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Phase transitions of the coherently coupled two-component Bose gas in a square optical lattice
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We investigate properties of an ultracold, two-component bosonic gas in a square optical lattice at unit filling.
In addition to density-density interactions, the atoms are subject to coherent light-matter interactions that couple
different internal states. We examine the influence of this coherent coupling on the system and its quantum
phases by using Gutzwiller mean-field theory as well as bosonic dynamical mean-field theory. We find that the
interplay of strong interspecies repulsion and coherent coupling affects the Mott insulator to superfluid transition
and shifts the tip of the Mott lobe toward higher values of the tunneling amplitude. In the strongly interacting
Mott regime, the resulting Bose-Hubbard model can be mapped onto an effective spin Hamiltonian that offers
additional insights into the observed phenomena.
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I. INTRODUCTION

Due to their highly controllable properties, systems of
ultracold atoms are promising platforms for quantum sim-
ulations. One of the early successes in this direction was the
observation of a superfluid-Mott insulator transition in a lattice
Bose gas [1,2], as a prototype of a quantum phase transition.
With recent advances in experimental techniques, present-day
cold-atom experiments feature finite-range interactions, for
example, in Rydberg dressed systems [3,4], as well as artificial
gauge potentials that mimic magnetic fields [5,6]. All these
achievements bring these setups closer to simulating complex
condensed-matter systems.

Multicomponent systems, such as mixtures of different
atoms or different hyperfine states of the same atomic species,
introduce additional degrees of freedom that can be treated
as pseudospin. In the weakly interacting limit, depending on
the ratio of intracomponent and intercomponent interactions,
two-component mixtures may exhibit phase separation [7].
The process of phase separation is substantially altered by
introducing a coherent coupling term that enables a conversion
of one internal atomic state into the other [8–19].

The binary bosonic mixtures in deep optical lattices [20–22]
realize the two-component Bose-Hubbard model that hosts a
rich phase diagram [23,24]. Despite intense experimental and
theoretical efforts in the past two decades, there are many
open questions related to the properties of bosonic mixtures
in the strongly interacting regime. The demixing transition
[25,26] and effects of the coherent coupling [27–29] have
been addressed only recently in this regime of strong repulsive
interactions in lattice models.

In this paper we investigate the phase diagram of a
two-component Bose gas on a square lattice subject to
coherent coupling between the two species. The interest
in the properties of a two-dimensional coherently coupled
system is both practical, as these systems are experimentally
available, and conceptual with respect to the results for the
related one-dimensional system [27,28]. It is well known that
quantum fluctuations play a decisive role in low-dimensional
models, such that continuous symmetries cannot be broken

for homogeneous one-dimensional systems and no long-range
order can form. Furthermore, mean-field approaches are
inapplicable in one dimension, and their accuracy increases
with higher dimensions. Specifically, in the case that we study,
a simple mean-field treatment might rule out one of the phases
found in recent studies of one-dimensional lattice systems
[27,28]. Thus, properties of a two-dimensional system require
a separate study that we present in the following sections.

The remainder of the paper is organized as follows: In the
next section we introduce the main model of our study and
briefly outline the methods that we use throughout the paper.
In Sec. III we address the case of finite bosonic coherences. In
particular, we examine the neutral to polarized phase transition
on top of the underlying condensate. The results for the case
of stronger local interactions that lead to the superfluid-Mott
transition with coherent coupling are presented in Sec. IV. The
case of imbalanced hopping amplitudes is the subject of Sec. V.
Finally, our main conclusions are summarized in Sec. VI.

II. MODEL AND METHODS

We investigate the phase diagram of an extended Hubbard
model describing a two-component Bose gas in a square
optical lattice with an additional coherent coupling term. In
second quantization the model explicitly reads

ĤBH = −
L∑

〈i,j〉
(taâ

†
i âj + tbb̂

†
i b̂j + H.c.)

+ 1

2

L∑
i

[Uan̂ia(n̂ia − 1) + Ubn̂ib(n̂ib − 1)]

+
L∑
i

(Uabn̂ian̂ib − �â
†
i b̂i + H.c.), (1)

where â
(†)
i and b̂

(†)
i are the annihilation (creation) operators for

bosonic species a and b, respectively, and n̂ia and n̂ib are their
number operators. The tight-binding hopping amplitudes of
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the respective species are denoted as ta and tb, and Ua and Ub

are their on-site interaction. Interactions are generally assumed
to be local and repulsive in this study. An on-site interaction
between particles of different species is designated as Uab, and
the term proportional to � allows for the conversion of one
bosonic species into another on the same site. This last term is
called the coherent coupling term. Local terms in the Hubbard
Hamiltonian are summed over lattice sites 1, . . . ,L, and in the
first term 〈i,j 〉 stands for the sum over all nearest-neighbor
sites i and j of the square lattice. Throughout the paper we
will consider the case of Ua = Ub = U and we set all scales by
fixing U = 1. Our aim in this paper is to investigate possible
ground states of the model (1).

