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We study the transition induced by tunneling from the two-component 332 Halperin’s state to the one-
component Jain’s state at the filling factor �=2 /5. In exact diagonalizations of small systems two possibilities
for the transition are found: �a� avoided level crossing, and �b� level crossing, i.e., first-order transition in the
case of Coulomb interaction and short range interaction, respectively. An effective bosonic model with p-wave
pairing for the transition is proposed. The relevance of the Gaffnian state for the transition is discussed as well
as possible consequences of our model on the effective description of the Jain’s state.
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I. INTRODUCTION

Topological phases of matter1 find their concrete realiza-
tions in quantum Hall physics within the systems of two-
dimensional �2D� electrons in high-magnetic fields. They are
characterized by a gap to all excitations and by degeneracy
of the ground state on higher genus surfaces. By changing a
parameter of the electronic system, we may induce a quan-
tum phase transition from one topological phase to the other.
Due to their nature and discrete characterization, we expect
that the system gap closes at the transition between topologi-
cal phases that differ in the topological invariants, i.e., the
numbers that characterize them.

The fractional quantum Hall �FQH� states can be charac-
terized by the filling factor � i.e. particular ratio between the
density of electrons and the strength of the magnetic field at
which they appear. In spin-polarized systems, a successful
explanation of various FQH states at different filling factors
is given by Jain’s states.2 On the other hand, for the same
filling factors we may have states with two or more different
species i.e. the Halperin states.3 Usually for a given filling
factor described by the Jain’s state, the corresponding Halp-
erin state has the same vacuum degeneracy but some other
characteristic numbers may differ. By applying tunneling to a
two-component Halperin state we may transform this state
into the one-component �spin-polarized� Jain’s state. Tunnel-
ing as a perturbation that drives the transition from the two-
component to a one-component FQH system was studied
previously by analytical4,5 and numerical6 means.

In this paper we study the transition from Halperin’s two-
component 332 state to the one-component Jain state at the
filling factor �=2 /5 via tunneling. The interest is threefold:
we would like to find out �a� about the nature of quantum
phase transitions between topological phases which are simi-
lar �332 and Jain’s state have the same ground state
degeneracy7–9 but different shift10,11�, �b� we would like to
find if Gaffnian12 can be characterized as a critical state in
these circumstances when the gap closes, and �c� we explore
possible consequences for the effective description of the
Jain state due to a better understanding of the transition. In
Sec.II, we define the electronic system that we consider. Sec-
tion III contains the results of the exact diagonalization stud-

ies of the transition. In Sec.IV, we introduce an effective
bosonic model of the system and the transition induced by
tunneling. Section V is devoted to conclusions.

II. SYSTEM UNDER CONSIDERATION

We consider the quantum Hall bilayer in the presence of
the vector potential A that describes a strong magnetic field,
Bẑ=��A, perpendicular to both layers. In the rotationally
symmetric gauge, the lowest Landau level �LLL� eigenstates
of an electron with the coordinate z=x+ iy in the plane and
localized in the layer �� �↑ ,↓� are given by

zm exp�− �z�2/4lB
2���, m = 0, . . . ,N� − 1, �1�

where �� is the usual spinor wave function and the unit of
length is given by the magnetic length, lB=��c /eB. The
number of flux quanta, N�, denotes the number of available
states in the LLL. In the thermodynamic limit, the ratio of
the number of electrons Ne and the number of flux quanta N�

defines the filling factor �=Ne /N� and we focus on the par-
ticular case �=2 /5.

The many-body interacting system of electrons is defined
by the following Lagrangian density in the second quantized
formulation:

L = �
�
���

†���� − ��
† ��r + eA�2

2m
�� − ��

† 	SAS

2
�−�

+
1

2
	 dr�
��r�Vc

intra�r − r��
��r��

+
1

2
	 dr�
��r�Vc

inter�r − r��
−��r��
 , �2�

where �� is the electron field which carries the pseudospin
�layer� index and 	SAS denotes the tunneling term. The inter-
action is defined by

Vc
intra�r� =

e2

�r
�3�

and in general Vc
inter is different. When we model a quantum

Hall bilayer,
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Vc
inter�r� =

e2

��r2 + d2
, �4�

d has the meaning of the distance between two layers of
two-dimensional gases and it is of the order of lB. In the
Lagrangian density Eq. �2� and the remainder of this paper
we set �=c= lB=1. Significant insight into the physics de-
scribed by the Lagrangian Eq. �2� can be obtained using
first-quantized trial wave functions for its ground states.13 In
the remainder of this section we list several candidate wave
functions that are expected to describe the ground state of
Eq. �2� in different limits of 	SAS and d. Trial wave functions
in the LLL are analytic in z variables and we will omit the
omnipresent Gaussian factor for each electron as the one in
Eq. �1�.

