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We discuss d-wave topological (broken time-reversal symmetry) pairing structures in unpolarized and polarized
Jain states. We demonstrate pairing in the Jain spin-singlet state by rewriting it in an explicit pairing form,
in which we can recognize d-wave weak pairing of underlying quasiparticles—composite fermions. We find
and describe the root configuration of the Jain spin-singlet state and its connection with neutral excitations
of the Haldane-Rezayi state, and study the transition between these states via exact diagonalization. We find
high overlaps with the Jain spin-singlet state upon a departure from the hollow-core model for which the
Haldane-Rezayi state is the exact ground state. Due to a proven algebraic identity we are able to extend the
analysis of topological d-wave pairing structures to polarized Jain states and integer quantum Hall states and
discuss its consequences.
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I. INTRODUCTION

Fractional quantum Hall (FQH) states are strongly corre-
lated many-body states which in certain cases have an effective
description in terms of weakly interacting quasiparticles. An
important example is the Jain states1 which are composed of
weakly interacting composite fermion quasiparticles, which
themselves form underlying integer quantum Hall (IQH)
states. In other important examples these underlying states
of quasiparticles may be superconducting with broken time-
reversal symmetry, as in the famous Pfaffian (Moore-Read)
state2 with p-wave superconducting pairing of composite
fermion quasiparticles. The paired states in the FQH effect
(FQHE) are often discussed in connection with systems with
extra degrees of freedom such as spin. The first paired state
proposed was the spin-singlet d-wave Haldane-Rezayi (HR)
state.3 It has served as inspiration and as a prototype for other
paired states, despite initial confusion about its compressibil-
ity. Initially it was believed to be an incompressible state—a
spin-singlet state at filling factor 1/2. However, in Ref. 4
the HR state was identified as a critical (gapless) state of a
d-wave superconductor with broken time reversal symmetry.
In the same reference it was shown that the gapped phase
that is on the weak-pairing side of the transition for which
the HR state is critical possesses some universal properties of
the Jain spin-singlet (JSS) state at half filling.5 Therefore the
JSS state may represent a weakly paired d-wave topological
superconductor of composite fermion quasiparticles and may
be related to the gapless HR d-wave state. On the other
hand, recent developments in the theory of the FQHE have
demonstrated exceptional similarities between polarized Jain
states and a nonunitary series of states [connected with
nonunitary conformal field theories (CFTs)] with gapless
behavior.6–10

In this paper we focus on d-wave topological pairing
structures in unpolarized and polarized Jain states. First
we discuss further the connection between the JSS state
and topological d-wave superconductors, and the implied
connection between HR and JSS states. Due to an algebraic
identity we recover the exact pairing (structure) in the JSS

wave function. The root configuration of the same state is
also presented. These results improve our understanding of
the role of paired composite fermions in the HR and JSS
states, and the transition that is expected to occur between
these states. In order to confirm its existence in the presence of
specific interactions we study this transition by way of exact
diagonalization. Due to the spin degree of freedom our studies
are limited in the system sizes treated compared to studies
without spin. In the systems we could treat we demonstrate
high overlaps with the JSS state upon departing from the pure
hollow-core model for which the HR state is the exact ground
state. Due to the proven identity we are able to show that the
pairing structures also exist even in polarized Jain states, as
a consequence of the underlying multicomponent nature of
the FQH states. Furthermore, we demonstrate a connection,
based on the proven identity, between the IQH states with
Chern number equal to 2 (Refs. 11–13) and the d-wave
superconducting states with broken time-reversal symmetry.
This connection is enabled by the extremely weak pairing in
the d-wave superconductor. We will discuss the connection
on the level of many-body wave functions; it was introduced
previously on the level of Hamiltonians by Laughlin in Ref. 14.

The paper is organized as follows: Sec. II introduces the HR
and JSS model wave functions and reviews their most relevant
properties, Sec. III shows how to see hidden pairing structure
in the JSS state, Sec. IV discusses the HR and JSS states in
terms of their root partitions, Sec. V presents results from
numerical calculations, Sec. VI extends the pairing structure
arguments to the spin-polarized case, and finally Sec. VII
presents conclusions.

