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We discuss the Berry curvature calculations of the Hall viscosity for the Fermi-liquid-like state, i.e., a
Fermi-liquid state of underlying composite particles of the Hall system. We conclude, within assumptions
made, that in the linear response, with small deformation of the system and in the thermodynamic limit, the
Hall viscosity takes the value characteristic for the Laughlin states. We present arguments that the value is the
same even for general deformations in the same limit.
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I. INTRODUCTION

The Hall viscosity1–4 may represent an additional invari-
ant by which we can characterize quantum Hall states. It was
calculated2,4 for Laughlin states, with the general filling fac-
tor �=1 /m, where m=odd integer, and this includes the state
of a filled lowest Landau level �LLL� �m=1�. The calculated
value is one and the same irrespective of m. These are model
states, and the question is whether the Hall viscosity will stay
the same if we modify the model Hamiltonians for which
these states are exact zero-energy states. �In other words we
would like to know whether, just in the case of the Hall
conductance, we have some kind of quantization, invariance
upon details of the electron system.� Related to this are the
following questions: How can we characterize the Hall vis-
cosity of gapless states, i.e., ground states that we associate
with gapless quantum Hall phases? What are the values of
Hall viscosity and do they also exhibit invariance making the
characterization of the gapful, Laughlin, and other states by
Hall viscosity less connected with its topological character?
In this respect we may ask what is the value of the Hall
viscosity for the Fermi-liquid-like state5,6 at the filling factor
of 1/2, whether it is equal to the Laughlin value? Or perhaps
should it be the limiting value of Hall viscosities of the states
of Jain series that leads to the Fermi-liquid-like state? The
Hall viscosity is proportional to the mean orbital spin, a
property associated with coordinate transformations in two
dimensions, per particle in the quantum Hall state.4 Because
of the coupling of the orbital spin to the curvature of the
surface,7 we can read off its value, S /2, from the relationship
between the total flux �the number of flux quanta� through
the system, Ns, and number of particles, N, on a sphere: Ns
=�−1N−S for a given state. The quantity S, also known as the
shift that characterizes the state, and in the case of Jain se-
ries, �= p / �2p+1� �where p=1,2 ,3 , . . .�, it grows with p as
S=2p+1. Given that the Hall viscosity is proportional to the
shift times the density of the system, i.e., filling factor, the
limiting value of the Jain series will diverge linearly with p
as the filling factor converges to 1/2, while the system pos-
sibly converges to the Fermi-liquid-like state.

In this paper we will discuss the Hall viscosity of the
Fermi-liquid-like state and phase5,6 at �=1 /2. We will con-
sider a wave function based on the mean-field solution of the
Halperin-Lee-Read theory, but at the filling factor �=1, i.e.,
the Fermi-liquid-like state of bosons.8 We use the wave func-

tion that besides the Fermi sea of underlying composite qua-
siparticles incorporates also zero-point plasmon fluctuations,
i.e., the complete Laughlin-Jastrow part. �It can be character-
ized also as the unprojected to the LLL wave function for the
ground state introduced in Ref. 6, but at �=1, i.e., the Fermi-
liquid-like state of bosons.� The bosonic and fermionic states
share the same underlying Fermi-liquid-like physics. The
bosonic version will facilitate the calculations of the Berry
curvature and its coefficient, the Hall viscosity, in the case of
these gapless systems. In the introductory Sec. II we will
review the basic ansatz for calculating the Hall viscosity in
the case of quantum Hall states that was used in Refs. 1 and
9. In Sec. III the Hall viscosity of free Fermi gas is discussed
as a step towards the calculation for the Fermi-liquid-like
state. In Sec. IV the Hall viscosity as a response to a small
deformation of the Fermi-liquid-like state is discussed �a�
when the system is quasi-one-dimensional, �b� in the case
when the Fermi surface is rectangular, and finally �c� in the
case of interest, i.e., when the Fermi surface is isotropic and
circular. The next section, Sec. V, discusses the Hall viscosity
of a system under a general deformation, and Sec. VI dis-
cusses the importance of the inversion symmetry for the neu-
tral part as an effective symmetry for composite fermions
�CFs� that is present in the systems with rectangular shape,
which are deformed. Section VII contains a discussion of
results and conclusions.

II. HALL VISCOSITY OF QUANTUM HALL STATES

The basic approach to the Hall viscosity that was first
formulated in Ref. 1 relies on calculating the Berry curvature
of shear deformations of the ground state that is adiabatically
transformed. This means an assumption is made that the state
is nondegenerate along the process. This can be assured if
the system has a gap which is the characteristic of usual
quantum Hall states. The shear deformations are examined
by following how the quantum liquid is spread out in the
deformed geometry of a torus �we will discuss the boundary
conditions �BCs� shortly�—see Fig. 1.

