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Excitation spectra of a Bose-Einstein condensate with an angular spin-orbit coupling
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A theoretical model of a Bose-Einstein condensate with angular spin-orbit coupling has recently been proposed
and it has been established that a half-skyrmion represents the ground state in a certain regime of spin-orbit
coupling and interaction. Here we investigate low-lying excitations of this phase by using the Bogoliubov
method and numerical simulations of the time-dependent Gross-Pitaevskii equation. We find that a sudden shift
of the trap bottom results in a complex two-dimensional motion of the system’s center of mass that is markedly
different from the response of a competing phase, and comprises two dominant frequencies. Moreover, the
breathing mode frequency of the half-skyrmion is set by both the spin-orbit coupling and the interaction strength,
while in the competing state it takes a universal value. Effects of interactions are especially pronounced at the
transition between the two phases.
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I. INTRODUCTION

Experimental realization of an effective spin-orbit coupling
in ultracold atom systems [1–6] has allowed for new quantum
phases to be explored. Bosonic systems with spin-orbit
coupling are interesting as they have no direct analogs
in condensed-matter systems and provide a new research
playground. Different types of coupling based on atom-light
interactions have been considered, e.g., Raman induced (as
realized in the current experiments) and Rashba type [7]. Only
recently bosonic systems with two-dimensional spin-orbit
coupling have become experimentally available [8]. Ground-
state phase diagrams that comprise a plane-wave, stripe, and
nonmagnetic condensed phase have been predicted and probed
[9–13]. Another type of condensate, a half-quantum vortex,
is expected for harmonically trapped bosons with Rashba
coupling [14–16]. A substantial progress in the field has been
summarized in Refs. [7,17]. As a further extension of these
ideas, in the very recent papers [18–23], a theoretical model
of bosons with the coupling of spin and angular momentum
has been introduced. From the experimental side, the proposal
involves two copropagating Laguerre-Gauss laser beams that
carry angular momentum and couple two internal states of
bosonic atoms.

Since the first experimental realization of Bose-Einstein
condensation, collective modes have been used to probe
the macroscopic quantum state and to relate measurements
to theoretical predictions [24]. Collective modes can reveal
important information about system properties, such as role of
interactions or quantum fluctuations. Experimentally, breath-
ing mode and dipole mode excitations introduced through a
quench of the harmonic trap are routinely accessible with great
precision, thus providing an indispensable tool for probing
the properties of a Bose-Einstein condensate. Along these
lines, collective modes of bosons with the Raman-induced
spin-orbit coupling have already been measured [3,4,20,25].
In the literature, several theoretical calculations of collective
modes for different types of spin-orbit coupling are available
[16,26–36]. In contrast to usual, harmonically trapped systems,
spin-orbit coupled systems exhibit the absence of the Galilean
invariance and, as a consequence, the Kohn theorem no longer

applies [7]. Another hallmark of these systems is that the
motion in real space is coupled with spin dynamics.

In this paper we investigate collective modes of bosons with
angular spin-orbit coupling that have not been addressed so far,
and show that the two competing ground states can be directly
distinguished according to their response to standard quenches
of the underlying harmonic trap. The paper is organized as
follows. In Sec. II we introduce the basic model and discuss
its excitations in the noninteracting limit. In Sec. III we briefly
describe methods that we use and summarize the ground-state
phase diagram in the limit of weak interactions [18]. Finally,
in Sec. IV we address breathing-mode and dipole mode
excitations of the two relevant phases and in Sec. V we present
our concluding remarks.

II. NONINTERACTING MODEL

In recent Refs. [18–21] the following Hamiltonian for a
two-component bosonic system has been introduced:

H0 =
(

p2

2
+ r2

2

)
I2 + �2r2

2

(
1 e−2iφ

e2iφ 1

)
, (1)

where I2 is a 2 × 2 identity matrix and the effective spin 1/2
comes from the two bosonic components involved. The system
is assumed to be effectively two dimensional (tightly trapped
in the longitudinal direction) and the value of � is proportional
to the intensity of the applied Laguerre-Gauss laser beam. The
last, φ-dependent term, where φ is the polar angle, provides
the coupling between the spin and angular momentum, as can
be explicated by using a proper unitary transformation [19].
We have assumed that the two lasers carry a unit of angular
momentum in the opposite rotational directions. In Eq. (1) and
in the following we use harmonic oscillator scales of the kinetic
energy and the trap p2/2m + mω2r2/2 as our units: the energy
is expressed in terms of �ω, the unit length is the harmonic
oscillator length scale

√
�/mω, where m is the atomic mass,

the unit momentum is
√

�mω, and the time scale is given
by ω−1. The frequency � and all excitation frequencies are
expressed in units of the harmonic oscillator frequency ω.
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FIG. 1. Spectrum Em
n of Hamiltonian (1) for (a) � = 3.2 and

(b) � = 3.5.

From the commutation relation [Jz,H0] = 0, where Jz =
Lz ⊗ I + I ⊗ σz is the z component of the total angular
momentum, it follows that the noninteracting eigenstates can
be written in the form

φm(r,φ) = eimφ

√
2π

(
fm(r)e−iφ

gm(r)eiφ

)
, (2)

where m as an eigenvalue of Jz takes integer values and r

is the radial coordinate. By numerical calculation [18] it has
been shown that the ground state moves from the m = 1 into
the m = 0 subspace at �c ≈ 3.35. The m = 1 ground state
exhibits a nontrivial spin texture that can be characterized by a
topological number (a winding number of the spin vector). This
state is called half-skyrmion and is degenerate, i.e., it has the
same energy as the ground state in the m = −1 subspace. The
m = 0 states comprises two vortices of opposite circulation.