Multicomponent bosonic systems are usually realized as
mixtures of two hyperfine states of a single element. One of
first experiments used sympathetically cooled |F = 1,mf =
−1〉 and |F = 2,mf = 2〉 hyperfine states of 87Rb [30]
for the realization of a spinor Bose-Einstein condensate.
In a subsequent study [8], coherent coupling between two
condensates of hyperfine states of 87Rb gas was implemented
as a two-photon transition. The authors were able to transfer
the complete population of the |F = 1,mf = −1〉 state of 87Rb
to the |F = 2,mf = 1〉 state using a combination of radio
frequency and a microwave field in an abrupt way, compared
to the other time scales of the system. The choice of hyperfine
states was motivated by the fact that the two states feel nearly
identical confining potentials, can be conveniently coherently
coupled and imaged selectively. In the more recent study [9], a
very similar setup has been exploited to explore the Josephson
effect through the measurement of the full time dynamics of
spinor condensates. The mixing and demixing dynamics in
the presence of coherent coupling of the two 87Rb states was
experimentally addressed in Ref. [10].

In present-day experiments, coherent conversion is a very
useful tool that expands a pool of phenomena that can be
addressed in cold-atom experiments. For example, in order
to introduce long-range interactions in cold-atom samples,
a coherent coupling of a ground-state atom with a Rydberg
excited state is used [3,31]. An application and detailed
derivation of the coherent coupling term in the context of
Rydberg dressing is given in a recent paper [32]. As another
notable example we mention the recent realization of artificial
gauge fields [5] in synthetic dimensions, which is directly
based on a specially tailored coherent coupling of several
internal atomic states [33,34].

It is well known that by reducing the ratio of the tunneling
amplitude ta,b over the repulsive interaction strength U at
commensurate lattice filling, bosons exhibit a superfluid to
Mott insulator transition [2,35]. On top of this, an effective
magnetic ordering emerges on the Mott side in two-component
bosonic mixtures [23,24]. These results are typically obtained
for � = 0 in the regime of γ � 1, where we introduce the
ratio between inter- and intraspecies interaction γ = Uab/U .
In the opposite case of γ � 1, it is energetically favorable for
the two bosonic species to be spatially separated [7]. However,
a finite � will suppress this tendency by enabling a conversion
between the two species. In this way, it allows us to address
the regime γ > 1. Note that the model (1) conserves only the
total number of particles and not the particle numbers of each
species separately. In the limiting case γ � 1, only atoms of

one species are present as the system avoids the high energy
cost of Uab.

This reasoning already suggests that in addition to the
well-understood superfluid to Mott phase transition, for the
model (1) we are able to distinguish another phase transition
characterized by the polarization order parameter,

ñi = 〈n̂ia〉 − 〈n̂ib〉
〈n̂ia〉 + 〈n̂ib〉 . (2)

A strong interspecies interaction Uab favors a polarized phase
with finite ñi . In contrast, the � term favors strong local
coherence 〈a†

i bi + b
†
i ai〉 that corresponds to a neutral phase

with ñi = 0. To establish boundaries between different phases
as a function of the physical parameters of the Hamiltonian (1),
we will use two approximate methods that we briefly outline
here.

Features of the lattice Bose gas can be explored conve-
niently by means of the Gutzwiller mean-field theory [36,37],
which amounts to decoupling nonlocal terms as

â
†
i âj ≈ φ∗

i âj + φj â
†
i − φ∗

i φj , (3)

where φ
(∗)
i = 〈â(†)

i 〉 is a condensate order parameter that is
obtained in a self-consistent way. The approximation becomes
an exact description in several limits: in the limit of infinite
lattice coordination number z, in the atomic limit (t = 0);
and in the weakly interacting limit, in the superfluid phase.
However, for a vanishing condensate order parameter the
lattice sites are completely decoupled within Gutzwiller
mean-field theory and the description of the Mott domain is
oversimplified. In order to go beyond this limitation, we will
use bosonic dynamical mean field theory (BDMFT) [38–42].

Formally, BDMFT is derived as a second-order expansion
of the full model (1) in terms of the inverse lattice coordination
number. In comparison to Gutzwiller mean-field theory, we
increase the order of the expansion by one [43]. The approx-
imate effective problem obtained in this way is given by a
bosonic Anderson impurity model. Parameters of the effective
model are set by imposing a self-consistency in terms of the
condensate order parameter and the local Green’s function.
The effective bosonic Anderson impurity model is solved
using exact diagonalization. The main approximation of the
method is the assumption of the locality of self-energies, which
is consistent with the second-order expansion in the inverse
of the coordination number [43,44]. The method captures
local correlations exactly but treats nonlocal correlations at
the mean-field level. In order to consider states that break
translational symmetries, we use real-space BDMFT [41] in
this paper. We address a lattice size of 6 × 6 with periodic
boundary conditions, with a special focus on a possible two-
sublattice ordering. By performing additional calculations for
larger lattices, we estimate finite-size effects on the transition
points of our phase diagrams to be of the order 2% in relative
units.