The parameters V and �=�1+ i�2 describe the deformation
from the reference point V=1 and �= i. The approach used in
Ref. 1 is to stay in the coordinate space that we begin with,
i.e., with “old” coordinates �x ,y�� �0,1�� �0,1�, but study
the solutions of a deformed Hamiltonian. This Hamiltonian
is the usual local Hamiltonian in “new” coordinates �x� ,y��
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but now expressed in terms of the old coordinates using the
coordinate transformation x�+ iy�= �V /�2�1/2�x+�y�, associ-
ated with the deformation. The usual �periodic� boundary
conditions are applied. This leads to a deformed ground state
� which should be used in the formula for Hall viscosity
with the Berry curvature,

�A = 2 Im���1
����2

�� , �1�

calculated at the reference point V=1 and �= i. To recover
the physical units we should multiply with � /LxLy, where Lx
and Ly are in a general case the lengths associated with a
rectangular system. In the following we will study such a
general geometry in which the deformations from a rectangle
with lengths Lx and Ly are made—see Fig. 2.

If we consider a gapped system of noninteracting elec-
trons that fill the LLL to get the Hall viscosity, we have to
sum the contributions from each single-particle state in the
LLL. The wave functions that describe the way how a single-
particle wave function is changed as the geometry of the
finite-volume system is varied �Fig. 2� are

� j = �
k=−�

+�

exp	i
�Xj + kLy�x

lB
2 + i�

�Xj + kLy − y�2

2lB
2 
,

Xj =
2�lB

2 j

Lx
. �2�

We did not include the normalization of each wave function
that is labeled by an integer j=0, . . . ,Ns−1, where Ns
=LxLy /2�lB

2 , i.e., the number of flux quanta through the sys-
tem; in our case this number is equal to the number of elec-
trons �Ns=N�. The coordinates x and y are old coordinates

and the wave functions satisfy the ordinary periodic BC
�PBC� in the x direction,

� j�x + Lx� = � j�x� , �3�

and the magnetic BC in the y direction,

� j�y + Ly� = exp	i
Lyx

lB
2 
� j�y� . �4�

We will relax9 the demand for the magnetic BC �or we may
take the large-Ly limit10 in Eq. �2��. The wave function be-
comes simpler in this cylinder geometry:

� j = exp	i
Xjx

lB
2 + i�

�Xj − y�2

2lB
2 
 ��2�1/4

�lB
���1/2 , �5�

where we included the normalization. We have a set of or-
thonormal wave functions which can be used for the calcu-
lation of the Berry curvature as a sum of contributions of
each single-particle state. As we prove3 in Appendix A, if the
wave function is nonanalytical, i.e., nonholomorphic in �
variable only in its normalization, it can be expressed as �
= 1

�Z
f�� ,x ,y�, and its contribution to the Hall viscosity is

�

LxLy

1

2
� �2

��1
2 +

�2

��2
2
ln Z , �6�

where the evaluation is done at �= i point in the � space.
Specifying to our set �Eq. �5��, the sum of all contributions is

�A =
�n

4
, �7�

where n=N /LxLy =1 /2�lB
2 is the density of the system.

Therefore, we recovered the well-known result �for �=1
quantum Hall effect �QHE�� using the cylinder geometry,
and it will be the same even if we were applying the so-
called “thin-torus limit,” i.e., cylinder limit for which Lx
→0.

III. HALL VISCOSITY OF FREE FERMI GAS

Classically and in the adiabatic response theory it is
expected1 that the system with time-reversal symmetry does
not have the asymmetric �Hall� viscosity. We study the asym-
metric viscosity of the free Fermi gas in the following. We
will use the Berry curvature formula to calculate the Hall
viscosity even for this system assuming that in the adiabatic
response, when we probe a finite fraction, i.e., small finite
system, the ground state stays nondegenerate as � is varied at
least for a small interval before a reconfiguration of the
Fermi surface. In the case of free Fermi gas the tiny gap 	
�1 /L2, where L is the length of the system, L
=max�Lx ,Ly� keeps the filling of the Fermi see intact at least
for values of V, �1, and �2 in the neighborhood of V=1 and
�= i. Therefore, because the Hall viscosity is the Berry cur-
vature at a specific point in the parameter space and not an
integral of it in the same space, the demand for the ground
state being nondegenerate can be relaxed to the same re-
quirement in the neighborhood of the unperturbed point. In
fact the linear-response theory leads to the Berry curvature
formula.9

FIG. 1. Deformed torus.

FIG. 2. Deformed rectangle.
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In our case of the free Fermi gas we need a small enough
system. We will adopt the approach in Ref. 1 and study the
deformed Hamiltonian:

H = −
1

V�2
����2�x

2 − 2�1�x�y + �y
2� , �8�

on space �x ,y�� �0,Lx�� �0,Ly�, with periodic boundary
conditions. We seek the solutions in the form

exp�ikxx� + ikyy�� = exp	i�kxx + kx�1y + ky�2y�� V

�2

 ,

�9�

as we demand that locally we have the same equation irre-
spective whether we work with old or new coordinates. The
eigenvalues are 
�k��kx

2+ky
2. But the demand for PBCs and

orthogonality leads to

kx =
2�

Lx

��2

V
m, ky = 2�

1
�V�2

� n

Ly
−

m

Lx
�1
 , �10�

where m and n are integers. Therefore, the quantized energy
levels are


�k� = 
�n,m� =
�2��2

V�2
��2

2m2

Lx
2 + � n

Ly
−

m

Lx
�1
2� . �11�

Although the deformation � modifies the eigenvalues, eigen-
states are independent of it, and this leads to zero value for
Berry curvature and the Hall viscosity as expected in a time-
reversal-invariant system. As we recovered the result that is
valid for a system of any size, we will use the obtained
description and formulas even in the large-N limit in the
following.