II. MODEL WAVE FUNCTIONS

To understand better the topological nature of Jain states
and their relationship to the nonunitary states, we will first
discuss the JSS state and the related HR state. The JSS state at
ν = 1

2 is defined as

�JSS = PLLL(χ2χ110χ1) (1)
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in the usual Jain notation. PLLL is the projector operator to the
lowest Landau level (LLL). χ2 denotes the wave function of
two filled Landau levels (LLs) of all particles. As shown in
Ref. 15, in a condensed form χ2 can be expressed as

χ2 = A
{

M∏
i=1

z∗
i ×

∏
i<j ;i,j�M

(zi − zj ) ×
∏

k<l;M<k,l�N

(zk − zl)

}
,

(2)

where N , the total number of particles, is assumed even, and
M = N/2. A denotes the antisymmetrization operator over
the N particles. Here and below we suppress the omnipresent
Gaussian factors, characteristic of the disk geometry. In this
section we look for long-distance properties of wave functions,
and use the expression (2) or (7) below. χ1 denotes the wave
function of the filled LLL of all particles,

χ1 =
N∏

i<j

(zi − zj ), (3)

and χ110 denotes the wave function with Jastrow-Laughlin
factors only between particles with the same spin,

χ110 =
N
2∏

i<j

(z↑
i − z

↑
j )

N
2∏

i<j

(z↓
i − z

↓
j ), (4)

where z
↑
i (z↓

i ) are the positions of the particles with spin up
(down). Where no spin index is given, the product is over all
particles irrespective of spin.

The HR state3 is a fermionic spin-singlet state defined as

�HR = det

(
1

(z↑
i − z

↓
j )2

) ∏
i<j

(zi − zj )2. (5)

This state is the unique densest zero-energy ground state of
a hollow-core two-body interaction Hamiltonian. Two-body
interaction Hamiltonians can be expressed in terms of the
Haldane pseudopotential coefficients16 Vm as

H =
∑
m�0

⎛
⎝Vm

∑
i<j

P (m)
ij

⎞
⎠ , (6)

where Vm is the pseudopotential coefficient for relative
angular momentum m and P (m)

ij projects a particle pair onto
relative angular momentum m. The hollow-core interaction
corresponds to setting the V1 coefficient to a finite value while
the rest are set to zero. For the HR state the counting of zero
modes with and without quasiholes can be deduced from a
generalized Pauli principle.17,18

We will examine in detail the transition induced by
changing V0 (the interaction pseudo-potential for particles
with relative angular momentum zero) that is believed to
represent the transition from the HR to the JSS state. We
are especially interested in identifying the JSS state and its
universal properties on the weak-pairing side of the transition.
This will also entail better examination of the JSS state along
with its root configuration.

III. PAIRING STRUCTURE

From the expression for the JSS state in Eq. (1) we will
illustrate the basic pairing structure that is hidden in the usual
definition of Jain states. We will prove an algebraic identity
in this case that directly relates the JSS wave function and the
long-distance form of the ground state of a d-wave topological
superconductor in its weak-pairing phase.

The projection to the LLL is made by replacing complex
conjugate coordinates z∗

i , i = 1, . . . ,N , in the two-LLs-filled
wave function χ2 with derivatives ∂/(∂zi), i = 1, . . . ,N .
When attempting to construct this state numerically we found
that changing the order of application of the projection operator
to reduce the computational complexity is no longer applicable
here as it is in the spinless case.19,20 For further details see
the Appendix. We will use expression (2) for χ2, derived in
Ref. 15, which assumes even numbers of particles, N = 2M . It
is important to notice that in the equivalent but more common
definition of χ2,

χ2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 · · · 1

z1 · · · zi · · · zN

z2
1 · · · z2

i · · · z2
N

...
...

...

zM−1
1 · · · zM−1

i · · · zM−1
N

z∗
1 · · · z∗

i · · · z∗
N

z∗
1z1 · · · z∗

i zi · · · z∗
NzN

z∗
1z

2
1 · · · z∗

i z
2
i · · · z∗

Nz2
N

...
...