We investigate excitations above the half-skyrmion and
m = 0 ground state, first at a single-particle level. The
spectrum of the Hamiltonian (1) is shown in Fig. 1(a) for
� = 3.2 and in Fig. 1(b) for � = 3.5. In the first case, for
� = 3.2 < �c the ground state m = 1 is doubly degenerate
and the lowest m = 0 state is close in energy, Em=0

0 − Em=1
0 ≈

2.5 × 10−2. For � = 3.5 > �c the ground state corresponds
to m = 0. In the following we will probe some features of
these spectra by applying two experimentally relevant types of
perturbations to a selected ground state.

To induce a breathing mode, we perturb the trap strength

Hpert = H0 + η
r2

2
I2. (3)

From the time-dependent Schrödinger equation,

i
∂

∂t

(
ψ1(t)

ψ2(t)

)
= Hpert

(
ψ1(t)

ψ2(t)

)
, (4)

we calculate the time evolution of the width of the probability
distribution,

〈r2(t)〉 =
∫ 2π

0
dφ

∫ ∞

0
dr r3[|ψ1(t)|2 + |ψ2(t)|2], (5)

as well as the spin dynamics captured by

〈Sz(t)〉 = 1

2

∫ 2π

0
dφ

∫ ∞

0
dr r[|ψ1(t)|2 − |ψ2(t)|2]. (6)

When changing the trap strength η in the Hamiltonian (3),
we couple only states with the same value of m. In the limit
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FIG. 2. Breathing mode oscillations of half-skyrmion state,
evidenced by (a) 〈r2(t)〉 − 〈r2(0)〉 and (b) 〈Sz(t)〉 − 〈Sz(0)〉. Motion
is induced by changing harmonic trap potential as r2

2 → 1.01 r2

2 .

of vanishing �, the breathing mode frequency is ωB = 2. By
increasing �, while staying in a half-skyrmion state, we find
that the breathing mode frequency decreases down to ωB ≈ 1.5
at the transition point, Fig. 2(a). Oscillations in the system size
are accompanied by an oscillatory spin dynamics, as shown in
Fig. 2(b).

In the m = 0 subspace, by subtracting and summing the
two coupled eigenequations, we find that the eigenproblem
reduces to two independent harmonic oscillators,(
L +

(
1 + 2�2

)
r2

2

)
(f0(r) + g0(r)) = Em=0(f0(r) + g0(r)),

(
L + r2

2

)
(f0(r) − g0(r)) = Em=0(f0(r) − g0(r)),

with frequencies 1 and
√

1 + 2�2, and the azimuthal quantum
number 1 in both cases as L = − 1

2r
∂
∂r

(r ∂
∂r

) + 1
2r2 . Hence

the m = 0 energy levels are linear combinations of Em=0
n =

2n and Em=0
n = 2

√
1 + 2�2 n,n = 1,2, . . .. In the region of

interest, where � is strong enough, the ground-state energy is
exactly Em=0

0 = 2 with a wave function

φ0 = 1√
2π

(
f0(r)e−iφ

−f0(r)eiφ

)
, (7)

which is independent of �. From this analysis it follows that the
breathing mode frequency is ωB = 2, which is a well-known
result for harmonically trapped bosons in two dimensions at the
classical level [37]. Moreover, it is easy to show that the time
evolution according to the perturbed Hamiltonian (3) is given

by φ0(r,t) = (
f0(r,t)e−iφ

−f0(r,t)eiφ

)
, leading to 〈Sz(t)〉 = 0. Therefore, in

this case oscillations in the system size are not followed by
oscillations in 〈Sz(t)〉.

To excite a dipole mode, we consider a shift of the trap
bottom in x direction,

Hpert = H0 − δx
r

2
(eiφ + e−iφ)I2, (8)

and monitor the motion of the center of mass of the system in
that direction,

〈x(t)〉 =
∫ 2π

0
dφ

(eiφ + e−iφ)

2

∫ ∞

0
dr r2[|ψ1(t)|2 + |ψ2(t)|2],

(9)
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FIG. 3. Dipole mode oscillations of half-skyrmion state for δx =
0.02 at (a),(b) � = 2 and (c),(d) � = 3.2.

as well as 〈y(t)〉. In Fig. 3(a) for � = 2 we see that oscillations
in x and y directions are coupled and that there are several
frequencies involved. In Fig. 3(c) we observe that for � = 3.2
even a weak shift of δx = 0.02 leads to very strong, slow
oscillations in x and y directions. On top of this, we also find
fast oscillations, as shown in the inset of the same figure. In
Figs. 3(b) and 3(d) we show the resulting complex motion of
the center of mass of the system, given by y(t) vs x(t). These
are all very distinct features not present in the conventional
harmonically trapped system, where the same perturbation
excites the Kohn mode—an oscillation with the trap frequency
along x axis. In the following we discuss the origin of the
complex dynamics.