In the small tunneling regime, the FQH system at �
=2 /5 is two component, described by the 332 Halperin state
for two distinguishable species of electrons, zi� ;�= ↑ , ↓ ; i
=1, . . . ,Ne /2

�332 = �
i�j

�zi↑ − zj↑�3�
k�l

�zk↓ − zl↓�3�
p,q

�zp↑ − zq↓�2. �5�

Due to the fact that the correlation exponents between elec-
trons of the same layer are bigger than those between elec-
trons of the opposite layers, we expect the wave function Eq.
�5� to be more appropriate for non-zero d, e.g., in the range
d� lB. However, as it possesses the necessary symmetry
properties,11 it can be a candidate also for d=0. The proper-
ties of the wave function Eq. �5� were numerically verified in
Ref. 14.

As the tunneling strength 	SAS is increased, the electrons
find it energetically favorable to be in the superposition of
two layers, ↑+↓, and the system loses its two-component
character. The effective single-component state is character-
ized by full polarization in the x-direction. At �=2 /5 in the
LLL, a compelling candidate for the polarized state is Jain’s
composite fermion �CF� state:2

�Jain = PLLL��
i�j

�zi − zj�2 · 2��z��
 , �6�

where PLLL is a projector to the LLL and 2 represents the
Slater determinant of two filled pseudo-Landau levels of
CFs.2 Note that a single index suffices to label the electron
coordinates as the pseudospin index is implicitly assumed to
be ↑+↓.

Recent work12 has introduced an alternative candidate for
the polarized state at the filling factor �=2 /5, the so-called
Gaffnian state:

�Gaff = A�332 perm� 1

z↑ − z↓
�� . �7�

In the notation of Eq. �7� one can think of the Gaffnian
originating from the two-component 332 state with the addi-
tional pairing represented by the permanent, a determinant
with plus signs.15,16 The two-component state is made single-
component under the action of the antisymmetrizer A be-
tween ↑ and ↓ electron coordinates. Gaffnian Eq. �7� has
generated a surge of interest because in finite size �spherical�

exact diagonalization it shows high overlaps with the Cou-
lomb ground state, comparable to those of Jain’s state, yet
the topological properties of the two states are very
different.12 Moreover, the strong evidence for Gaffnian in
numerical calculations is puzzling in view of the fact that it
is a correlator of a nonunitary conformal field theory and,
hence, not expected to describe a stable phase.17 In the
spherical geometry, Jain’s state and the Gaffnian can only be
distinguished by their excitation spectrum18 or by using ad-
vanced tools such as the entanglement spectrum.19

Since the antisymmetrizer A can, to some extent, be mim-
icked by the tunneling term,20 and since the Gaffnian incor-
portates the pairing defined by the permanent, there is an
additional natural candidate which we refer to as the perma-
nent state,

�perm = �332 perm� 1

z↑ − z↓

 . �8�

This state distinguishes between ↑ and ↓ electrons, hence it is
expected in the limit of intermediate tunneling 	SAS before a
full x polarization has been achieved. Like the Gaffnian, the
state Eq. �8� is related to a nonunitary conformal field
theory21 and one may expect that it plays a role of the critical
state in the transition region before full x polarization.

In the following section, we study numerically the transi-
tions between two-component and one-component states at
the filling factor �=2 /5 via tunneling 	SAS. We use the exact
diagonalization in the spherical and torus geometries to gain
complete insight into topological properties of the different
competing trial states introduced here.