Both the Gutzwiller mean-field theory and BDMFT are
implemented in the grand-canonical ensemble. To this end,
we introduce a single chemical potential μ, ĤBH → ĤBH −
μ

∑L
i (â†

i âi + b̂
†
i b̂i ), as the model (1) conserves only the total

number of particles. In the next sections we present and discuss
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results for the different ground states of model (1), obtained
by using these approaches.

III. THE SUPERFLUID REGIME

In this section we present the Gutzwiller analysis of the
coherently coupled spinor Bose gas in the superfluid phase.
In order to address states with a finite condensate fraction, we
choose relatively high tunneling amplitudes ta/U = tb/U =
1/4. As the neutral to polarized phase transition is driven
by the strong intercomponent interactions Uab, we plot the
polarization order parameter ñi , defined in Eq. (2), over the
ratio γ = Uab/U in Fig. 1(a).

Results for the model (1) without coherent coupling are
plotted for reference (red solid line), and the transition from
ñi = 0 to |ñi | = 1 is found at γc = 1. We understand from
previous works that it is energetically favorable to have
components of both species on each lattice site only in
the case of weak interspecies repulsion. Strong interspecies
repulsion leads to the polarized phase, where only particles
of one species can be found on a single lattice site. For fixed
atom densities the system will thus undergo phase separation.
We notice that positive and negative values of 〈n̂a,i〉 − 〈n̂b,i〉
(ñi = ±1) appear equally as results of numerical calculations
with different initial conditions. This indicates two degenerate
ground states in the polarized phase, as we will confirm in
the following. In these calculations, initial parameters of the
self-consistent loop or root search routines determine which
of the ground states is selected, whereas in actual experiments
the occurrence probabilities for both ground states are equal.

We now turn to the effects of a finite coherent coupling term
and set �/U = 0.1. While the polarization order parameter
changes abruptly for vanishing coherent coupling [red solid
line in Fig. 1(a)], it exhibits a continuous change for finite
coherent coupling [blue dashed line in Fig. 1(a)]. Moreover,
we notice that the coherent coupling shifts the transition point
γc to higher values of the interspecies interaction. The same
qualitative behavior was reported in Refs. [16,28] in the quasi-
one-dimensional geometry for the regime of weak interactions,
both with and without a lattice. Within Gross-Pitaevskii theory,
it was found analytically that the polarized phase sets in at
Uc

ab = Ua,b + 2�/n. For the parameters given in Fig. 1, this
relation yields a transition point at γc = 1.2. However, since
the mentioned derivation is strictly valid only in the weakly
interacting limit, where all bosons are condensed, the phase
transition in Fig. 1 is expected to appear at a slightly different
value of γ . In particular, we find that as the ratio t/U is lowered
further, the transition point between the polarized and neutral
phase is shifted in favor of the neutral phase. The region of the
neutral phase extends toward higher values of γ and deviations
with respect to the result obtained in the weakly interacting
limit become more pronounced. This effect is further explored
in the next section.

The observation of discontinuities in the polarization order
parameter [Fig. 1(a)] draws our attention to the order of the
observed phase transitions. We analyze this in Figs. 1(c) and
1(d), where the grand potential and its first derivative are
plotted as functions of γ . As we use the grand-canonical
description at zero temperature and explicitly include the
chemical potential term, the grand potential is given by the

expectation value of our mean-field Hamiltonian. For � = 0,
we find that the first derivative of the grand potential is
discontinuous at γc. This leads us to the conclusion that the
neutral to polarized phase transition is of first order for � = 0.
In contrast, we observe a cusp in the same derivative for finite
�, implying that the phase transition is of second order.

To explore this in more detail, we plot the lowest energy
eigenvalue of the mean-field Hamiltonian as a function of the
condensate order parameters in Figs. 2 and 3 (left series).
In both cases, for vanishing and for finite �, we find a
single energy minimum for the neutral phase at γ < γc [see
Figs. 2(a1) and 3(a1)]. The condensate order parameters φa and
φb corresponding to this minimum are equal. In the polarized
regime for γ > γc, however, two degenerate energy minima
are present [Figs. 2(a4) and 3(a4)]. The degeneracy stems from
the fact that the ground state breaks the symmetry between the
two species, while the Hamiltonian is symmetric with respect
to the interchange of these two species. In the polarized phase
with � = 0, the condensate order parameter of one of the
species is strictly zero, while the other one has a finite value.
In contrast, both order parameters are finite but nonequal at
finite values of �, as also shown in Fig. 1(b).

Having established the properties of the neutral and polar-
ized phase, we now discuss the transition between them.