First we note that the perturbation introduced in the
Hamiltonian (8) couples the initial m = 1 ground state
with excited states corresponding to other eigenvalues of
Jz, e.g.,

∫ ∞
0 dr r

∫ 2π

0 dφ φ∗
1 (r)Hpertφ0(r) 
= 0. In general, this

effect may lead to the time-dependent expectation value
〈ψ(t)|Jz|ψ(t)〉 = 〈Jz(t)〉. From the Heisenberg equations of
motion i

dJz(t)
dt

= [Jz,Hpert] and from the commutation relation
[Jz,x ⊗ I2] = iy ⊗ I2, we directly obtain that oscillating
〈Jz(t)〉 implies a motion in y direction

〈y(t) ⊗ I2〉 = − 1

δx

d〈Jz(t)〉
dt

. (10)

Now we discuss the emerging oscillation frequencies. In
first order of perturbation theory, we would expect the dom-
inant coupling of m = 1 with m = 0 and m = 2 eigenstates,
providing the two frequencies:

ωL
D = Em=0

0 − Em=1
0 , ωH

D = Em=2
0 − Em=1

0 . (11)

However, due to the degeneracy of the states m = −1 and m =
1, the m = −1 state has to be taken into account as well. The
lowest frequencies can be described by using the perturbation
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FIG. 4. Dipole mode oscillations for � = 3.5, starting from m =
0 ground state with different trap displacements δx. Black solid lines
are results of the analytical calculation.

theory for degenerate states presented in Appendix A. Within
this approach we find that the excitation frequencies are

ω1 =
√

ωL
D

2 + 2(δxI10)2, (12)

ω2,3 =
∣∣∣∣ωL

D

2
± 1

2

√
ωL

D

2 + 2(δxI10)2

∣∣∣∣, (13)

together with ωH
D . Obviously, the excited frequencies are

amplitude–dependent, and when ωL
D is low, i.e., close to the

transition point, the contribution of the term proportional to
the trap displacement δx is significant. This is another
difference with respect to a standard harmonically trapped
system. It arises due to the fact that by shifting the trap bottom,
while keeping the term proportional to �2 unchanged in the
model (1), we lower the symmetry of the model and modify
its energy levels. In the regime ωL

D → 0 it turns out that ω1

corresponds to oscillations in x direction, while both ω2 and
ω3 represent the motion in y direction. Results of the analytical
calculation, Eqs. (A8) and (A7) from Appendix A, are given
by the black solid lines in Figs. 3(a) and 3(c) and capture the
low-lying frequencies or long-time dynamics quite well.

The response of a vortex–antivortex pair to the sudden shift
of the trap is shown in Fig. 4. In this case, the perturbation
couples the initial m = 0 state symmetrically to excited states
±m. Thus 〈Jz(t)〉 = 0 and the center of mass only oscillates
in x direction. The two involved frequencies are

ω1 =
√

ωL
D

2 + 2(δxI10)2, ωH
D = Em=1

1 − Em=0
0 . (14)

For � = 3.5, we have ωL
D ≈ 2.2 × 10−2 and the increase of

the excited frequency with the shift δx is clearly observable in
the long-time dynamics; see Fig. 4.

Results of this section are summarized in Fig. 5, where we
see that at the transition point, � ≈ 3.35, ωL

D becomes gapless;
ωB of the m = 1 state decreases from ωB = 2 down to ωB ≈
1.5 and turns into ωH

D of m = 0 state. On the other hand, ωB =
2 on top of the m = 0 ground state is unaffected by �. We also
keep in mind that, due to the degeneracy of the half-skyrmion,
below the transition point we have a gapless quadrupole mode
ωQ = Em=−1

0 − Em=1
0 = 0 that indirectly affects dipole mode

oscillations. For completeness, we note that the frequency ωH
D

of the half-skyrmion turns into a quadrupole mode of m = 0
state, but this excitation does not play an important role in the
remaining discussion.
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FIG. 5. Breathing-mode and dipole mode excitations at g = 0 of
(a) m = 1 and (b) m = 0 ground state. (c) Energy of excited states as
a function of �.

III. WEAK INTERACTIONS

Now we consider weak spin–symmetric interactions, which
are approximated by a contact potential [7,18,19]. The total
Hamiltonian takes the form

H=
∫

dr

[
�†(r)H0�(r)+g

2

2∑
a,b=1

�†
a(r)�†

b(r)�b(r)�a(r)

]
,

(15)

where �(r) is a two-component spinor. Without interactions,
the ground state of many bosons is degenerate for � < �c

as there are different possibilities to accommodate atoms into
the two lowest degenerate noninteracting states. In general, the
degeneracy of noninteracting eigenstates makes the occurrence
of Bose-Einstein condensation more subtle [9,38]. In the
case that we consider, it turns out that weak interactions
promote condensation [7], as it is energetically favorable for
the particles to condense into the same single-particle state
in either the m = 1 or the m = −1 subspace [18,19]. As
the many-body ground state is twofold degenerate, in the
following we will consider a condensate formed in the m = 1
subspace. For � > �c and weak g there is a condensation into
the m = 0 state.