III. EXACT DIAGONALIZATIONS

We consider the transition from the 332 �two-component�
Halperin state to the one-component state at �=2 /5 via tun-
neling. The one-component state is identified below as Jain’s
�Abelian� state Eq. �6�, though it is not at the same shift on
the sphere as the 332 state.10,11 The shift �=Ne /�−N� is a
topological number1,17 and defined through a relation be-
tween Ne and N� that is necessary for the appearance of a
particular FQH state on the sphere. For example, in case of
the 332 state �=3, whereas for the states in Eqs. �6�–�8� �
=4. This mismatch is an unfortunate feature of the spherical
geometry which prevents the direct study of the transition.
However, all of the mentioned states describe the filling �
=2 /5 and therefore occur in the same Hilbert space under the
periodic boundary conditions where the shift is trivially
zero.11,22 By that, the phases in the torus geometry do not
“loose� the topological number connected with the shift on
the sphere, this number that reflects the orbital spin can be
characterized by the Hall viscosity of the system.17 Thus, in
the torus geometry we can study the transitions in a direct
manner. As we mention below, another advantage of the
torus geometry is the specific ground-state degeneracy which
can be used as a fingerprint of a phase. The physical results
derived from the two geometries, however, ought to agree for
large enough systems. Our numerical studies are restricted to
a small number of electrons because the tunneling does not
conserve particle number in each layer. Since, we anticipate
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incompressible states for most of the range of 	SAS, small
system sizes are nonetheless expected to be relevant as usual
in the context of quantum Hall effect.11

A. Sphere

In the spherical geometry, Coulomb or any interaction
that depends on the distance between two electrons is param-
eterized by a discrete series of the so-called pseudopotentials
in the LLL.11 Each pseudopotential is an eigenvalue of
the interaction strength corresponding to the state of definite
relative angular momentum �l� of two electrons. Therefore a
series of pseudopotentials �Vl � l=0,1 , . . .� completely speci-
fies the interaction in the LLL. Model pseudopotentials
define an interaction in the LLL for which the analytic
functions of some simple fractional quantum Hall states
are the densest zero energy eigenstates. This is the case
for the 332 state when Vintra= �0,V1

a ,0 ,0 , . . .� and Vinter

= �V0 ,V1
e ,0 ,0 , . . .�. There is some freedom in choosing

V0 ,V1
a,b apart from the requirement that they should all be

positive and we set them to unity. Values of V0 ,V1
a,b control

the gap for the 332 state and thereby affect the critical value
for the tunneling 	SAS in the following discussion, but our
main conclusions remain unaffected by this choice. In the
case of the Jain state we do not have a pseudopotential for-
mulation �a useful ansatz12 that does not lead to a unique
zero-energy eigenstate is �0,V1 ,0 ,0 , . . .��.

In Fig. 1, we present our results for the case of the bilayer
Coulomb interaction on the sphere with the bilayer distance
d equal to lB. Overlaps of the exact state with the 332 state
and the Gaffnian are calculated as a function of tunneling
	SAS. Separate diagonalizations have been performed be-
cause the two trial states, 332 and Gaffnian, occur in slightly
different Hilbert spaces due to the mismatch in shift ��=3
and �=4, respectively�. Following the rapid destruction of
the 332 state with the increase of 	SAS, the overlap with the
Gaffnian state rises to the high value known from earlier
studies in a single-layer model.12,19 This occurs at the point

when the system is almost fully x polarized. Consequently,
the overlap with the Jain state for large 	SAS is also high and
virtually indistinguishable from that of the Gaffnian on the
scale of this figure.

B. Torus

In the torus geometry, Figs. 2–6, trial states which de-
scribe the same filling factor �= p /q can be directly com-
pared because the shift is zero. What is then characteristic of
the Abelian states such as the 332 and Jain’s state, is that on
the torus they only posses the ground state degeneracy due to
the motion of the center of mass of the system, equal to q.7

This is a trivial degeneracy and we will mode out its pres-
ence in the data. In the case of Gaffnian the degeneracy of
the ground state is expected12,23 to be doubled with respect to
the trivial one, i.e., equal to 2�5=10. In the literature there
is no consensus that Gaffnian is a gapless state,12,18 but if we
can establish that the nature of the lowest lying states is as
expected for the Gaffnian, we could nonetheless claim its
presence at the transition from the 332 to the Jain’s state.

In Fig. 2, we plot the low energy spectrum of the 332
short-range Hamiltonian �Sec. III A� on the torus for N
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FIG. 1. �Color online� Overlaps between the exact Coulomb
bilayer ground state for d= lB and the 332 �O332� and Gaffnian state
�OGaff�, as a function of tunneling 	SAS. Data shown is for Ne=6
and 8 electrons. Note that O332 and OGaff can not be directly com-
pared due to the difference in shift between the 332 state and the
Gaffnian.
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FIG. 2. �Color online� Energy spectrum of the SU�2�-symmetric
332 Hamiltonian on torus �in arbitrary units� for Ne=8 and aspect
ratio 0.97. The k=0 levels that cross define regions of fully polar-
ized �Sx�=N /2 and unpolarized �Sx�=0 phases.