IV. HALL VISCOSITY OF FERMI-LIQUID-LIKE STATE

We will consider the bosonic Fermi-liquid-like state at the
filling factor �=1. Therefore, we study the wave function

� = �L
�=1 Det�exp�ik�ir� j�� , �12�

which is not normalized, and �L
�=1 is the Slater determinant

of lowest Landau level single-particle states �Eq. �2� or Eq.
�5� with �= i� and Det�exp�ik�ir� j�� is the Slater determinant of
free waves whose wave vectors k�’s fill a two-dimensional
Fermi sea. Equation �12� describes the Fermi-liquid-like
state of bosons as both determinants are antisymmetric under
exchange of particles, and the complete function is symmet-
ric. This state was introduced mainly to understand the Fermi
liquid at 1/2, as it is believed that the exact fermionic Chern-
Simons transformation that relates the two states does not
change the main characterization of the states. We also study
this wave function in an expectation that our conclusions will
not depend on the kind of the Laughlin-Jastrow factor in the
wave function. Because we did not include the projection to
the LLL, we study the unprojected to LLL wave function.
We will assume the following evolution of the wave function
under deformation �. Each factor will evolve according the
deformed single-particle Hamiltonians: �a� the one with mag-

netic field as in Avron et al. with magnetic boundary condi-
tions in the case of the evolution of the part that “sees” the
magnetic field, i.e., the Slater determinant of lowest Landau
level single-particle states and �b� the Hamiltonian given in
Eq. �8� with PBCs that governs the evolution of the part with
plane waves. Therefore, we assume separate evolutions that
we know very well. As we study the small deformations of a
rectangular system and plane waves do not depend on it, the
most important question is what is the shape of the Fermi sea
of the unperturbed finite Fermi system in a rectangular ge-
ometry. This is a difficult question, although we believe that
in the thermodynamic limit the Fermi sea will assume its
circular isotropic shape. The question has to be resolved only
by studying the full interacting system in the LLL. Here, we
will be studying the Hall viscosity �A� in a limiting case of
thin torus �cylinder�, �B� of a system with rectangular shape
of its Fermi surface, and then reach the conclusion for the
value of the Hall viscosity in the case �C� which is an iso-
tropic circular Fermi surface as a starting �unperturbed�
point.

Before that we will analyze the Berry curvature formula
for the wave function in Eq. �12� with the assumed evolution
in general terms. Because the part with Slater determinant of
free waves does not depend on � under deformation and
�L

�=1 will depend in the holomorphic way, the expression for
the Hall viscosity is again

�A =
�

LxLy

1

2
	 ln Z , �13�

where Z is the norm of the deformed wave function �defined
in Eq. �12� at �= i� and the derivatives are calculated at V
=1 and �= i.

A. Thin-cylinder limit

In the thin-cylinder limit the system is much longer in one
direction than the other. Then because of the PBC in the x
direction we have the quantization of the momentum as be-
fore

Xj =
2�lB

2

Lx
j . �14�

Here, j=0, . . . ,Ns−1, where Ns=LxLy /2�lB
2 . Now we take

the Lx→0 limit along Ly→� to keep Ns constant. For the
Fermi-liquid-like state that means that the neutral fermions
in the k space will form a line along the y direction with two
Fermi points instead of a circle �line� for a Fermi surface. In
real space that is described by the following wave function:

�
i�j

sin	 �

Ly
�yi − yj�
 , �15�

where we assumed an odd number of electrons. Notice that
there is no x dependence. Therefore, when we ask for the
norm of the complete wave function �with the Laughlin-
Jastrow factor at �=1-Vandermonde determinant� we get
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Z = �
i=1

N � dyi �
��SN

exp�− �2�yi − k��i��2��
k�l

sin2	 �

Ly
�yk − yl�
 .

�16�

Under translations of y variables,

Z = �
i=1

N � dyi exp�− �2yi
2� �

��SN

�
k�l

sin2	 �

Ly
�yk − yl + k��k�

− k��l��
 . �17�

Due to the Gaussian factors in y integration for �2�1 we can
assume that relevant values of y’s in the product are yi

 lB , ∀ i� �1,N�. Because �k��k�−k��l���2�lB

2 /Lx, when Lx
→0 we can neglect the presence of y’s in the sine functions,
and due to the scaling �2yi→yi we recover the result for the
Hall viscosity identical to the integer quantum Hall effect at
�=1.