The total energy per particle of the condensed state with the
order parameter [ψ1(r) ψ2(r)]T is given by

E0 =
∫

dr
[

(ψ∗
1 ψ∗

2 )H0(ψ1ψ2)T

+ 1

2
g|ψ1|4 + 1

2
g|ψ2|4 + g|ψ1|2|ψ2|2

]
. (16)

In order to find the ground state, we perform minimization of
this functional with respect to ψ1(r) and ψ2(r). As usual, we
introduce a chemical potential μ to enforce a normalization
condition

∫
dr[|ψ1(r)|2 + |ψ2(r)|2] = 1. In the ground state,
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 pair

FIG. 6. Transition line between half-skyrmion and m = 0
condensate, which was originally calculated in Ref. [18].

we have

μψ0
1 =

[
p2

2
+ r2

2
(1 + �2) + g

(|ψ0
1 |2 + |ψ0

2 |2)]ψ0
1

+ r2

2
�2e−2iφψ0

2 , (17)

μψ0
2 =

[
p2

2
+ r2

2
(1 + �2) + g

(∣∣ψ0
1

∣∣2 + ∣∣ψ0
2 |2)]ψ0

2

+ r2

2
�2e2iφψ0

1 , (18)

where the chemical potential μ is given by μ =∫
dr[(ψ0∗

1 ψ0∗
2 )H0(ψ0

1 ψ0
2 )

T + g(|ψ0
1 |2 + |ψ0

2 |2)
2
]. By com-

paring the ground-state energies of the condensed state in the
two subspaces m = 0 and m = 1, it has been established that
even at � < �c there is a transition into an m = 0 condensate
with increasing g, as shown in Fig. 6, which was originally
calculated in Ref. [18].

In order to learn about low-energy excitations of the
condensed phase, we use the Bogoliubov approach. It can
be performed on the operator level, or starting from the time-
dependent Gross-Pitaevskii equation for ψ1(r,t) and ψ2(r,t)
[24]:

i
∂ψ1

∂t
=

[
p2

2
+ r2

2

(
1 + �2

)]
ψ1 + 1

2
�2r2e−2iφψ2

+ g|ψ1|2ψ1 + g|ψ2|2ψ1, (19)

i
∂ψ2

∂t
=

[
p2

2
+ r2

2

(
1 + �2

)]
ψ2 + 1

2
�2r2e2iφψ1

+ g|ψ2|2ψ2 + g|ψ1|2ψ2. (20)

In the following, we use the second approach.
Our first assumption is that the fluctuations δψ1(r,t) and

δψ2(r,t) around the ground state,

ψ1(r,t) ≈ [
ψ0

1 (r) + δψ1(r,t)
]

exp(−iμt), (21)

ψ2(r,t) ≈ [
ψ0

2 (r) + δψ2(r,t)
]

exp(−iμt), (22)

are weak. At the zeroth order in the fluctuations, from Eqs. (19)
and (20) we recover Eqs. (17) and (18). By keeping terms of the
first order, we derive a set of linear equations that describe the
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low-lying excitations of our system. To decouple the equations
further, we proceed in a standard way and introduce

δψ1(r,t) = u1(r) exp(−iωt) + v∗
1 (r) exp(iωt), (23)

δψ2(r,t) = u2(r) exp(−iωt) + v∗
2 (r) exp(iωt), (24)

to obtain the generalized eigenproblem

ω u1 =
(

p2

2
+ r2

2
(1 + �2) + 2g

∣∣ψ0
1

∣∣2 + g
∣∣ψ0

2

∣∣2 − μ

)
u1

+ r2

2
�2e−2iφu2 + g

(
ψ0

1

)2
v1

+ gψ0
1 ψ0∗

2 u2 + gψ0
1 ψ0

2 v2, (25)

− ω v1 =
(

p2

2
+ r2

2
(1 + �2) + 2g

∣∣ψ0
1

∣∣2 + g
∣∣ψ0

2

∣∣2 − μ

)
v1

+ r2

2
�2e2iφv2 + g

(
ψ0∗

1

)2
u1

+ gψ0∗
1 ψ0

2 v2 + gψ0∗
1 ψ0∗

2 u2, (26)

ω u2 =
(

p2

2
+ r2

2
(1 + �2) + g

∣∣ψ0
1

∣∣2 + 2g
∣∣ψ0

2

∣∣2 − μ

)
u2

+ r2

2
�2e2iφu1 + g

(
ψ0

2

)2
v2

+ gψ0
1 ψ0

2 v1 + gψ0∗
1 ψ0

2 u1, (27)

− ω v2 =
(

p2

2
+ r2

2
(1 + �2) + g

∣∣ψ0
1

∣∣2 + 2g
∣∣ψ0

2

∣∣2 − μ

)
v2

+ r2

2
�2e−2iφv1 + gψ0∗

1 ψ0∗
2 u1

+ gψ0∗
2 ψ0

1 v1 + g
(
ψ0∗

2

)2
u2. (28)

In general, the resulting eigenvalues form pairs −ωn,ωn and
only positive frequencies correspond to physical excitations of
the system.

To complement the Bogoliubov method, we numerically
solve Eqs. (19) and (20) for different types of perturbations (3)
and (8). For this purpose, the existing numerical codes for the
two-dimensional time-dependent Gross-Pitaevskii equations
[39–44] have been modified to include the spin-angular
momentum coupling from Eq. (1).

IV. RESULTS

In this section we present and discuss excitation spectra
and dynamical responses to perturbations (3) and (8) of the
half-skyrmion and the m = 0 condensate.