0

0.01

0.02

0.03

0.04

0 0.01 0.02 0.03

∆E
[e

2 /ε
l B

]

∆SAS [e2/ε lB]

0

1

2

3

-0.02 0 0.02

N
/2

-<
S

x>

∆
~

SAS [e2/εlB]

FIG. 3. �Color online� Energy spectrum relative to the ground
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aspect ratio 0.97 �left�. We indicate the states characterized by k
= �0,0� Haldane pseudomomenta. Also shown is the polarization
N /2− �Sx� as a function of tunneling around the transition point
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=8 electrons and close to the square unit cell �aspect ratio
a /b=0.97�. We observe the 332 state, distinctly marked by
its zero energy, which remains unaffected by 	SAS until level
crossing is induced with the excited polarized state. We also
calculate the mean value of the Sx projection of pseudo-spin
which plays the role of the “order parameter” and has previ-
ously been used to detect the transition between quantum
Hall phases.24–26 The state characterized by �Sx�=N /2 that
becomes the ground state for large tunneling develops into a
Jain CF state, Eq. �6�. This is expected because the original
system defined in terms of Vc

intra�r� ,Vc
inter�r� �3, 4�, in the

limit of very large tunneling becomes an effective one-
component model with the modified interaction �Vc

intra�r�
+Vc

inter�r�� /2.20 For the short-range 332 Hamiltonian, this is
simply a V1 pseudopotential which yields a good approxima-
tion to Jain’s state.12 Furthermore, as we vary the aspect ratio
of the torus, we find the following thin torus configura-
tion…01001…, which is that of the Jain state.27

Coulomb interaction shows stronger finite size effects that
we exemplify with the spectra for N=6 �Fig. 3� and 8 elec-
trons �Fig. 4�. In these calculations, we tune the aspect ratio
to the same value of a /b=0.97 �slightly away from unity to

avoid accidental geometric degeneracy� and distance be-
tween layers is set to d= lB. The incompressible states for
small and large tunneling in Fig. 3 can be identified as the
332 and the Jain state, with the transition between them oc-
curring for 	SAS

C �0.017e2 /�lB when the levels cross �Fig. 3,
right�, suggestive of the first order transition. As a conse-
quence, the polarization �“order parameter�� N /2− �Sx� expe-
riences a sharp discontinuity at the point of transition �Fig. 3,
left�. We stress that this level crossing occurs for a wide
range of aspect ratios of the torus and not only in the vicinity
of the square unit cell.

On the other hand, for the larger system of Ne=8 elec-
trons interacting with Coulomb interaction, we obtain the
transition that proceeds via level repulsion instead of level
crossing, Fig. 4. We again identify incompressible states for
small and large tunneling as the 332 and the Jain state, with
the transition between them occurring for 	SAS

C

�0.018e2 /�lB. The states can be identified, e.g., with respect
to the Fig. 2 by calculating overlaps. If we denote the ground
state of the short-range and Coulomb Hamiltonian for a
given tunneling 	SAS as �short�	SAS� and �C�	SAS�, respec-
tively, we obtain the following overlap ��332 ��C�	SAS��
���short�	SAS=0� ��C�	SAS=0���0.95. This means that the
Coulomb bilayer ground state is nearly the same as the 332
state, assuming zero tunneling. Also, in the large tunneling
limit, we obtain e.g. ��Jain ��C�	SAS→������short�	SAS
→�� ��C�	SAS→����0.948, i.e. Jain’s state. The quantity
which describes the density of the odd channel, N /2− �Sx�,
characterizes the transition by an approximately linear or
even steplike discontinuity as a function of 	̃SAS=	SAS
−	SAS

C , Fig. 5. In the transition region, an approximate dou-
blet of states with k=0 Haldane pseudomomenta is formed
�Fig. 4�. Although the doublet has the expected quantum
numbers of the Gaffnian,23 the specific root configurations in
the thin torus limit27 cannot be unambiguously identified as
those of the Gaffnian. Both of the members of the doublet
share the following thin torus configuration…01001…,
among other spurious patterns, which is that of the Jain state.
Moreover, the member of the doublet higher in energy has a
lower polarization �Sx� than the ground state. These facts
suggest that the excited k=0 state in the transition region is
a spinful CF state rather than the �polarized� Gaffnian.