...

z∗
1z

M−1
1 · · · z∗

i z
M−1
i · · · z∗

NzM−1
N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (7)

due to the asymmetry of the determinant, any exchange of
two particles amounts only to a change of sign as for the
wave function of a filled LLL, expression (3). If we use these
expressions for two groups of particles as in the case of states
with spin assignment, which particles are up or down becomes
irrelevant (as far as the correlations are concerned), as these
expressions have equal correlations for up-up, down-down,
and up-down correlators. It is important to notice that spin is
not fixed in a given LL [in χ2 in the definition, expression (2) or
(7)], and each LL may contain any distribution of up and down
spins. In the following we will extract (under derivatives due
to the LLL projection) from each term in χ2 the correlator that
is between the two definite groups with the same numbers of
particles equal to M; the first group will be among particles to
which we assign spin up and the second group will be among
particles with spin down. Therefore we have

�JSS = A
[
∂z1 · · · ∂zM

×
∏

i<j ;i,j�M (zi − zj )
∏

k<l;M<k,l�N (zk − zl)∏
p,q(zp↑ − zq↓)

×
∏
p,q

(zp↑ − zq↓)

]
χ110χ1. (8)
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Only if the division into two groups under A coincides with
division between up and down particles can we use the Cauchy
identity∏

i<j (zi↑ − zj↑)
∏

l<m(zl↓ − zm↓)∏
p,q(zp↑ − zq↓)

= det

(
1

zp↑ − zq↓

)
,

where the resulting determinant has antisymmetry among
same-spin particles. This gives us a clue about what the
expression in the square brackets in Eq. (8),

A[∂z1 · · · ∂zM

∏
i<j ;i,j�M (zi − zj )

∏
k<l;M<k,l�N (zk − zl)∏

p,q(zp↑ − zq↓)
, (9)

should be.
The expression
(a) should not carry macroscopic flux (the filling factor is

determined by [
∏

p,q(zp↑ − zq↓)]χ110χ1 = χ2
1 ),

(b) should preserve the same total power (N/2 = M) of
derivatives,

(c) should be antisymmetric under exchange of same-spin
particles,

(d) should be invariant under total (when all particles
participate) exchange between opposite-spin particles due to
the factor

∏
p,q(zp↑ − zq↓) that already encodes a definite

symmetry of χ2 under the total exchange equal to the parity of
M2, i.e., (−1)M

2 = (−1)M between opposite-spin particles,
(f) and should be invariant under translation (as χ2 is).
This is achieved by the following pairing function:

�d = det

(
z∗
p↑ − z∗

q↓
zp↑ − zq↓

)
, (10)

to which the projection to the LLL has to be applied when
considering the JSS state.

To see that the function is invariant under any total exchange
between up and down particles, we start with a general
expression,

� =
∑
p∈SM

f1,p(2) · · · f2M−1,p(2M)sgn(p), (11)

for a pairing function of M pairs. SM is the symmetric group
over a set of M elements and sgn(p) is the signature of the
permutation p. Each pair is invariant under the exchange of
its constituents, i.e., fi,j = fj,i . Any total exchange between
two kinds (even and odd) of particles is defined by a single
permutation s on M numbers. The transformed wave function
E� can be expressed as

E� =
∑

p

fs−1p(2),s(1) · · · fs−1p(2M),s(2M−1)sgn(p)

=
∑

p

fs(1),s−1p(2) · · · fs(2M−1),s−1p(2M)sgn(p)

=
∑

p

f1,s−2p(2) · · · f2M−1,s−2p(2M)sgn(p)

=
∑

σ

f1,σ (2) · · · f2M−1,σ (2M)sgn(σ ) = �, (12)

i.e., we have proved that the pairing function is invariant under
any total exchange E between (ups and downs) even- and
odd-number particles.

Thus we have

�JSS = det

(
∂z↑ − ∂z↓

z↑ − z↓

) ⎡
⎣∏

i,j

(zi↑ − zj↓)

⎤
⎦χ110χ1

= det

(
∂z↑ − ∂z↓

z↑ − z↓

)
χ2

1 . (13)

The existence and uniqueness of the pairing function that
satisfies the listed conditions lead to the equality of the
expressions. While we do not have a proof of the uniqueness
of the pairing wave function, we checked that the following
identity:

χ2 = �d

∏
i,j

(zi↑ − zj↓), (14)

and thus Eq. (13), hold true up to N � 8. Interestingly we
came to an expression for χ2 that includes the division into
two groups of particles, but as we emphasized previously this
does not select any particular two groups in the definition of
χ2 as long as we do not assign spin. But in the definition of the
JSS wave function we do, and it is then natural to decompose
χ2 in a way that respects this spin assignment.