B. System with a rectangular shape of its Fermi surface

The Fermi gas with a rectangular shape of its Fermi sur-
face may be rather artificial, but as we already discussed �a�
this shape may appear in small systems with rectangular
boundaries and �b� the conclusions reached and constructions
applied to this system will serve as a stage for discussing the
problem with rectangular boundaries in the thermodynamic
limit and circular shape of the Fermi surface.

Let us assume that we have a Fermi surface of a rectan-
gular shape where, for simplicity, we take that the length and
width are the same and proportional to �N�Z. �To retain
PBCs �instead of antiperiodic BCs� we may demand that �N
is an odd number.� The ground-state function of the ideal gas
has to be an eigenvector under inversion symmetry: yi→
−yi and xi→xi , ∀ i �or yi→yi and xi→−xi , ∀ i� and that
constrains its form to two possibilities:

�1� A	 �
over slices in k space

	 �
i�j;i,j� slice

sin� �

Ly
�yi

− yj��cos� �

Lx
�xi − xj��

 , �18�

where slices are lines in k space, along kx and ky directions,

of length �N each and to each one is assigned �N number of

particles �see Fig. 3�. For a fixed �N number of particles we
have two slices or lines symmetrically positioned in k space
around kx=−ky line �Fig. 3�. So as a first step we divide
particles in �N slices �lines and groups�, and at the end we
antisymmetrize �A� that construction in the curly braces,
which represents a particular division into �N groups. See an
example with four particles in Appendix B. �We introduced
slicing in k space, although at this point it seems redundant—
only division in �N groups and later antisymmetrization is all
that is in Eq. �18�; slicing in k space is helpful to introduce
and analyze more general Fermi surfaces as we will see later
on.�

The second possibility �2� is with x’s and y’s inter-
changed. If the width and length are not the same, for ex-
ample, Ly �Lx then for a single slice of �N�Ly /Lx� integers
�integers denote particles of the particular slice or group�, Sy,
we have to symmetrize, in addition, smaller slice of Sx�Sy

integers, with �N�Lx /Ly� of them, i.e.,

�
i�j;i,j�Sy

sin	 �

Ly
�yi − yj�
S	 �

k�l;k,l�Sx

cos� �

Lx
�xk − xl��
 ,

�19�

so that the x part is also symmetric under permutations inside
Sy.

Then our norm, i.e., Z, for the compressible quantum Hall
state at �=1 becomes a sum of terms, each representing two
fixed permutations � ,�� of N integers as in the following:

�
i=1

N � dyi�
l=1

N

exp	−
�2

2
�yl − k��l��2
�

p=1

N

exp	−
�2

2
�yp − k���p��2
 �

over slices
	 �

k�l;k,l� slice
sin� �

Ly
�yk

− yl��
 �
over slices

� 	 �
p�q;p,q� slice

sin� �

Ly
�yp − yq��
 , �20�

FIG. 3. Rectangular Fermi surface and two slices with the same
group of particles.
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where we suppressed �did not write� the part that corre-
sponds to x integration. �Note that now ���� in general due
to the x dependence of the wave function describing Fermi

sea.� Now we can shift each yi by �k��i�+k���i�� /2� k̄i and
estimate how the scaling with �2 can be affected with the
Fermi sea part. The factors that come out, exp�−��2 /4��k��i�
−k���i��2� �besides the Gaussians in y’s�, will suppress the
contributions of terms �Eq. �20�� for which � and �� differ
too much and in the following we will assume ���i�−���i��
�Lx / lB. With this in mind we concentrate on a single slice:

�
k�l;k,l� slice

sin	 �

Ly
�yk − yl + k̄k − k̄l�
 . �21�

Now we ask again the question when �k̄k− k̄l�
 lB. Because in

this case Lx is not small we can have k̄i
 lB for ��i�

Lx / lB and an estimate can be that this can happen for all
pairs ��l� and ��k� in Eq. �21� for which ��l� ,��k�
Lx / lB,
and we might think that there are Np��Lx / lB��Lx / lB−1� /2 of
them. But this is an overestimate for the construction in Eq.
�18� because by making division in slices we do not have the
factor sin��� /Ly��yk−yl�� for each pair of particles. As we do
not have as many pairs as N�N−1� /2, but because of slicing
only around �Lx�Ly

2 / lB
3 �or N3/2�Ly /Lx��, Np should be

reduced11 by Lx and therefore is not on the order of N, which
would pose a problem in the scaling argument for the Hall
viscosity and influence its final value. Therefore, we argued
that we can model the contribution of each term as in Eq.
�20� with ���� as

�
1

�2
N/2+� I�Lx,Ly� , �22�

where �
Lx / lB. Even if the specific value of � depends on
the choice of grouping of particles for slicing in Eq. �18�, by
extracting a leading contribution in N we can recover the
same result for the Hall viscosity as before. We in fact are
taking the large-N limit before the limit �→ i, which is
allowed12 but implies the same value of the Hall viscosity
only in this limit. More precisely, if we do not assume the

effective reduction of each sin��� /Ly��yk−yl+ k̄k− k̄l�� to ei-

ther sin��� /Ly��yk−yl����� /Ly��yk−yl� or sin��� /Ly��k̄k

− k̄l��, in the end the term in Eq. �20� can be expressed as a
series with each member of the form as in Eq. �22�, where
again �
Lx / lB, and the argument follows. This is possible

because for any �k̄k− k̄l�
 lB and, as we have due to the shifts
and Gaussians �yk−yl�
 lB, we can approximate

sin	 �

Ly
�yk − yl + k̄k − k̄l�
 �

�

Ly
�yk − yl + k̄k − k̄l� , �23�

and an expansion in the differences in y’s, i.e., �� /Ly��yk
−yl� follows.