For the long-range N=8 Coulomb system on the torus and
the aspect ratio close to 1, the transition between the Jain and
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FIG. 6. �Color online� Energy spectrum of the Coulomb bilayer
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332 state proceeds as an avoided level crossing or a smooth
crossover without an obvious closing of the gap. The gap is
expected to close in the thermodynamic limit between the
two distinct topological phases, although we are unable to
perform a proper finite-size scaling of the gap due to the
inaccessibility of the N=10 electron system. However, for
the short-range interaction that defines the 332 state as the
zero-energy ground state and for the identical geometry of
the torus �a /b=0.97�, it appears that the gap indeed closes,
Fig. 2. This difference between Figs. 2 and 4 can be attrib-
uted to the symmetry of the interaction. For the short range
interaction used in Fig. 2, V1

inter=V1
intra, hence it does not

break the SU�2� symmetry. In this case, the tunneling part of
the total Hamiltonian, being proportional to Sx component,
commutes with the interaction part and we expect level
crossing which we indeed observe in Fig. 2. The interaction
in the bilayer with d= lB, on the other hand, breaks SU�2�
invariance �Fig. 4�, but we can nevertheless show that the
level crossing persists and can be induced by changing the
aspect ratio of the torus away from unity. In Fig. 6, we show
one such energy spectrum �without the ground state energy
subtraction� when the aspect ratio is equal to 0.5. The level
crossing is induced by deforming the system towards the
crystalline limit, when the Coulomb interaction is increas-
ingly of short range. Note, however, that the states at 	SAS
=0 and 	SAS-large are still 332 and Jain’s, respectively �veri-
fied by the overlaps with the ground state of the short-range
interaction and by their thin torus limit�.

IV. EFFECTIVE BOSONIC MODEL

A. Introduction

High overlaps with the Gaffnian on the sphere around and
after the transition are a motivation for considering the sys-
tem of Chern-Simons �CS� transformed composite
bosons28,29 �↑ and ↓� that pair in the way of p-wave in a
picture of the underlying neutral sector physics. This bosonic
system is, by its very nature, unstable towards the ordinary
Bose condensation, as shown for the first time in Ref. 30,
and, as we will elaborate more, the pairing may be realized
only in its excited states or at a transition point. As we will
discuss in this Section, a simple underlying CS bosonic pic-
ture of the 332 and Jain’s state will be enlarged by p-wave
fluctuations. The fluctuations are expected to play a role near
the transition and in the description of the critical and excited
states, but not in the well-developed phases-the ground states
away from the transition. As we already pointed out in the
preceding section, the high Gaffnian overlaps are not to be
taken as a proof that we have the Gaffnian phase after the
transition, in the thermodynamic limit, but may serve as a
motivation for discussing the role for the Gaffnian as a criti-
cal state. More generally, as the system is closer to the one-
component limit, the theory may inherit the pairing structure
built in the Gaffnian state and this is captured in the perma-
nent state, Eq. �8�. As we mentioned in Sec. II, the connec-
tion between the Gaffnian Eq. �7� and the permanent state �a
p-wave state of bosons� Eq. �8� is the antisymmetrization.
We assume that the operation of antisymmetrization corre-

sponds, in the language of effective theory, to a tunneling
term.20

B. Bosonic model

To begin with, one may perform CS transformations in
the field-theoretical description of the system Eq. �2� that
would leave, in the mean field, ↑ and ↓ bosons that pair in
the way of a p-wave. At �=2 /5, for no tunneling, in the
presence of Coulomb or suitable short range interaction, we
expect that the bilayer �two-component� system is described
by 332 state. We know very well how to define the CS trans-
formation to bosons in these circumstances, for the first time
it was given in Ref. 29. It entails a transformation from elec-
tronic �� fields �in Eq. �2� with 	SAS=0� to bosonic ��

fields:

���r� = U��r����r� , �9�

where

U��r� = exp�− i	 dr� arg�r − r���3
��r�� + 2
−��r���
 ,

�10�

where arg�r−r�� is the angle the vector r−r� forms with the
x axis. In the mean field �when the fluctuations of gauge
fields are neglected� we, in fact, describe a system of ↑ and ↓
bosons that interact. Therefore, we have in the first approxi-
mation two ordinary Bose condensates. By the virtue of the
Anderson-Higgs mechanism i.e. gauge fluctuations, the two
Goldstone modes become gapped and the two gapped
bosonic systems describe the two-component 332 system.