A. Half-skyrmion state

We first consider the case of � < �c and weak interaction
g, where all bosons condense into m = 1 state. By inspecting
Eqs. (25)–(28) for the φ-dependent terms, where we take into
account a nontrivial φ dependence of the order parameters
ψ1(r) and ψ2(r), we can infer that the solution can be cast in
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FIG. 7. Excitation spectra of half-skyrmion state for (a),(c) � = 2
and (b),(d) � = 3.2. Results obtained by the Bogoliubov approach.

the form⎛
⎜⎜⎜⎝

u1(r)

v1(r)

u2(r)

v2(r)

⎞
⎟⎟⎟⎠ =

∑
m

⎛
⎜⎜⎜⎝

um−1
1 (r)r |m−1| exp[i(m − 1)φ]

vm−1
1 (r)r |m−1| exp[i(m − 1)φ]

um+1
2 (r)r |m+1| exp[i(m + 1)φ]

vm−3
2 (r)r |m−3| exp[i(m − 3)φ]

⎞
⎟⎟⎟⎠. (29)

The explicit form of the matrices, that are diagonalized,
are given in Appendix B. The obtained spectrum shares
many features with the noninteracting spectrum presented in
Fig. 1(b), but it also exhibits important differences.

Excitation frequencies as a function of the interaction
strength g are plotted in Fig. 7(a) for � = 2 and in Fig. 7(b)
for � = 3.2. The lowest excitation that does not change the
relevant quantum number of the ground state is the breathing
mode and its frequency increases for several percent with g.
This is also confirmed by solving Eqs. (19) and (20) in order
to obtain 〈r2(t)〉, as shown in Fig. 8(a), and then inspecting
corresponding Fourier transforms, Fig. 8(b).

The most obvious difference with respect to the noninter-
acting spectrum is that the quadrupole mode is now gapped:
at finite interaction g it costs some energy to move a particle
from the half-skyrmion m = 1 condensate into the m = −1
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1.5 1.6

FT am
plitude

)b()a(

FIG. 8. Breathing mode oscillations in half-skyrmion phase: (a)
〈r2(t)〉 vs t and (b) corresponding Fourier transform. From the inset
we observe increase of the breathing mode frequency with g. Motion
is induced by changing harmonic trap potential as r2

2 → 1.01 r2

2 , � =
3.2.
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IVANA VASIĆ AND ANTUN BALAŽ PHYSICAL REVIEW A 94, 033627 (2016)

0

0.02

0.04

0 20 40 60 80

-0.02

0

0.02

0 20 40 60 80
t

-0.05

0

0.05

0 0.05 0.1

y

x

10-2
10-1
100
101
102
103
104

0 0.5 1 1.5 2

x1(t) x2(t)

y1(t) y2(t)

(a)

(b)

(c)

(d)

FT
 a

m
pl

itu
de

FIG. 9. Dipole mode oscillations of half-skyrmion state in inter-
acting case for � = 2. Motion is induced by shifting harmonic trap
bottom for δx = 0.02. In (a) and (b) g = 1. In (c) motion of the center
of mass, y(t) vs x(t), is plotted. In (d) vertical lines give results for ωL

D

and ωH
D obtained using the Bogoliubov method, and dots represent

Fourier transform of x(t).

state; see Fig. 7(c) and Fig. 7(d). This is directly reflected onto
the dipole mode oscillations that take place in the xy-plane for
the half-skyrmion state. For � = 2 both ωL

D and ωH
D are only

weakly affected by g; however, the fact that the quadrupole
mode is gapped means that now a simpler perturbation theory
applies. In the first order of this theory in δx the center-of-mass
motion is given by

〈x(t)〉 ≈ δx

2

(
I 2

10

ωL
D

cos ωL
Dt + I 2

12

ωH
D

cos ωH
D t

)
+ const, (30)

〈y(t)〉 ≈ δx

2

(
I 2

10

ωL
D

sin ωL
Dt + I 2

12

ωH
D

sin ωH
D t

)
, (31)

where the values of I10 and I12 can be roughly ap-
proximated by using the noninteracting eigenstates from
Eq. (2) as I10 = ∫ ∞

0 dr r2f ∗
0 (r)[f1(r) − g1(r)] and I12 =∫ ∞

0 dr r2[f ∗
1 (r)f2(r) + g∗

1 (r)g2(r)]. In Fig. 9(c) we see how
the pattern in the xy plane becomes regular and symmetric
as g is changed from g = 0.2 to g = 2. The two bosonic
components oscillate in phase in both directions; see Figs. 9(a)
and 9(b). Results of the Bogoliubov approach, which are
captured by Eqs. (25)–(28), match quite well to the numerical
data obtained from direct numerical simulations of Eqs. (19)
and (20); see Fig. 9(d).

Effects of interactions are more prominent close to �c. In
this case the frequency ωL

D exhibits a strong increase with g,
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FIG. 10. Dipole mode oscillations of half-skyrmion state in
interacting case for � = 3.2. Motion is induced by shifting the
harmonic trap bottom for δx = 0.01. In (a) and (b) g = 1. In (c)
motion of the center of mass, y(t) vs x(t), is plotted. The trajectory
radius gets smaller with increasing g. In (d) vertical lines give results
for ωL

D (in the inset) and ωH
D (in the main panel) obtained using the

Bogoliubov method, and dots represent Fourier transform of x(t).

as is depicted in Fig. 7(d). In Figs. 10(a) and 10(b) we see that
the oscillations are still as strong as for g = 0, but the pattern
is regular; compare Fig. 10(c) with Fig. 3(d). As the frequency
ωL

D gets larger, the induced oscillation amplitude gets weaker
and the induced frequency is less affected by the shift of the
trap δx. In this case, the frequency ωH

D is found to be almost
independent of g; see Figs. 7(b) and 10(d).