C. System with circular Fermi surface

Our expectation is that the composite fermions will make
an isotropic circular Fermi surface even in the thermody-
namic limit of the system with rectangular boundaries. Nev-

ertheless, in this case we have to demand that the ground
state of the system retains the inversion symmetry of the
system in its neutral sector, i.e., that the Fermi part of the
ground-state wave function is an eigenvector under yi→−yi
and xi→xi, ∀i, transformation. The rectangular shape is a
feature of the system on which the shear transformation is
applied. Such a ground-state wave function can be con-
structed by a generalization of the construction in the previ-
ous case �B� given in Eq. �18�. Now the two slices along kx
and ky directions are as in Fig. 4. A group of particles, its
number equal to the length of the two slices, is assigned to
them. As we sweep the whole circle with these two slices we
make a certain division of all particles into groups that cor-
respond to slices, and therefore to make the wave function
antisymmetric under particle exchange, we need an overall
antisymmetrization as in Eq. �18�. The same arguments as in
the case with rectangular Fermi surface can be applied here
and lead to the conclusion that the Hall viscosity of the
Fermi-liquid-like quantum Hall state is unaffected by the
presence of the Fermi see in the ground-state function.
Namely, all estimates that we did in the rectangular case will
be modified by geometrical factors that will not affect the
conclusion on the leading behavior in the thermodynamic
limit. To illustrate what we mean by geometrical factors let
us consider a Fermi surface that is a square with �N length of
each side. In that case the number of pairs is �N��N��N
−1� /2, but in the case of a circle, which delineates the same
volume equal to N, we will have for the same quantity
�16 /�3/2�N3/2+4N, i.e., the same leading behavior �N3/2 up
to a numerical-geometrical factor.

Therefore, we argued that, also in this case with assumed
unperturbed Fermi surface of circular shape, the norm of the
deformed wave function �defined at �= i in Eq. �12�� in the
neighborhood of �= i can be written as a sum of terms, each
of the form as in Eq. �22�, i.e.,

Z � �
��SN

1

�2
N/2+��

I��Lx,Ly� , �24�

where ��
Lx / lB. Therefore, in the thermodynamic limit

�N→� ,Lx��N� we have the same leading behavior in the

FIG. 4. Circular Fermi surface and two slices with the same
group of particles.
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exponent of �2 equal to N /2, which as in the integer ��=1�
quantum Hall case will lead to the value

�A =
�

LxLy

1

2
	 ln Z��2=1 =

�n

4
, �25�

the same as in the case of the Laughlin states.

V. HALL VISCOSITY AT �Å i

The most important question when considering the ques-
tion of the Hall viscosity for the Fermi-liquid-like state is
whether it is dependent on � or maybe it is independent of
the geometry ���, which is a remarkable property of the in-
teger quantum Hall state1 at �=1 and other quantum Hall
states4 that exhibit Hall conductance plateaus. When consid-
ering arbitrary � we have to start with the deformed Fermi
surface as it follows from the deformed dispersion relation in
Eq. �11�. To simplify the notation we will take Lx=Ly =L or,
in general, that m and n carry factors connected with the
lengths and may not be integers. Therefore, we write the
dispersion relation 
��� as


��� =
�2��2

VL2�2
��2

2m2 + �n − �1m�2� , �26�

or if we absorb the scaling factor f���= �2��2 /VL2�2 and
define e��� as 
���= f���e���, we may focus on the dispersion
relation expressed as

e��� = �2
2m2 + �n − �1m�2. �27�

The equation 
F=eFf , where 
F is the Fermi energy, defines
the �deformed and scaled� Fermi surface, i.e.,

eF � e = �2
2m2 + �n − �1m�2, �28�

which is illustrated in Fig. 5.
We find that the maximum values of m and n �that belong

to points on the Fermi surface� are mmax=�e /�2 and nmax
= ��e /�2����, respectively. For m=−	 we have the corre-

sponding n=−�1	��e−�2
2	2 and for n=	 we have m

= ��1	��e−�2
2	2� / ����2�. This implies that if we keep ���

=1 we would have the same length for the corresponding
two slices along kx and ky directions that we introduced be-
fore. To simplify the discussion in the following we will
assume that this is the case, i.e., that due to ���=1 we have
the symmetry under inversion around the axis defined by n
=�1m.