The complication comes when we consider the tunneling
term as an extra perturbation and an extra term in our starting
Hamiltonian for the electrons. The tunneling term is

HT = − ���↑
†�r��↓�r� + �↓

†�r��↑�r�� , �11�

where � denotes the tunneling amplitude in this section. Due
to the CS transformation Eq. �9� this can not be translated
simply into the hopping of bosons because:

��
†�−� = ��

†U�
†U−��−� �12�

and only in the mean-field approximation for which

U�
†U−� � I �13�

�where I is the identity� we have a simple tunneling of
bosons i.e.

HT � − ���↑
†�r��↓�r� + H.c.� . �14�

The necessary assumption in Eq. �13� is 
s=
↑�r�−
↓�r�
�0 i.e. that the fluctuations in density in ↑ pseudospin par-
allel the ones in ↓ or the fluctuations in the pseudospin den-
sity are negligible.

Treating the residual interaction in a mean field manner,
i.e., taking the Hartree-Fock and BCS decomposition, we
come to the following form of the Hamiltonian for the effec-
tive description of ↑ and ↓ bosons around the k=0 point in
the momentum space:
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H = �
k
��

�

eb̂k�
† b̂k� − ��b̂k↑

† b̂k↓ + b̂k↓
† b̂k↑�

+ db̂k↑
† b̂−k↓

† + cb̂−k↓b̂k↑� , �15�

where e=�k−� and d=c� is the p-wave order parameter
function d�kx− iky. The question of mutual statistics �be-
tween ↑ and ↓ electrons and the ensuing composite bosons�
may be raised but we will assume that it is bosonic.

The Bogoliubov equations, ��k ,H�=E�k, where

�k = u↑b̂k↑ + u↓b̂k↓ + v↑b̂−k↑
† + v↓b̂−k↓

† �16�

define the following matrix

�
e − � 0 − c

− � e c 0

0 − d − e �

d 0 � − e
�

for the eigenvalue problem. There are two pairs of eigenval-
ues:

E + �,E − �, and − E + �,− E − � , �17�

where E=�e2−	2 ,	2=dc, with the corresponding unnor-
malized eigenvectors:

�k
+ = �a,− a,1,1�, �k

+ = �a,a,− 1,1� ,and �18�

�k
− = �b,− b,1,1�, �k

− = �b,b,− 1,1� , �19�

where a= e+E
d and b= e−E

d .

C. Bose condensate solution

The last two eigenvalues −E�� and vectors �k
− ,�k

− Eq.
�19� define a pair of solutions in the form of Eq. �16� and
represent well-defined excitations of the system. The ground
state can be expressed as

exp�� 1

b
b̂ke

† b̂−ko
† 
�0� , �20�

where b̂ke= b̂k↑+ b̂k↓ and b̂ko= b̂k↑− b̂k↓. We have for ��0:

− E � � � − � + �k +
	2

2�
� � , �21�

i.e., ordinary noninteracting boson description where the tun-
neling � defines the transition at �=� from the two Bose
condensates to a one Bose condensate �one disappears be-
cause �eff=�−��0 i.e. we have vacuum for these par-
ticles�. The mean field ground state in the k→0 limit is
approximately constant �1 /b�d→0� as it should be for the
effective description of the system with �two-becoming one�
Bose condensates.

This simple system in the presence of a short-ranged in-
teraction, in the channel that changes the sign of the effective
chemical potential, is described in Chapter 11.3 of Ref. 31.
There dspatial=2 was identified as an upper critical dimension.

Therefore we might expect in that case, with an interaction,
that the density of bosons in this channel for ���c=� van-
ishes linearly with �−�=�eff as �→�c.

The quantum Hall system as a whole, together with the
CS fluctuations, may experience a transition with the Bose
condensates becoming gapped via Anderson-Higgs mecha-
nism�s� away from the transition.

This analogy also motivates to consider that a viable com-
posite boson effective description of the �=2 /5 Jain’s state is
with only one composite boson condensate and a Bose
vacuum. This comes as a natural consequence from our
analysis and the multicomponent approach to Jain’s states.16

From the results of the experiments on the edge of FQH
states,32 it is justified to assume an existence of a single
charge mode that stems from a single Bose condensate in an
effective description.

