densities
j,n ≈ const. We average theses quantities over a large enough

FIG. 8. The ratio j/(Jn) as a function of (a) detuning � and
(b) the dissipation γ for U/J = 0.5, γb = 0, and N = 50 for the
source-drain setup (7). Insets of both plots show the local density n

in the bulk.

time span, which evens out most of the oscillations, and we
attribute any residual noise to lower-frequency components,
which stem from our choice of the initial state. At small
γ /J � 1 the aforementioned quasisteady states exist and their
current density increases almost linearly with γ /J . The current
density is then only weakly dependent on the driving F/J . At
γc/J ∼ 1 a sharp transition occurs and the existence of the
quasisteady states is suddenly violated. What we find instead
are oscillating mixed states with (almost) vanishing average
current density, hence a nontransparent region.

We explain this observation with the quantum Zeno effect
[48,49] by identifying the loss rate γ with the rate of a gener-
alized measurement, which—repeated at high frequencies—
stops the unitary time evolution and forces the system into
the lossless steady state, where no significant particle transfer
from the driven to the lossy site is observed. Following early
theoretical considerations [50], the quantum Zeno effect was
observed in experiments with cold ions [51] and ultracold
atoms [52–55]. In the context of ultracold atoms, the interplay
of interactions and dissipation has received a lot of attention
[42,56–62]. Applying this principle to our system we first note
that only the dissipative sites (in this case only the ones at
the left boundary x = 0) are being “measured,” which means
that only the reduced density operators on these sites become
time independent in the limit of frequent measurements, i.e.,
strong dissipation. In fact, in the limiting case the local density
operators will be equal to the local vacuum. The rest of the
system will henceforth pursue its own unitary time evolution,
where the coupling to the dissipative site is simply disabled.
This explains why we cannot find quasisteady states at large
dissipation, because the only steady states under unitary time
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FIG. 9. (a) Average current j/J in the center of a system (7) of width N = 200 sites in the x direction and translational invariance in the y

direction at times tJ ∼ 104. At γc/J ∼ 1 the current is suppressed due to the quantum Zeno effect. In (b) slices through the phase diagram at
different driving strengths are shown. Parameters used are U/J = 4,�/J = 2.

evolution are eigenstates of H and for arbitrary initial states,
composed of many different eigenstates of H, observables do
not converge.

The transition at γc/J ∼ 1 occurs at the point where the
time scales of the local measurement ∼1/γ and the competing
hopping process at rate J are balanced. At this point the
particle transfer is maximal since particle loss occurs at the
same rate as the hopping, which fills up the dissipative sites
again. If the dissipation is any stronger this filling process will
be suppressed.

From this discussion it is already apparent that the dissipa-
tion is the prevalent ingredient for a description of the transport
in this system. Microscopically, this can be understood from
a wave picture, where excess currents are reflected from a
hard wall and destructive interference of counterpropagating
waves takes place. We confirm this assumption by examining
snapshots of the current distribution at small times (see Fig. 10)
before the quasisteady state regime has been reached. By
observing the time evolution of easily identifiable current
peaks we find that for weak γ only a small proportion of
particles is reflected while the majority is transmitted to the
lossy site and lost eventually, Fig. 10(a). However, for a large

enough ratio γ /J , currents are reflected—not at the system
boundary, but at the lossy site, Fig. 10(b). Peaks traveling
towards the dissipative edge will change the direction, i.e.,
the sign of the current, just before the dissipative site. As a
consequence the dissipative site is effectively decoupled from
the system.

The oscillations in the region with γc < γ 	 ∞ can be
explained in the wave picture as well. Since perfect destructive
interference of reflected components would require suitable
geometric conditions, which we do not alter throughout our
simulations, the process of particles “bouncing” back and forth
will lead to a small current distribution, which is difficult to
average out completely.