As our deformed Hamiltonian in Eq. �8� has the symmetry
under simultaneous transformations �1→−�1 and y→−y,
x→x or �1→−�1 and y→y, x→−x our dispersion relation
�Eq. �11�� has the same symmetry and the corresponding
Fermi surface as well. This symmetry has to exist in the
ground state, which has to accommodate to the deformed
rectangular shape for �� i. For �= i the symmetry can be
identified as the inversion symmetry around the x or y axis
that has to be generalized to the case with �� i for which we
need to include also �1→−�1 transformation. With this in
mind we can come up with a ground-state wave function that
will have this symmetry in the Fermi part under simulta-
neous transformations in coordinate and momentum space.
Using the slice decomposition that is illustrated in Fig. 5 for
the deformed Fermi surface and with the simplifying as-
sumption ���=1, the Fermi part will look like

A	 �
over slices in k space

� �
i�j;i,j� slice

exp�iky
c �

i� slice
yi
sin� �

Ly
�yi − yj�
exp�ikx

c �
i� slice

xi
cos� �

Lx
�xi − xj�
�
 , �29�

where slices in the kx and ky directions correspond to the
manner shown in Fig. 5; to each slice in ky corresponds the
slice of the same length in kx corresponding to the same
group of particles. The exponentials with kx

c and ky
c carry the

momentum k�c= �kx
c ,ky

c�, which is due to the deformation of
the Fermi surface and the absence of the inversion symme-
tries around kx and ky axis. The momentum k�c lies along the
new symmetry line, i.e., ky

c =�1kx
c, and represents the momen-

tum of the center of the mass of the particles that belong to
the particular slice. A in Eq. �29� is again the overall anti-
symmetrization that will bring all possible assignments of
particles into slices in the final form of the wave function.
The construction when x’s and y’s �kx

c’s and ky
c’s� are inter-

changed is also possible and we will discuss that case later.
The complete deformed wave function for the Fermi-

liquid-like state has the Gaussian factors of the form

FIG. 5. Deformed Fermi surface and two slices with the same
group of particles.
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exp	−
�2

2
�yi − k��i��2
 , �30�

which enters the integral for Z. If �2 is small yi can fluctuate
being less localized with the Gaussian. So the relevant inter-
val of yi values in the integral becomes larger and the se-
quence of approximations for two particles, beginning with
the corresponding term in the product in the integral �Eq.
�21��,

sin	 �

Ly
�yk − yl + k̄k − k̄l�
 � sin	 �

Ly
�yk − yl�
 �

�

Ly
�yk − yl� ,

�31�

is more likely to be allowed. Each term like this will con-
tribute 1 /��2 when the scaling ��2yi→yi , ∀ i is applied. If,
for small enough �2, we assume that for each pair we can do
this approximation, in addition to the overall exponent,
which we get by the change of variables in the y integration,
of order N, we will get another contribution of order N3/2 that
would lead to the divergence of the Berry curvature and
therefore for finite �2 of the Hall viscosity. This is certainly
an overestimate, but the possibility of divergence seems lurk-
ing. Applying arguments similar to the one in Sec. IV B we
come to an estimate that the number of relevant pairs is
around ��Lx / lB��1 /�2�. Therefore, only for strong deforma-

tions for which �2� 1
�N

we may expect the departure of the
value for the Hall viscosity from the one of Laughlin states.
These arguments cannot be precisely quantified but suggest
that the Hall viscosity of the Fermi-liquid-like state may de-
pend on the value of � for very large deformations. But as we

do apply the large-N limit to recover the Laughlin state value
for the Hall viscosity as �→ i and because here relevant �2 is
on the order of 1

�N
, we can expect the same Hall viscosity

value in the same limit for any finite �2. Therefore, the fea-
ture of the Laughlin states that their Hall viscosity is inde-
pendent of � may stand as a reflection of their true topologi-
cal nature due to the comparison with the Fermi-liquid-like
state that can recover the same value only in large-N limit.

The precise estimate of how the Hall viscosity depends on
� �in the case of the Fermi-liquid-like state� is hard to get
also because of the exponentials with k�c that carry depen-
dence on yi. �We have to keep in mind that the scaling
��2yi→yi , ∀ i is a purely mathematical transformation of
variables under the Z integral and does not affect k vari-
ables.� In the argument above we assumed �i�Syi�0 for
each slice S, which might not be the case.

VI. INVERSION SYMMETRY AND HALL VISCOSITY

For �= i we view the inversion symmetry as the symmetry
under transformations yi→−yi and xi→xi, ∀i, around the
x axis or yi→yi and xi→−xi, ∀i, around the y axis. For
�� i, as we already noted, it can be generalized by adding
�1→−�1 transformation. The symmetry has to be incorpo-
rated in the ground-state wave function, more precisely in its
neutral part, when we discuss the system with rectangular
shape �or deformed rectangular shape, �� i� and our aim is
the calculation of the Hall viscosity.