D. Role of the permanent

The transition may be discussed considering also the other
pair of eigenvalues from the eigenvalue problem:

E � � �22�

and the excitations that they define Eq. �18�. It is obvious
from Eq. �21� that they are unstable and may describe ex-
cited states. As particular solutions of the Bogoliubov equa-
tions for the Hamiltonian defined in Eq. �15�, the solutions
described by E�� and their corresponding eigenvectors Eq.
�18� are nonunitary and nonphysical because they are related
to the physical solutions Eq. �19� by the following nonuni-
tary relationships: ��−k

− �†= i�k
+ and ��−k

− �†=−i�k
+ which im-

ply: ���k
+�† ,�k

+�= ���k
+�† ,�k

+�=1. We assume a possibility that
the description of the system is given by H and an additional
term20 �N, i.e., H+�N, where N is the number of particles.
This term is of a purely phenomenological origin; it is de-
signed to regularize the behavior at large � �compare with
Eq. �24��. It can be incorporated in the previous description
by a simple redefinition of e=�k−� into e=�k−�+�. This
yields

E = ���k − � + ��2 − 	2

= �� − ���1 −
�� − ��
�� − ��22�k −

	2

�� − ��2 , �23�

and for large tunneling ��� we have

E � � − � + �k −
1

2

	2

�� − ��
. �24�

The excitations Eq. �22� become E−���k−� and E+�
=�k+2�−�, and we obtain Bose condensation in one chan-
nel and Bose vacuum in the other, as in the case of Sec.
IV C. Here, for ��� we allow the possibility that by this
formalism we can describe an excited state of the system
which is given by the Bogoliubov expression:

exp�� 1

a
b̂ke

† b̂−ko
† 
�0� �25�

and because 1
a = e−E

c , and � 1
a b̂ek

† b̂o−k
† �� 1

a b̂↑k
† b̂↓−k

† we have a
p-wave paired permanent state in the long distance limit.
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This must be an excited state because the excitations Eq. �22�
are unstable for ���

E � � − � − �k −
1

2

	2

�� − ��
. �26�

At the transition �=� we have

E � � i	0�k� , �27�

where 	0 is defined by 	2=	0
2k2. This defines a nonunitary

system with complex values for the excitations E��. If we
neglect the presence of � for a moment, we can describe this
system by a 2+1 dimensional theory for bosons � and � with
the following Hamiltonian:

H = ��x� . �28�

We quantize the system in the following manner:

� = � �exp�− ikx�bk + exp�ikx�ak
†�

� = � �− exp�ikx�bk
† + exp�− ikx�ak� �29�

and this reproduces the spectrum we have for �=0. This
system is closely related to the �−� ghost system in 1+1
dimension or the CFT connected with permanent state21and
more generally Gaffnian12 in its two-component formulation
Eq. �7�. The complete spectrum is reproduced by H=��x�
+�����.

Therefore before reaching the strong tunneling limit and
the incompressible FQH state connected with the single BCS
condensate in this description at �=2 /5 �Jain’s state�, we
may find a state at the transition that evolves from an excited
state. The excited state above the 332 ground state Eq. �25� is
described in the long-distance limit by a permanent times the
Abelian 332 factor, Eq. �8�. We note that the permanent state
carries the maximum pseudospin �S=Ne /2,S2=S�S+1��, be-
cause only such states �with also Sz=0� can be antisymme-
trized completely in the coordinate space and make a polar-
ized electronic wave function just as in the case of the
permanent state and the ensuing Gaffnian wave function. The
332 state, on the other hand, cannot be antisymmetrized,16

because it is a spin-singlet �S=0�. Depending on the ground
state evolution, the polarization of the system ��Sx�� may
either experience a jump across the transition or the ground
state may evolve smoothly into a �↑+↓� polarized state. The
state at the transition in the second case might be Gaffnian—
its description in the BCS formulation is that of a state which
evolves from the permanent under the effect of tunneling
which may mimic the antisymmetrization as in Eq. �7�. But
our analysis above �Eq. �25� with the redefined e and Eq.
�27�� shows that the system at the transition is still unpolar-
ized and cannot describe the Gaffnian.