The source-drain setup (7) is the simplest way to describe
transport through the system, neglecting the penetration depth
of the laser into the medium and de-excitations in the
bulk. Typically, lattices are formed of identical cavities, the
individual mode excitations of which have the same decay
rates, so that a constant bulk decay rate is more realistic. In
order to simulate the penetration of the laser into the medium
we consider a decaying laser amplitude F as a function of the
penetration depth. In the simplest case this would be a linear

FIG. 10. Current distribution jl,l+1/J at small times tJ ∈ [0,1400] for the system of Fig. 9 at (a) γ /J = 0.8 and (b) γ /J = 4. In (b) currents
are reflected from the dissipative site as a consequence of quantum Zeno blocking. The initial dynamics for tJ ∈ [0,600] are only shown in (a) for
clarity. Relevant are the peaks in the current distribution; arrows are meant to guide the eye. Parameters used are U/J = 4,�/J = 1,F/J = 2.
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FIG. 11. (a) Average current jx = 1/N
∑

l jl,l+1 as a function of the slope �F of the driving laser amplitude (34) and the background
amplitude F0. Here, the system has a width of N = 200 sites in the x direction and one site in the y direction, which is repeated via periodic
boundary conditions. Cuts through the diagram are shown in (b), where we observe maximal current at a specific value of the slope �F in the
upper plot for small F0. The maximum is shifted to the left with increasing F0. Varying F0 at fixed �F (lower plot) shows decreasing behavior
of jx . Parameters used are U/J = 4,�/J = 1,γ /J = 0.2.

decay with bulk dissipation present:

Fl = F0 + �F (l − 1), γl = γ, (34)

where l denotes the site index in the x direction and no explicit
y dependence is given, as before.

For the setup (34) we investigate the dependence of the
currents on an overall laser field F0 and an “on top” gradient
�F . It turns out that the larger the offset field F0 the lower
the overall current, Fig. 11(a). In Fig. 11(b) we observe
a peak in the photon transport at F0 = 0 and a strongly
suppressed transport for any other value of F0. The effect can
be understood by realizing that the off-set field corresponds to
the phase imprinting with phase zero, i.e., we are pumping
a mode that does not support any current. Effects of the
gradient �F are given in Fig. 11(b). At low �F , the system
compensates for the imbalance between neighboring sites
via coherent transport of photons along the gradient and, as
expected, the gradient enhances the current. However, at a
certain value of the �F the imbalance is so strong that the
incoherent dynamics becomes the dominant process.

V. CONCLUSIONS

Motivated by ongoing research interest in arrays of coupled
photonic cavities, we have investigated different possibilities
to optimize coherent transport in this setup. We have started
from the noninteracting limit, where simple relations between
the bond current and externally tunable parameters can be
established. To address the role of interactions we have
employed the Gutzwiller mean-field theory and a simpler
Gross-Pitaevskii–like approach when possible.

In the case where bond currents are introduced by phase
engineering of the external lasers, we have found that weak
interactions shift the driving frequency that leads to a peak
in the current toward higher values. On the other hand, in
the strongly interacting regime of this setup, multiphotonic
resonances of a single driven cavity lead to multiple peaks of

the current as a function of the driving frequency. The lattice
filling is set by the strength of the applied driving field F

and the dissipation rate γb, but interactions can modify the F 2

proportionality into either a weaker F 2/3 gain or an effectively
stronger gain in the vicinity of multiphotonic resonances.

In the source-drain setup, local dissipation γ proves to be
the tuning parameter that allows us to maximize the bond
current. The optimal value of γ is set by the intrinsic hopping
rate of the underlying Bose-Hubbard model. Further increase
of γ leads to the quantum Zeno dynamics that suppresses
uniform currents. The effects of the applied driving F turn
out to be especially simple in the interacting case: the steady
state is either stable at the specific value of F or its stationarity
breaks down as stronger driving strength would be required to
balance the dissipation.

The main approximation of our analysis is the employed
mean-field approach together with the simplified form of
the bond current, that limits to the regime of the strong
bosonic coherences. The contribution of nontrivial correlations
becomes important in the limit of very strong interactions and
weak driving and this case should be treated in the future
using beyond mean-field approximations [14,21,46,63,64].
However, we expect that the main effects we have identified
at finite coherences will not be modified by the inclusion
of higher-order terms. Another interesting research direction
would be to connect our results with well-established results
describing heat transport on the microscopic level [65].
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