For � = 0 and γ = γc, we find an infinitely degenerate

energy minimum for constant
√

φ2
a + φ2

b . In the vicinity of
the transition point, a single minimum at φa = φb for γ <

γc abruptly transforms into two minima found at “distant”
positions in the φ space for γ > γc. The lowest eigenvalue of
the Gutzwiller mean-field Hamiltonian plotted along the unit
density line over α = arctan(φa/φb) (right series of Fig. 2)
provides the reason for that. The energy has a parabolic shape
at around α = 45◦. The coefficient of this parabola changes
from being positive in the neutral phase, which results in a
minimum at α = 45◦, to being negative in the polarized phase,
which results in two well-separated minima at α = 0◦,90◦.

At finite �, we do not find an abrupt change in the minima
at the transition point. The neutral minimum at φa = φb splits
into two degenerate minima that evolve towards their final
values with increasing γ . Accordingly, the energy plot along
the unity density line (right series, Fig. 3) is not a parabola that
simply flips the sign of its coefficient, but one that develops
a bump at α = 45◦ and thus gradually shifts its minima away
from that point.

IV. SUPERFLUID-MOTT TRANSITION

Strong on-site interactions suppress density fluctuations
and deplete the condensate. At commensurate densities, this
mechanism drives a transition from a superfluid into a Mott
insulator state. In this section we map out the phase diagram
of the model defined in Eq. (1) as a function of the tunneling
amplitude t/U and coherent coupling �/t by using BDMFT
at zero temperature.

In the limit of vanishing coherent coupling � → 0, for
γ > 1 (interspecies interaction stronger than intraspecies
interaction) our BDMFT simulations, implemented in the
grand-canonical ensemble, recover the well-known results for
the Mott insulator to superfluid transition for a single bosonic

063623-3
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(a)

(b)

(c)

(d)

FIG. 1. (a) Absolute value of the polarization order parameter |ñi | defined in Eq. (2), (b) condensate order parameters φa and φb,
(c) lowest eigenvalue of the mean-field Hamiltonian �GP , which corresponds to the grand-canonical potential at zero temperature, and
(d) its first derivative. These are plotted as a function of the dimensionless interaction ratio γ = Uab/U for unit filling na + nb = 1 and hopping
amplitudes ta/U = tb/U = 1/4.

species on a square lattice [39,45]. At finite � and t = 0
(the atomic limit) and at a total filling 〈nai + nbi〉 = 1, the
ground state has no polarization. This can easily be seen by
considering a single-site Hamiltonian in the subspace spanned
by |1,0〉 = a

†
i |0〉 and |0,1〉 = b

†
i |0〉, which is given by(−μ −�

−� −μ

)
. (4)

The ground state is |GS〉 = (|0,1〉 + |1,0〉)/√2 and it is
neutral, since 〈GS|nai − nbi |GS〉 = 0. In the following we
investigate a range of tunneling amplitudes ta/U = tb/U =
t/U ∈ [0.001,0.1] and coherent couplings �/t ∈ [0,1]. We
scan phase diagrams spanned by t/U and μ/U at fixed �/t

to access points with total unit filling, as shown in Fig. 4 for
γ = 8/5.

We begin our analysis with a small fixed ratio �/t . In
Fig. 4(a) we present the absolute value of the polarization
order parameter |ñ| [Eq. (2)] for �/t = 0.12. Increasing the
tunneling t/U from a starting point near the atomic limit,
we encounter a transition from the neutral into the polarized
state, before reaching the tip of the first Mott lobe. With
further increase of t/U , we find a second transition from
the polarized Mott state into the polarized condensate state
[see Fig. 4(a)]. At stronger �/t � 0.28, we find that the
whole Mott lobe is neutral and around the tip of the lobe,
we have a transition from the neutral Mott directly into the
polarized superfluid. An example of this behavior is shown
in Fig. 4(b). Finally, for �/t > 0.44, there is a transition
from the neutral Mott insulator into the neutral superfluid,

followed by a second transition from a neutral into a polarized
superfluid state [see Fig. 4(c)]. The change in the polarization
on the superfluid side of the diagrams as a function of the
chemical potential μ [Figs. 4(a)–4(c), a vertical cut] can be
understood as follows: by increasing the chemical potential
μ, the total density increases (not explicitly shown in figures)
and the enhanced contribution of repulsive interactions can
overcome the effect of the coupling � that favors a neutral
state.

A complete phase diagram as a function of �/t and t/U

at unit filling obtained from the previous type of calculation is
presented in Fig. 5(a). The color plot gives the polarization
|ñ|, the black squares form a transition line between the
polarized and unpolarized states, and gray circles show the
Mott insulator (left part) to superfluid (right part) transition
line. The two transition lines marking the Mott insulator to
superfluid transition and those marking the neutral to polarized
transition coincide in the intermediate region. The Mott region
extends up to t/U ≈ 0.06 for a fully polarized Mott to
polarized superfluid transition (weak �/t), which is very close
to the result for the Mott-lobe tip in a single-component case.
At strong �/t we have a neutral Mott to neutral superfluid
transition that takes place at a higher value of t/U ≈ 0.074,
as strong Uab plays a more pronounced role in this case. In the
horizontal cut shown in Fig. 5(b) we explicitly show that at
weak �/t there are two second-order phase transitions. These
transitions merge into a single transition point with a jump in
polarization |ñ| at intermediate �/t , as shown in Fig. 5(c).
At even stronger �/t , we find two separate transitions of the
second order again.
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FIG. 2. Left series: Lowest energy eigenvalue �GP /U of the
Gutzwiller mean-field Hamiltonian for �/U = 0 plotted versus
the condensate order parameters φa and φb. White data points mark
the position of the minimum, white solid lines mark unit density
and white dashed lines the area of 0.02 around the minimum. Right
series: �GP /U plotted along unit density lines (see white solid lines
in left series) over the angle α = arctan(φa/φb). Other Hamiltonian
parameters are ta/U = tb/U = 1/4 and μ/U = 1.