B. Vortex-antivortex pair

In a similar way we proceed in the case of � > �c, where
the bosons condense in the m = 0 state. The solution of
Eqs. (25)–(28) can now be cast in the form⎛

⎜⎜⎜⎝
u1(r)

v1(r)

u2(r)

v2(r)

⎞
⎟⎟⎟⎠ =

∑
m

⎛
⎜⎜⎜⎝

um−1
1 (r)r |m−1| exp[i(m − 1)φ]

vm+1
1 (r)r |m+1| exp[i(m + 1)φ]

um+1
2 (r)r |m+1| exp[i(m + 1)φ]

vm−1
2 (r)r |m−1| exp[i(m − 1)φ]

⎞
⎟⎟⎟⎠. (32)

Excitation frequencies as a function of the interaction strength
g are plotted in Fig. 11. As anticipated in Sec. II, the breathing
mode frequency of the m = 0 state is independent of g and at
the mean-field level we have ωB = 2 [37].

In the dipole mode oscillations, the two bosonic compo-
nents exhibit an out-of-phase oscillation in y direction, see
Fig. 12(b), and consequently the center of mass only oscillates
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FIG. 11. Excitation spectra of the m = 0 state for � = 3.5,
(a) and (c). Breathing mode oscillations for the m = 0 solution:
(b) 〈r2(t)〉 vs t and (d) corresponding Fourier transform. Motion
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FIG. 12. Dipole mode oscillations of the m = 0 solution in
interacting case for � = 3.5. Motion is induced by shifting harmonic
trap bottom for δx = 0.01. In (a) and (b) g = 0.2. In (c) trajectory
of the center of mass of a single bosonic component, y1(t) vs x1(t),
is plotted. In (d) vertical lines give results for ωL

D (in the inset) and
ωH

D (in the main panel) obtained using Bogoliubov method and dots
represent Fourier transform of x(t).
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FIG. 13. Comparison of Bogoliubov analysis (black dots) and
simplified diagonalization: (a) � = 3.2 and (b) � = 3.5. Inset gives
energy difference of m = 0 state, which turns out to exhibit a
condensate fraction significantly smaller than 1, and m = 15 state,
which corresponds to a half-skyrmion condensate.

in x direction with the frequency ωL
D that exhibits an increase

with g; see Fig. 11(b). The trajectory of the center of mass of
each of the components is given by an ellipse, which is strongly
elongated in x direction; see Fig. 12. A much weaker effect
of g is observed in ωH

D , that is quite close to the numerical
resolution of the applied methods.

C. Discussion

The ground-state mean-field calculations indicate a first-
order phase transition from a half-skyrmion state into m = 0
condensate with increasing g at � < �c and g = gc [18] as
shown in Fig. 6. Based on the Bogoliubov analysis we find
that this m = 0 state is dynamically unstable for � < �c

at g > gc as it exhibits an imaginary excitation frequency.
The results of the numerical simulations of Eqs. (19) and
(20) also show a nonlinear behavior in this regime, such
as mode coupling and the generation of higher harmonics.
One way to resolve this issue is to use a method that is
an alternative to the mean-field calculation, such as exact
diagonalization. Although this method suffers from conceptual
limitations in higher dimensions, if the two-body interactions
are described by a contact potential (Dirac delta function)
[45,46], we have implemented it with a finite-energy cutoff, as
described in Ref. [47]. In particular, we perform a simplified
diagonalization study for � close to �c by taking into account
only the three nearly degenerate noninteracting eigenstates.
This analysis is sufficient to discuss the change in the ground
state and the two lowest excitations ωQ and ωL

D .
A comparison of the results obtained by the simplified diag-

onalization and by the Bogoliubov method is given in Fig. 13
for Np = 15 particles used in the diagonalization, where we
see that the two methods show good agreement in ωL

D in both
phases. However, the frequency ωQ is overestimated in the
Bogoliubov analysis. This can be understood as follows: when
performing a diagonalization, the lowest-lying state in the
sector m = Np − 2 is a linear combination of states |−11Np−1〉
and |1Np−200〉. However, the frequency ωQ, that we obtained
using the Bogoliubov method, corresponds much better to
the energy expectation value of |−11Np−1〉, from which we
subtract E0, as it neglects the two-particle excitations. An
effect of similar origin is found for the m = 0 condensate at
� > �c, where we find a series of two-particle excitations
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|0Np 〉 → |0Np−21 − 1〉 → |0Np−411 − 1 − 1〉 with the same
quantum number as the ground state that we do not capture
using the Bogoliubov method; see Fig. 13(b). In the inset
of Fig. 13(a) we plot the energy difference between the two
competing states for � = 3.2. We find that the transition from
the half-skyrmion condensate to m = 0 state occurs at a lower
value of g compared to the mean-field prediction, and that the
m = 0 state obtained in this way has a condensate fraction
substantially lower then 1. For this reason in the region of
the phase diagram � < �c,g > gc beyond-mean-field effects
become important.