IV. ROOT PARTITIONS

In the following we will describe another characteristic of
the JSS state, its root configuration. It has been established21

that many model FQH states can be written exactly as
Jack polynomials or as the product of a Jack polynomial
and some power of Vandermonde determinants. Jack poly-
nomials are characterized by a dominant partition which
reflects the vanishing properties of the state. A partition λ

can be represented as an occupation-number configuration
n(λ) = {nm(λ), m = 0,1,2, . . .} of each of the LLL orbitals.
A “squeezing rule” connects configurations n(λ) → n(μ).
This is a two-particle operation that moves a particle from
orbital m1 to m′

1 and another from m2 to m′
2 with m1 <

m′
1 � m′

2 < m2 and m1 + m2 = m′
1 + m′

2. A configuration λ

dominates a configuration μ if n(μ) can be derived from n(λ)
by applying a sequence of squeezing operations. When FQH
wave functions, equivalent to Jack polynomials, are expanded
in the occupation-number basis, the only configurations with
nonzero weight are the dominant configuration and those
derived from this via squeezing operations. This is also true
of FQH states which are equivalent to the product of Jack
polynomials and some power of Vandermonde determinants.
Recent work18,22 has focused on the form of squeezing
operations required for dealing with spinful states.

As a consequence of the pairing structure that we described
in Sec. III we will demonstrate that the difference between the
HR and JSS ground states can be described by an excitation
of two neutral fermions of opposite spins at total momentum
k = 0 in the corresponding root configurations. Here we use
the term “neutral fermions” in place of “composite fermions”
to stress that, at ν = 1/2, these excitations are due to unpaired
particles in the BCS states, i.e., neutral fermions.4 We can start
from the neutral excitation spectrum of the JSS state in the
thermodynamic limit with a quasiparticle-quasihole minimum
as sketched on the left of Fig. 1. The spectrum is completely
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FIG. 1. Sketches of the excitation spectra of the Jain spin-
singlet (left panel) and Haldane-Rezayi (right panel) states with the
respective root configurations of the ground states.

gapped from the ground state, Eq. (1), with root configuration
on a sphere given by (2̄00↓0↑0↓ · · · 0↑002̄). By 2̄ we denote
a spin-singlet pair on a single orbital. The relationship of
flux to particle number (Nφ/N ) is Nφ = 2N − 4. We expect
that by changing (decreasing) the V0 component of the
pseudopotential series {V0,V1,0,0, . . .}, V0,V1 > 0, the system
will become gapless and will be described at V0 = 0 by the
HR state with excitation spectrum sketched on the right of
Fig. 1, with root configuration (2̄0002̄000 · · · 2̄0002̄) with the
same relationship of flux to number of particles. As we know
from the previous analysis,4 the branch of gapless excitations
of the HR state is described by neutral fermions (excitations
due to unpaired particles in the BCS state). Neutral fermions
exist4 in the JSS state, and it is this gapped branch around
k = 0 that becomes gapless at the critical point. It is thus to
be expected that at the transition the pair of neutral fermions
of opposite spins, each of momentum k = 0, become part of
the ground-state configuration and description. Indeed, we can
convince ourselves by looking at the root configurations of the
JSS and HR states that they differ by the excitation of two
neutral fermions with opposite spins. Each bulk spin-singlet
pair in the HR state becomes set apart by one orbital in the
root configuration of the JSS state. Opposite spins thus carry
opposite momenta, but due to the requirement of inversion
symmetry with respect to the equator and the constraint on
the ratio of flux to number of particles (charge neutrality),
the boundary configurations do not change and the difference
between the two states may appear to us as some kind of
boundary excitation in a uniform state (the JSS state). But as
we already explained, essentially the difference between the
HR and JSS phases can be described by the state of two neutral
fermion bulk excitations in their respective ground states.