In order to explain the neutral-polarized transition on the
Mott side, we complement numerical BDMFT results with an
insight obtained from an effective spin Hamiltonian, which
is valid in the limit of strong interactions. The spin model is
derived via second-order perturbation theory in the hopping
amplitude and for unit filling. Starting from model (1), it is
expressed in the pseudospin basis |↑〉 = |na = 1,nb = 0〉 and
|↓〉 = |na = 0,nb = 1〉 [23,24,46]. Equivalently, one can also
use the Schrieffer-Wolff transformation [47] to obtain the same

FIG. 3. Left series: Lowest energy eigenvalue �GP /U of the
Gutzwiller mean-field Hamiltonian for �/U = 0.1 plotted versus
the condensate order parameters φa and φb. White data points mark
the position of the minimum, white solid lines mark unit density
and white dashed lines the area of 0.02 around the minimum. Right
series: �GP /U plotted along unit density lines (see white solid lines
in left series) over the angle α = arctan(φa/φb). Other Hamiltonian
parameters are ta/U = tb/U = 1/4 and μ/U = 1.

effective Hamiltonian [27,28]:

Ĥeff = −Jzz

∑
〈i,j〉

Ŝz
i Ŝ

z
j − J⊥

∑
〈i,j〉

(
Ŝx

i Ŝx
j + Ŝ

y

i Ŝ
y

j

)

− Jz

∑
i

Ŝz
i − 2�

∑
i

Ŝx
i , (5)

where we introduce Ŝl
i = (1/2)(â†

i ,b̂
†
i )σ l(âi

b̂i
) using the Pauli

matrices σ l with l = x,y,z. For the parameters considered
in this section (ta/U = tb/U = t/U ), the spin coupling
constants simplify to Jzz = 4t2(2γ − 1)/γU , J⊥ = 4t2/γU ,
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FIG. 4. Phase diagrams in the plane t/U -μ/U for γ = Uab/U = 8/5. The color maps show the polarization |ñi | defined in Eq. (2) for
(a) �/t = 0.12, (b) �/t = 0.28, and (c) �/t = 0.56. Dots show the Mott insulator to superfluid transition lines, and crosses mark lines of
constant density 〈na + nb〉 = 1 on the superfluid side.

and Jz = 0. Based on the model (5), in the strongly interacting
limit of the Bose-Hubbard model with coherent coupling from
Eq. (1), we expect to find different phases depending on the
magnitude of the coefficients Jz, Jzz, J⊥, and �. In particular,
the spin ordering along the z direction is equivalent to the
finite polarization order parameter from Eq. (2), while spin
alignment along the x direction corresponds to the neutral
phase. At the transition line of the neutral and polarized
phase we expect the spin couplings J⊥ and �, that favor spin
alignment in the x direction, to be comparable to the z-ordering
term Jzz. This reasoning leads to an approximate condition for
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FIG. 5. (a) The phase diagram of the model at unit filling for
γ = Uab/U = 8/5. The color map shows the polarization |ñ| defined
in Eq. (2). Dots show the superfluid to Mott insulator transition line,
and the squares give neutral to polarized transition line. Bottom plots:
cuts through the phase diagram for (b) �/t = 0.06 and (c) �/t =
0.34. Condensate order parameters and polarization |ñ| are plotted as
functions of t/U in (b) and (c).

the transition line

�c

t
∝

(
1 − 1

γ

)
t

U
. (6)

We fit the numerical data according to this argumentation
to �c/t ∝ αt/U , where α is the fitting parameter [27]. For
small t/U , we find �c/t ≈ 3.2t/U for γ = 8/5 (see Fig. 5)
and �c/t ≈ 2.15t/U for γ = 4/3. These fitting constants
explicitly fulfill the (1 − 1/γ ) dependence in Eq. (6).

V. IMBALANCED HOPPING AMPLITUDES

Up to now we considered two fully equivalent bosonic
components described by ta = tb and Ua = Ub = U . As a
consequence, two degenerate solutions with ±ñ were found in
the polarized regime. In this section we address a more general
case of imbalanced hopping amplitudes ta �= tb. This setting
is experimentally available when two internal states of the
same atomic species “perceive” different lattice depths, as in
the so-called state-dependent optical lattices [22]. Moreover,
the situation naturally occurs in Rydberg dressing [32] or in
coherent coupling of atoms and molecules [48–50], where the
two coupled states exhibit different properties.