V. CONCLUSIONS

Motivated by ongoing experimental efforts to realize and
probe new quantum states, we have investigated the breathing
mode and the dipole mode oscillations of the half-skyrmion
bosonic condensed state. These excitations are routinely used
in the experiments and we find that both of them distinguish
the half-skyrmion phase from a competing m = 0 state. In
particular, the breathing mode frequency of the half-skyrmion
state depends on the spin-orbit coupling and interaction
strength, while it takes a universal value in the m = 0 state
at the classical level. As a response to the sudden shift of
the harmonic trap, a center of mass of a half-skyrmion state
exhibits a peculiar motion in the xy plane that involves
the two dominant excitation frequencies ωL

D and ωH
D . In

the noninteracting limit, the degeneracy of the m = 1 half-
skyrmion with m = −1 state leads to complex motion patterns.
Weak repulsive interactions make the quadrupole mode gapped
and lead to simpler and symmetric patterns. These effects
of interactions are stronger closer to the transition point
between the two phases, where they prominently enhance the
frequency ωL

D .
In future work, we plan to address bosonic excitations for

spin-asymmetric interactions as well as to treat interactions
for a spin-orbit-coupled system in more detail [48]. Another
interesting direction would be to investigate the role of disorder
[35,49–53], or the phenomenon of Faraday waves [54–56] in
this type of system.
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APPENDIX A: PERTURBATION THEORY FOR NEARLY
DEGENERATE STATES

To describe the lowest excitation frequencies, we consider
the lowest-lying states of the Hamiltonian (1), given in Eq. (2),
for m = −1,0,1. The states m = ±1 are degenerate and the
state m = 0 is close in energy; see Fig. 1. In the lowest order
of the perturbation theory, the relevant part of the perturbed

Hamiltonian (8) can be approximated by

H red
pert =

⎛
⎜⎝

a c/2 0

c/2 b −c/2

0 −c/2 a

⎞
⎟⎠, (A1)

where a = Em=−1
0 = Em=1

0 , b = Em=0
0 , c = δxI10 =

δx
∫ ∞

0 dr r2f ∗
0 (r)[f1(r) − g1(r)], and integrals over the angle

φ have already been performed. Functions f0(r), f1(r), and
g1(r) are defined in Eq. (2). For completeness, other relevant
operators in this subspace are approximated by

J red
z =

⎛
⎜⎝

−1 0 0

0 0 0

0 0 1

⎞
⎟⎠,

xred ⊗ I2 =

⎛
⎜⎝

0 −d/2 0

−d/2 0 d/2

0 d/2 0

⎞
⎟⎠, (A2)

yred ⊗ I2 =

⎛
⎜⎝

0 id/2 0

−id/2 0 −id/2

0 id/2 0

⎞
⎟⎠,

where d = I10. The eigensystem of H red
pert is given by

E1 = a, E2 = a + b − z

2
, E3 = a + b + z

2
, (A3)

v1 = 1√
2

⎛
⎜⎝

1

0

1

⎞
⎟⎠, v2 = 1√

n2

⎛
⎜⎝

−1
z−ωL

D

c

1

⎞
⎟⎠,

(A4)

v3 = 1√
n3

⎛
⎜⎝

−1

− z+ωL
D

c

1

⎞
⎟⎠,

where ωL
D = b − a, z =

√
ωL

D

2 + 2c2, n2 = 2z(z − ωL
D)/c2,

and n3 = 2z(z + ωL
D)/c2.

First we consider the case when the system is initially
prepared in the half-skyrmion configuration |ψ(t = 0)〉 =
(0 0 1)T . With this initial condition, we have

|ψ(t)〉 ≈ 1

2

⎛
⎜⎝

1

0

1

⎞
⎟⎠e−iE1t + 1

n2

⎛
⎜⎝

−1
z−ωL

D

c

1

⎞
⎟⎠e−iE2t

+ 1

n3

⎛
⎜⎝

−1

− z+ωL
D

c

1

⎞
⎟⎠e−iE3t . (A5)

From the last expression we can find all expectation values
〈O(t)〉 = 〈ψ(t)|O|ψ(t)〉. We start from

〈Jz(t)〉 ≈ 2

n2
cos (E2 − E1)t + 2

n3
cos (E3 − E1)t. (A6)
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From Eq. (10) it follows directly

〈y(t)〉 ≈ 2d

c

E2 − E1

n2
sin (E2 − E1)t + 2d

c

E3 − E1

n3
sin (E3 − E1)t

= δx I 2
10

2
√

ωL
D

2 + 2(δxI10)2

⎡
⎣sin

⎛
⎝

√
ωL

D

2 + 2(δxI10)2 − ωL
D

2

⎞
⎠t + sin

⎛
⎝

√
ωL

D

2 + 2(δxI10)2 + ωL
D

2

⎞
⎠t

⎤
⎦. (A7)

When calculating the expectation value of xred, we first note that xredv1 = 0, vT
1 xredv2,3 = 0. From here it follows that the

expectation value will oscillate with the frequency E3 − E2. The straightforward calculation yields

〈x(t)〉 ≈ δx I 2
10 ωL

D

2
(
ωL

D

2 + 2
(
δxI10

)2)
[
1 − cos

√
ωL

D

2 + 2(δxI10)2t
]
. (A8)

Results captured by Eqs. (A8) and (A7) are presented in Fig. 3, where we see that they reasonably agree with the full numerical
calculation.