In the case of the Fermi-liquid-like state two constructions
stand out at �= i �and their generalizations for �� i� for the
Fermi part:

�a� A	 �
over slices in k space

� �
i�j;i,j� slice

sin� �

Ly
�yi − yj�
cos� �

Lx
�xi − xj�
�
 , �32�

with the notation that we explained previously, and

�b� A	 �
over slices in k space

� �
i�j;i,j� slice

cos� �

Ly
�yi − yj�
sin� �

Lx
�xi − xj�
�
 . �33�

They are explicitly invariant under the inversion symmetry
transformations. The constructions are valid for both circular
and rectangular Fermi surfaces. In Appendix B we display
the functions �a� and �b� in the case of four particles. In that
case it can be easily shown that the state—construction that
is A�sin��� /Ly��y1−y2��cos��� /Ly��y3−y4��¯�—is identi-
cal to zero. As the square of the inversion symmetry is equal
to identity in general we expect that wave functions �a� and
�b� represent two degenerate ground states and two indepen-
dent sectors of the Fermi liquid.

Throughout the paper we discussed case �a� for the Fermi-
liquid-like state and concluded that, in the thermodynamic
limit, around �= i the Hall viscosity is equal to the one of
Laughlin states and that our expectation is that for general

�� i this will still be true in the same limit. If we try similar
arguments in case �b� we can come to the expectation that,
due to the cosine functions in the dependence on y’s, no
change in the overall scaling with �2 will occur, and for this
construction the Hall viscosity is independent of � and equal
to the one of the Laughlin states.

The single-particle Hamiltonian describes that the evolu-
tion of the part of the Fermi-liquid-like state that sees mag-
netic field is not invariant under the inversion symmetry and
the “true” energetics of the problem at �=1 �fermionic at �
=1 /2� will certainly differentiate between the two possibili-
ties for the ground state: with Fermi parts �a� and �b�. We
expect that the construction with Fermi part �a�, irrespective
whether the ground state is nondegenerate or degenerate, will
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make a ground state as it can smoothly evolve from the thin-
torus limit and its Fermi part �Eq. �15�� when the gauge is
fixed, so that the Gaussians are along the y axis. The con-
struction with Fermi part �b� may appear as an additional
sector.

VII. DISCUSSION AND CONCLUSIONS

In this paper we discussed the Berry curvature calcula-
tions of the Hall viscosity for the unprojected to the LLL
wave function of the Fermi-liquid-like state. We concluded
that in the linear response, with small deformation of the
system and in the thermodynamic limit, the Hall viscosity
takes the value characteristic for the Laughlin states �Eq.
�7��. We presented arguments that the value is the same even
for general deformations in the same limit.

The preprint in Ref. 13 appeared very recently when we
were in the process of finishing of the present paper. There
the claim is made, on the basis of the Berry curvature for-
mula applied to the wave functions in the LLL �or projected
to a definite LL�, that at �=1 /2, irrespective whether the
state is incompressible or not, if the Hamiltonian is particle-
hole symmetric, the Hall viscosity acquires the Laughlin
value. The value is the same irrespective of the deformation
���. Although our analysis is on the unprojected �to the LLL�
wave function of Fermi-liquid-like state, we agree on the
value of the Hall viscosity for the state at �=1 /2 in the
thermodynamic limit. For a general � it is surprising that the
same value of the Hall viscosity is maintained in the
LLL,13,14 and somehow it has to be reconciled with the ex-
pected quantization in the incompressible states. A way out is
to claim that the Fermi-liquid-like state has the dissipative
�symmetric� viscosity nonzero,4 but still the quantization of
the Hall viscosity for the compressible state in the LLL un-
dermines our expectation that in the Hall viscosity we have
yet another characteristic of the incompressible quantum
Hall states that is quantized, i.e., has a constant value under
small changes �perturbations� in the Hamiltonian. �In other
words even gapless phases may have an invariant such as the
Hall viscosity.�

On the other hand the Fermi-liquid-like state and the
firmly established phase5 at �=1 /2 may be viewed as some
kind of a critical state where effective particle and hole phys-
ics and two Jain’s sequences of particle states �from �=1 /3�
and hole states �from �=2 /3� meet. The situation is some-
what similar or reminiscent of the graphene and the critical
behavior of the neutrality point of the Dirac fermions.15 Nev-
ertheless, it looks conclusive13 that no critical behavior in the
case of the state at �=1 /2 and the Hall viscosity is expected.

Our study shows that the Hall viscosity of the unprojected
Fermi-liquid-like state at general � may deviate from the
Laughlin state value for a finite number of particles. Maybe
the behavior for a finite number of particles cannot be ex-
plained by noninteracting or weakly interacting CF physics if
we stay in the LLL as it involves higher LL physics, i.e., all
energy scales, which may reflect its critical nature.

In the adiabatic transport theory that we apply our basic
assumption is that flux changing excitations are not relevant
or higher in energy for the calculation of the Hall viscosity.

The result of Ref. 13 seems to give credence to this ap-
proach. Within assumptions made, we established that the
Fermi-liquid-like state in the thermodynamic limit in the lin-
ear response has the value of Hall viscosity equal to the
value of Laughlin states. We hope that our analysis will help
further elucidation of the problem and the search for the final
answer.

ACKNOWLEDGMENTS

The author thanks N. Read for his comments. This work
was supported by the Serbian Ministry of Science under
Grant No. 141035.