We first investigate how the immobility of one bosonic com-
ponent (tb = 0) affects the superfluid-Mott transition of the
second coupled component. The BDMFT phase diagram in the
ta/U − �/U plane at unit filling is presented in Fig. 6. We find
that the imbalance in hopping amplitudes introduces a finite
polarization ñ and that the system is neutral only for ta/U = 0.
A finite polarization value on the Mott side of the diagram can
be understood from the effective spin model defined in Eq. (5)
that captures low-energy properties of the Hamiltonian (1)
deep in the Mott domain. For the parameters considered in
this section, the coefficients of the spin model (5) simplify to

Jzz = 2
t2
a + t2

b

U

(
2 − 1

γ

)
, (7)

Jz = 8
t2
a − t2

b

U
, (8)

J⊥ = 4tatb

γU
, (9)
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FIG. 6. (a) The phase diagram of the model at unit filling for
γ = Uab/U = 8/5, tb = 0. The color map shows the polarization
|ñ| defined in Eq. (2). Stars show the superfluid to Mott insulator
transition line for tb = 0, and the dots give the same line for
the balanced case ta = tb. Bottom plots: cuts through the phase
diagram for (b) �/U = 0.006 and (c) �/U = 0.07. Condensate
order parameters and polarization |ñ| are plotted as functions of ta/U

in (b) and (c).

where we typically consider 1 < γ < 2. According to Eq. (5),
the coefficient Jz plays the role of an effective chemical
potential that selects which of the two species is preferred in
the polarized phase.

With an increase in the tunneling amplitude ta/U , a
transition from the polarized Mott state into the polarized
superfluid state sets in, as shown in Figs. 6(b) and 6(c). As
the coupling strength � gets stronger, the transition points
shown by star symbols in Fig. 6(a) are shifted toward higher
values of ta/U . In Fig. 6(a) we make a direct comparison
of the transition lines obtained in the balanced (ta = tb) and
imbalanced (tb = 0) case. The two curves coincide at � = 0,
which corresponds to the fully polarized regime (ñ ≈ 1). As
the tunneling imbalance favors polarization, for weak � the
superfluid transition occurs at smaller ta/U in the imbalanced
case in comparison to the balanced case. At stronger values of
�, as the contribution of immobile species gets stronger, we
find the opposite effect: mixing with an immobile component
reduces density fluctuations and as a result, we find that the
Mott region extends well beyond the maximal value of t/U

obtained in the balanced case. Additionally, we find that the
coherent coupling introduces a finite condensate fraction of the
immobile species in the region close to the transition boundary.
However, for the parameter values that we have explored the
effect is very weak.

We now investigate features of the Mott phase at unit
filling for the case of imbalanced tunneling amplitudes in more
detail. We consider both positive and negative tunneling matrix
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FIG. 7. (a) Absolute value of the polarization order parameter
|ñi | in the ta − tb plane obtained by BDMFT. (b) Auxiliary function
χ defined in Eq. (10). Parameters: γ = Uab/U = 8/5, μ = 0.2Uab,
�/U = 5 × 10−3.

elements. The tunneling matrix elements of the Bose-Hubbard
model (1) can be controlled by periodic shaking [51,52] Ĥps =
K cos(ωt)

∑
j j n̂j . Within Floquet theory, this type of shaking

creates a Floquet spectrum with an effective hopping teff =
tJ0(K/ω), where J0 is the Bessel function. Experimentally,
this type of driving is realized by sinusoidally detuning the
counterpropagating laser beams that constitute the optical
lattice [53,54]. The effective hopping teff was measured by
analyzing the expansion behavior of the condensate along this
optical lattice, and it was found that up to K/ω ≈ 6, the data
is in good agreement with the Bessel function renormalization
of teff [53]. In the region between 2.4 < K/ω < 5.5, the
Bessel function is negativeJ0(K/ω) < 0 and thus the effective
hopping teff has an inverted sign. This corresponds to an
inverted curvature of the respective energy band and the
interference pattern from the time-of-flight analysis is shifted
by half a Brillouin zone.

In Fig. 7(a) we present the absolute value of the polarization
order parameter |ñ| as a function of tunneling rates ta
and tb. Other parameters of the Hamiltonian (1) are set
to γ = Uab/U = 8/5, �/U = 5 × 10−3, and Ua = Ub = U .
We limit ourselves to small absolute values of the ratios |ta|/U

and |tb|/U and unit filling 〈na + nb〉 = 1, so that the system
is in the Mott phase. Low values of the polarization are found
for very weak tunneling amplitudes, in the region given by
|ta,b| < tc, where we have tc/U ≈ 2.5 × 10−3 for the data
shown in Fig. 7. Along the diagonals ta = ±tb, the neutral
phase with ñ = 0 extends up to the largest values of ta and
tb. We notice a clear difference in the extension of the neutral
phase for the case of ta = tb in comparison with the case of
ta = −tb.