Next we consider the time evolution of the vortex-antivortex pair |ψ(t = 0)〉 = (0 1 0)T . In this case

|ψ(t)〉 ≈ z − ωL
D

cn2

⎛
⎜⎝

−1
z−ωL

D

c

1

⎞
⎟⎠e−iE2t − z + ωL

D

cn3

⎛
⎜⎝

−1

− z+ωL
D

c

1

⎞
⎟⎠e−iE3t . (A9)

As the perturbation couples the m = 0 state symmetrically to ±m states, we find 〈Jz(t)〉 = 0 and the motion occurs only in the
x direction, where we recover Eq. (A8).

APPENDIX B: EXPLICIT FORM OF BOGOLIUBOV EQUATIONS

For a half-skyrmion ground state we rewrite linearized Eqs. (25)–(28) in the form of the eigenproblem of the matrix HBg,hs ,

Hm
Bg,hs

⎛
⎜⎜⎜⎝

um−1
1 (r)

vm−1
1 (r)

um+1
2 (r)

vm−3
2 (r)

⎞
⎟⎟⎟⎠ = ω

⎛
⎜⎜⎜⎝

um−1
1 (r)

vm−1
1 (r)

um+1
2 (r)

vm−3
2 (r)

⎞
⎟⎟⎟⎠, (B1)

where

HBg,hs = H0
Bg,hs + Hg

Bg,hs − Dμ, (B2)

H0,m
Bg,hs

=

⎛
⎜⎜⎜⎜⎝
Hm−1

0 + g
∣∣ψ0

1

∣∣2 + g
∣∣ψ0

2

∣∣2
0 1

2�2r2q13(r) 0

0 −Hm−1
0 − g

∣∣ψ0
1

∣∣2 − g
∣∣ψ0

2

∣∣2
0 − 1

2�2r2q24(r)
1
2�2r2q31(r) 0 Hm+1

0 + g
∣∣ψ0

2

∣∣2 + g
∣∣ψ0

1

∣∣2
0

0 − 1
2�2r2q41(r) 0 −Hm−3

0 − g
∣∣ψ0

2

∣∣2 − g
∣∣ψ0

1

∣∣2

⎞
⎟⎟⎟⎟⎠,

(B3)

and

Hg,m

Bg,hs = g

⎛
⎜⎜⎜⎜⎝

∣∣ψ0
1

∣∣2 (
ψ0

1

)2
ψ0

1 χ0
2 q13(r) ψ0

1 χ0
2 q14(r)

−(
ψ0

1

)2 −∣∣ψ0
1

∣∣2 −ψ0
1 χ0

2 q23(r) −ψ0
1 χ0

2 q24(r)

ψ0
1 χ0

2 q31(r) ψ0
1 χ0

2 q31(r)
∣∣ψ0

2

∣∣2 (
χ0

2

)2
q34(r)

−ψ0
1 χ0

2 q41(r) −ψ0
1 χ0

2 q41(r) −(
χ0

2

)2
q43(r) −∣∣ψ0

2

∣∣2

⎞
⎟⎟⎟⎟⎠, Dμ = μ

⎛
⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎠. (B4)
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We have introduced the following functions:

χ2(r) = ψ2(r) exp (−2iφ), (B5)

q13(r) = r |m+1|−|m−1|, q14(r) = r |m−3|−|m−1|, q23(r) = r |m+1|−|m−1|, q24(r) = r |m−3|−|m−1|,

q31(r) = r |m−1|−|m+1|, q34(r) = r |m−3|−|m+1|, q41(r) = r |m−1|−|m−3|, q43(r) = r |m+1|−|m−3|, (B6)

and Hm
0 = − 1

2 ( 2|m|+1
r

d
dr

+ d2

dr2 ) + 1
2 (1 + �2)r2.

In a similar way we proceed in the case of m = 0 ground state:

HBg,m0 = H0
Bg,m0 + Hg

Bg,m0 − Dμ, (B7)

with

H0,m
Bg,m0

=

⎛
⎜⎜⎜⎜⎝
Hm−1

0 + g
∣∣ψ0

1

∣∣2 + g
∣∣ψ0

2

∣∣2
0 1

2�2r2h(r) 0

0 −Hm+1
0 − g

∣∣ψ0
1

∣∣2 − g
∣∣ψ0

2

∣∣2
0 − 1

2�2r2e(r)
1
2�2r2e(r) 0 Hm+1

0 + g
∣∣ψ0

2

∣∣2 + g
∣∣ψ0

1

∣∣2
0

0 − 1
2�2r2h(r) 0 −Hm−1

0 − g
∣∣ψ0

2

∣∣2 − g
∣∣ψ0

1

∣∣2

⎞
⎟⎟⎟⎟⎠

(B8)

and

Hg,m

Bg,m0 = g
∣∣ψ0

1

∣∣2

⎛
⎜⎜⎜⎝

1 h(r) −h(r) −1

−e(r) −1 1 e(r)

−e(r) −1 1 e(r)

1 h(r) −h(r) −1

⎞
⎟⎟⎟⎠, (B9)

where h(r) = r |m+1|−|m−1| and e(r) = r |m−1|−|m+1|.
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[53] T. Khellil, A. Balaž, and A. Pelster, New J. Phys. 18, 063003

(2016).
[54] A. I. Nicolin, R. Carretero-González, and P. G. Kevrekidis,
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