APPENDIX A

We will prove formula �6� for the ground-state function
that is holomorphic in � variable except for the normaliza-
tion, which is the case also with the Laughlin wave function.
The normalized wave function is �0=�L /�Z, where �L de-
pends on particle coordinates and � only. We want to calcu-
late

Im
���0�
��1

� ��0�
��2

. �A1�

First we have for �i, with i=1,2,

� ��0�
��i

=
1
�Z

� ��L�
��i

−
1

2

� ln Z

��i
��0� . �A2�

Therefore,

Im
���0�
��1

� ��0�
��2

= Im	 1

Z

���L�
��1

� ��L�
��2

−
1

2

1
�Z

� ln Z

��1
��0�

� ��L�
��2

−
1

2

1
�Z

� ln Z

��2

���L�
��1

��0�
 . �A3�

Here, ��L� is holomorphic in �; therefore,

� ��L�
� �̄

=
� ��L�
��1

+ i
� ��L�
��2

= 0,
� ��L�

��
=

� ��L�
��1

− i
� ��L�
��2

= 0.

�A4�

Then,

�1�
���L�

��

� ��L�
� �̄

=
���L�
��1

� ��L�
��1

+
���L�
��2

� ��L�
��2

+ i
���L�
��1

� ��L�
��2

− i
���L�
��2

� ��L�
��1

= 0.

�A5�

It follows that

���L�
��1

� ��L�
��1

+
���L�
��2

� ��L�
��2

− 2 Im
���L�
��1

� ��L�
��2

= 0,

�A6�
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�2�
� ln Z

��2
=

1

Z
���L�

� ��L�
��2

+
���L�
��2

��L�

= −

1
�Z

2 Im��L�
� ��L�
��1

, �A7�

�3�
� ln Z

��1
=

1

Z
���L�

� ��L�
��1

+
���L�
��1

��L�

=

1
�Z

2 Im��L�
� ��L�
��2

. �A8�

From Eqs. �A7� and �A8� it follows that

Im
���0�
��1

� ��0�
��2

= Im	 1

Z

���L�
��1

� ��L�
��2


 −
1

4
� � ln Z

��1

2

−
1

4
� � ln Z

��2

2

. �A9�

Because

�2 ln Z

��i
2 =

�

��i

1

Z

�Z

��i
= −

1

Z2� �Z

��i

2

+
1

Z

�2Z

��i
2 , �A10�

and because of Eq. �A6�,

	Z =
�2

�� � �̄
Z =

���L�
� �̄

� ��L�
��

=
���L�
��1

� ��L�
��1

+
���L�
��2

� ��L�
��2

+ 2 Im
���L�
��1

� ��L�
��2

= 4 Im
���L�
��1

� ��L�
��2

, �A11�

we have

Im
���0�
��1

� ��0�
��2

=
1

4
	 ln Z . �A12�

APPENDIX B

For four particles the construction in Eq. �18� or Eq. �32� is

�b = sin	 �

Ly
�y1 − y2�
sin	 �

Ly
�y3 − y4�
cos	 �

Lx
�x1 − x2�
cos	 �

Lx
�x3 − x4�
 − sin	 �

Ly
�y1 − y3�
sin	 �

Ly
�y2 − y4�
cos	 �

Lx
�x1

− x3�
cos	 �

Lx
�x2 − x4�
 + sin	 �

Ly
�y1 − y4�
sin	 �

Ly
�y2 − y3�
cos	 �

Lx
�x1 − x4�
cos	 �

Lx
�x2 − x3�
 , �B1�

and the one in Eq. �33� is

�a = cos	 �

Ly
�y1 − y2�
cos	 �

Ly
�y3 − y4�
sin	 �

Lx
�x1 − x2�
sin	 �

Lx
�x3 − x4�
 − cos	 �

Ly
�y1 − y3�
cos	 �

Ly
�y2 − y4�
sin	 �

Lx
�x1

− x3�
sin	 �

Lx
�x2 − x4�
 + cos	 �

Ly
�y1 − y4�
cos	 �

Ly
�y2 − y3�
sin	 �

Lx
�x1 − x4�
sin	 �

Lx
�x2 − x3�
 , �B2�

i.e., with x’s and y’s interchanged. The wave functions �a and �b can be represented by their configurations in k space. Below,
each configuration describes the placements of four fermions in the corners of a square that correspond to the allowed values
of four momenta:

�a�b� = +
3�1
2�4

�
1�3
4�2

�
2�4
3�1

+
4�2
1�3

�
4�1
2�3

−
1�4
3�2

−
2�3
4�1

�
3�2
1�4

−
2�1
3�4

�
1�2
4�3

�
3�4
2�1

−
4�3
1�2

�
4�1
3�2

+
1�4
2�3

+
3�2
4�1

�
2�3
1�4

+
2�1
4�3

�
1�2
3�4

�
4�3
2�1

+
3�4
1�2

�
3�1
4�2

−
1�3
2�4

−
4�2
3�1

�
2�4
1�3

. �B3�
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