In order to explain the features observed in Fig. 7(a), we
use the effective spin model defined in Eq. (5) that captures
low-energy properties of the Hamiltonian (1) deep in the Mott
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FIG. 8. Absolute value of the polarization order parameter |ñi |
as a function of the hopping amplitude for tb = ta (left column) and
tb = −ta (right column). Parameters: μ = 0.2Uab, (a), (b) γ = 8/5,
(c), (d) �/U = 0.002. In the two top plots (a) and (b), the value of
the coherent coupling term is varied. In the two bottom plots, (c) and
(d), we vary the value of γ . For ta = −tb we find that our results do
not depend on the value of γ .

domain. We notice that Jzz increases quadratically both with
ta and tb, which leads to the largest increment in this spin
coupling term isotropically around ta = tb = 0. In contrast,
Jz depends on the difference of the square of both hopping
amplitudes and exhibits the strongest increase perpendicular
to the diagonals ta = ±tb. In our analysis, the value of � is
kept constant. Thus, it is the dominant quantity in the region
around ta,b ≈ 0 where all other spin couplings (7)–(9) are
weak and where we find the neutral phase accordingly. The
asymmetry between the negative and positive side of ta in
the plot shown in Fig. 7(a) arises due to the J⊥ coupling.
For hopping amplitudes of the same sign, the J⊥ coupling is
positive. As such, it lowers the energy of the neutral phase and
thus shifts the phase transition to higher values of ta,b. The
opposite is true for hopping amplitudes of different sign.

To sum up the implications of the spin model and compare
these to our numerical results, we examine the interplay of spin
coupling amplitudes with the help of an auxiliary function χ .
All spin couplings that favor the polarized phase are marked
with a positive sign, while the spin couplings favoring the
neutral phase carry a negative sign:

χ = Jzz + |Jz| − J⊥ − �. (10)

The roots of this function give an estimate for the neutral
to polarized phase transition line, and the resulting plot in

Fig. 7(b) qualitatively recovers the structure of the numerical
phase diagram.

We now investigate how the transitions from Fig. 7 are
affected by the change in the interaction ratio γ and in the
coherent coupling �. It turns out that the corresponding ta − tb
plots look qualitatively similar to the plot Fig. 7(a). In order
to make a quantitative comparison, we plot the absolute value
of the polarization |ñ| as a function of ta for ta = tb (Fig. 8,
left column) and for tb = −ta (Fig. 8, right column). In the
plots shown in Figs. 8(a) and 8(b), we set γ = 8/5 and vary
�. Our results show good agreement with the expectation
tc/U ≈ √

�/U from Eq. (6) for the transition point tc. For
the two cases considered (ta = tb and ta = −tb) only the
proportionality constants are different.

In the plots presented in Figs. 8(c) and 8(d) we keep
the value �/U = 2 × 10−3 fixed and change γ . For ta = tb
our results are well approximated by tc ≈ (1 − 1/γ )−1/2, in
agreement with Eq. (6). In contrast, for ta = −tb we find
that our results do not depend on the value of γ . This can
be explained by looking at the spin coupling constants from
Eqs. (7)–(10). As mentioned earlier, the J⊥ coupling opposes
the impact of the � term for hopping amplitudes of different
sign. The relevant contribution to the auxiliary function χ

[defined in Eq. (10)] that leads to the aforementioned γ

invariance, however, is given by the sum Jzz + |J⊥|. The γ

parts of both terms cancel, leaving χ independent of γ .

VI. SUMMARY AND DISCUSSION

In this work, we focused on a two-component mixture
of coherently coupled bosons in a square optical lattice.
We analyzed the phase transition between the polarized
[finite ñi , Eq. (2)] and the neutral phase, driven by an
interplay of the coherent coupling � and the interspecies
repulsion Uab at unit filling 〈nia + nib〉 = 1 in the
parameter region where interactions set the energy scale
�,ta,tb < Ua = Ub = U = 1 < Uab.

By comparing Gutzwiller results with more demanding
BDMFT calculations, we found that the former provide
a reasonable description of the system in the superfluid
regime. We investigated the energy landscape of the mean-
field Hamiltonian as a function of the two condensate order
parameters and established that the coherent coupling leads to
a second-order phase transition between the polarized and the
neutral phase. Furthermore, we found that the neutral phase is
suppressed as the ratio of inter- and intraspecies interactions γ

increases.
On the Mott side of the phase diagram, where BDMFT

calculations provide a necessary extension of the simpler
mean-field theory, for the balanced case ta = tb we found the
polarized phase to be favored only at very low values of the
coherent coupling [Fig. 5(a)]. From this, we concluded that
the long-range order of the condensate seems to favor the
polarized phase. To better understand our numerical results
in the Mott phase, we used an effective spin model that
provides a low-energy description of the full model. From the
coupling constants of the effective model we inferred that the
polarized to neutral transition line is approximately given by
�c

t
∝ (1 − 1/γ ) t

U
, in very good agreement with our numerical

results (Fig. 5). The dominance of the neutral phase in the
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deep Mott regime at unit filling agrees well with the other
findings in this paper, as well as in the literature, especially
with recent density matrix renormalization group calculations
[27]. Furthermore, our BDMFT results indicate three possible
transitions with increasing t/U , depending on the value
of coherent coupling � and interaction ratio γ = Uab/U :
polarized Mott states turn into a polarized superfluid, the
polarized Mott phase turns directly into a neutral superfluid,
and from the neutral Mott phase there is a transition to a neutral
superfluid. The tip of the Mott lobe is positioned at the smallest
value of t/U in the first case, while the lobe extends up to the
largest value of the tunneling amplitude for the third case.