E. Discussion

According to our numerical results in Figs. 3–5 in the
presence of Coulomb interaction a possible scenario is the
scenario described in the Sec. IV C with effectively one of
the two Bose condensates disappearing with the increase of

tunneling. If we include interactions in the simple bosonic
model they can smooth the transition �compare with results
in Figs. 4 and 5�. In Fig. 5, we see the linear dependence of
the number of odd channel electrons on the tunneling
strength near the transition. In the k→0 limit the density of
the odd channel is equal to the density of the vanishing Bose
condensate. Therefore this linear dependence may stem from
the critical behavior of dilute bosons as described in Ref. 31.
dspatial=2 is the upper critical dimension in this case and we
may expect a logarithmic correction to the linear behavior as
demonstrated in Ref. 33, in the case of a short range inter-
action among bosons. In our case Coulomb interaction may
be driving the fixed point for the short range interactions into
a mean field one with linear behavior. We calculated the
density-density correlator in the transition region, but defi-
nite conclusion about the power of the decay of the correla-
tions could not be drawn because of the finite size effects. A
lower bound for the exponent that governs the decay with the
distance is equal to 2, as expected in the mean field.

Thus the bosonic model with interactions may lead to a
second-order transition with gradually disappearing bosons.
In a more elaborate description one may hope that Gaffnian
will appear as a polarized critical state before the polarized
Jain state. But if the state at the transition is partially polar-
ized, as we find in exact diagonalizations and effective
bosonic model �without repulsive interactions�, even in the
Coulomb case we may expect a first-order transition or a
smooth crossover without Gaffnian.

In the following, we discuss implications of our analysis
for the effective bosonic description of the Jain’s �=2 /5
state. If, due to tunneling, one Bose condensate indeed van-
ishes, the effective description would then comprise only one
Bose condensate and a Bose vacuum. On the other hand any
effective description of quantum Hall states must encompass
the edge physics as the low-energy physics of these states
happens on the edge. In the effective description based on
the usual picture with composite bosons1 of the �=2 /5 frac-
tional quantum Hall edge, both charge and neutral edge
modes of two condensates propagate in the same direction as
relativistic particles and the discrepancy with respect to
experiments,32 which detect only one �charge� mode, has to
be resolved.34 In the effective description based on compos-
ite fermions,35 at �=2 /5 edge only the charge mode is propa-
gating, in agreement with the experiment, but the reason why
the neutral mode does not propagate is not obvious. Here, we
suggest an effective picture of the neutral i.e. multicompo-
nent degrees of freedom of Jain’s state at �=2 /5 via a Bose
vacuum. An edge excitation of the system that involves also
these, multicomponent, degrees of freedom, is accompanied
by a bosonic excitation of a vacuum that propagates, not
relativistically, but according to Schrödinger equation,31

which in an effective description for certain probes can be
neglected with respect to the charge wave propagation along
the edge.

V. CONCLUSIONS

We studied, by numerical and analytical means, the tran-
sition from the two-component to a one-component quantum
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Hall state induced by tunneling at the filling factor �=2 /5.
The transition is studied in the presence of the Coulomb
interactions appropriate for a quantum Hall bilayer and a
model short-ranged interaction appropriate for the 332 Hal-
perin’s state. In exact diagonalizations of small systems two
possibilities for the transition are found: �a� avoided level
crossing, and �b� level crossing, i.e., first-order transition in
the case of the Coulomb interaction and short range interac-
tion, respectively.

With respect to the appearance of the Gaffnian state in the
transition region between 332 and Jain state, we can con-
clude that in finite systems this is only possible for the inter-
action that breaks SU�2� invariance, like the Coulomb bi-
layer interaction. It is an unlikely possibility, however, even
for non-SU�2� invariant interaction, because of the difficulty
in establishing the thin torus limit for the approximate k=0
doublet found for the torus with aspect ratio close to unity-
�Fig. 4�. In other words, on the thin torus we observe only a
“half”12 of the Gaffnian physics that corresponds to Jain’s
state. So long as the interaction is nearly SU�2� invariant, the

transition occurs via level crossing �Figs. 2 and 6� and it is a
first-order transition between the unpolarized and polarized
Abelian states.

Also, to probe the question of p-wave pairing and related
Gaffnian correlations at the transition we introduced an ef-
fective bosonic model. We find that the transition in the pres-
ence of the Coulomb interaction may be viewed as a transi-
tion from two Bose condensates to a Bose condensate and a
Bose vacuum. The outcome, with the Bose vacuum, can
serve as an effective description of the Jain state. In the
simple bosonic picture we find that the state at the transition
does not correspond to the polarized Gaffnian state, in accor-
dance with the exact diagonalizations.
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