Finally, we explored the effects of imbalanced hopping
amplitudes ta �= tb for the two species. Our results show that
the strong coherent coupling with an immobile state reduces
density fluctuations and consequently extends the Mott region.
For now, we considered the case of γ > 1 and found that �

enforces a neutral phase for ta = ±tb on the Mott side. An
interesting asymmetry that shows up in the two latter cases was
traced back to the sign change of one of the coupling constants
in the effective spin model. In future work, we plan to consider
the case of γ = 1/2 and ta = −tb, where recent calculations

[29] suggested an occurrence of the xy-antiferromagnetic
phase.
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[6] N. Goldman, G. Juzeliūnas, P. Öhberg, and I. B. Spielman, Rep.
Prog. Phys. 77, 126401 (2014).

[7] C. J. Pethick and H. Smith, Bose-Einstein Condensation in
Dilute Gases (Cambridge University Press, Cambridge, UK,
2002).

[8] M. R. Matthews, D. S. Hall, D. S. Jin, J. R. Ensher, C. E.
Wieman, E. A. Cornell, F. Dalfovo, C. Minniti, and S. Stringari,
Phys. Rev. Lett. 81, 243 (1998).

[9] T. Zibold, E. Nicklas, C. Gross, and M. K. Oberthaler, Phys.
Rev. Lett. 105, 204101 (2010).

[10] E. Nicklas, H. Strobel, T. Zibold, C. Gross, B. A. Malomed,
P. G. Kevrekidis, and M. K. Oberthaler, Phys. Rev. Lett. 107,
193001 (2011).

[11] P. B. Blakie, R. J. Ballagh, and C. W. Gardiner, J. Opt. B 1, 378
(1999).

[12] C. P. Search and P. R. Berman, Phys. Rev. A 63, 043612 (2001).
[13] P. Tommasini, E. J. V. de Passos, A. F. R. de T. Piza, M. S.

Hussein, and E. Timmermans, Phys. Rev. A 67, 023606 (2003).
[14] C. Lee, W. Hai, L. Shi, and K. Gao, Phys. Rev. A 69, 033611

(2004).
[15] I. M. Merhasin, B. A. Malomed, and R. Driben, J. Phys. B 38,

877 (2005).
[16] M. Abad and A. Recati, Eur. Phys. J. D 67, 11 (2013).
[17] S. Butera, P. Öhberg, and I. Carusotto, Phys. Rev. A 96, 013611

(2017).

[18] Z. Chen and B. A. Malomed, Phys. Rev. E 95, 032217
(2017).

[19] G. Shchedrin, D. Jaschke, and L. D. Carr, arXiv:1610.09076.
[20] J. Catani, L. De Sarlo, G. Barontini, F. Minardi, and M. Inguscio,

Phys. Rev. A 77, 011603 (2008).
[21] D. M. Weld, P. Medley, H. Miyake, D. Hucul, D. E. Pritchard,

and W. Ketterle, Phys. Rev. Lett. 103, 245301 (2009).
[22] B. Gadway, D. Pertot, R. Reimann, and D. Schneble, Phys. Rev.

Lett. 105, 045303 (2010).
[23] E. Altman, W. Hofstetter, E. Demler, and M. D. Lukin, New J.

Phys. 5, 113 (2003).
[24] A. B. Kuklov and B. V. Svistunov, Phys. Rev. Lett. 90, 100401

(2003).
[25] F. Lingua, M. Guglielmino, V. Penna, and B. C. Sansone, Phys.

Rev. A 92, 053610 (2015).
[26] F. Lingua, B. Capogrosso-Sansone, F. Minardi, and V. Penna,

Sci. Rep. 7, 5105 (2017).
[27] F. Zhan, J. Sabbatini, M. J. Davis, and I. P. McCulloch, Phys.

Rev. A 90, 023630 (2014).
[28] L. Barbiero, M. Abad, and A. Recati, Phys. Rev. A 93, 033645

(2016).
[29] T. Graß, A. Celi, and M. Lewenstein, Phys. Rev. A 90, 043628

(2014).
[30] C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E.

Wieman, Phys. Rev. Lett. 78, 586 (1997).
[31] T. Pohl, E. Demler, and M. D. Lukin, Phys. Rev. Lett. 104,

043002 (2010).
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