V. NUMERICAL CALCULATIONS

To verify that the state on the weak-pairing side of the
transition (HR state) is indeed a JSS state we obtain the ground
state of the relevant interaction Hamiltonian and compare
this to the explicitly constructed JSS state. The two-body
interaction here consists of a hollow-core interaction (V1 = 1)
along with a varying strength hard-core interaction (V0 > 0).
Constructing the JSS wave function is very computationally

Δ
Δ

FIG. 2. (Color online) Excitation gap and overlaps of the ground
state for a two-body interaction Hamiltonian for different V0/V1 for
(a) N = 10 and (b) N = 12 (see Ref. 5 for plots of the N = 8 case).
No overlap data are available for the JSS for N = 12.

intensive and N = 10 was the largest we could construct.
This is somewhat smaller than what has been achieved for
spin-polarized systems. This is because changing the order of
application of the projection operator no longer results in a
good approximation as it does in the spin-polarized case (see
the Appendix). Figure 2 shows the results of these calculations
for the N = 10 and N = 12 cases. As expected, as V0 is
increased the overlap with the HR state decays. For N = 10
where we could construct the JSS state we see that as V0 is
increased the overlap with this state increases to almost unity
before starting to decay. This is a strong indication that this is
indeed the JSS state on the weak-pairing side of the transition.
In both cases the energy gap also shows a peak near where
we expect the JSS state to be, which is consistent with this
picture. Note that the Coulomb ground state in the lowest or
the second Landau level has a zero overlap with the HR or
JSS state for N = 10 and N = 12, because of the different
quantum numbers.

VI. SPIN-POLARIZED CASE

In the following we will discuss spin-polarized Jain states
and their relationship to the nonunitary states. This subject is
well studied, especially for the case of bosons at filling factor
2/3 and the related nonunitary state, the Gaffnian state,23,24

and our focus here will be the underlying pairing structures in
these states. The root configurations of these two states, Jain
and Gaffnian, are well known8 and their pairing structure can
be probed. We will see that in this case also, as the difference
of the two states, two neutral excitations exist that are spread
out over the whole system. Due to the equivalence of north
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and south poles on the sphere (with a magnetic monopole
in its center), i.e., symmetry under inversion on the finite
interval of angular momentum states of any quantum Hall
state, and as a consequence of the bulk neutral excitations,
“edge decorations”—special decorations on the ends (north
and south poles)—appear, as we find in the case for the JSS
state. This neutral rearrangement and the edge decorations can
be seen in the root configuration of the Jain state (2010110102)
compared to that of the Gaffnian state (2002002002) (for
the sake of simplicity we display the root configurations for
only eight particles). This can also be seen in Jain states that
need more than two LLs for their construction. Each new LL
contributes a new pair of neutral excitations with respect to
nonunitary partner states.8 To understand the origin of this
behavior, which may stem from a pairing structure in Jain
states, we begin with the definition of the Gaffnian wave
function of bosons at 2/3:

�Gf = S
[
�221perm

(
1

z↑ − z↓

)]
. (15)

In constructing this state we first divide the electrons into two
groups of up (↑) and down (↓) pseudospins. In the definition
Eq. (15), “perm” denotes the permanent which for an M × M

M matrix is perm (M) = ∑
p∈SM

∏M
k=1 Mk,p(k). �221 is the

well-known notation of Halperin states for which we have

�221 =
∏
i<j

(zi↑ − zj↑)2
∏
l<m

(zl↓ − zm↓)2
∏
p<q

(zp↑ − zq↓).

(16)
In the following we will use

(zσ − zσ ′)m, (17)

where m can be a fraction and (σ,σ ′) = (↑,↑),(↓,↓), or (↑,↓)
as a shorthand notation for any of the three factors in Eq. (16).
The overall symmetrization operator S in Eq. (15) is necessary
to produce a state of polarized bosons.

To display the pairing structure related to the previous
discussion of the HR state we will separate out the charge
part, i.e., the part unaffected by pseudospin:

�Gf = S
[ ∏

(z − z)3/2(z↑ − z↑)1/2(z↓ − z↓)1/2

× 1

(z↑ − z↓)1/2
perm

(
1

(z↑ − z↓)

) ]
,

(18)

where
∏

(z − z)3/2 denotes the product of all possible pairs:

∏
(z − z)3/2 = (z↑ − z↑)3/2(z↓ − z↓)3/2(z↑ − z↓)3/2. (19)

Due to the equality given in Ref. 3,

�11-1perm

(
1

z↑ − z↓

)
= det

(
1

(z↑ − z↓)2

)
, (20)

we can rewrite the Gaffnian as

�Gf = S
[ ∏

(z − z)3/2 (z↑ − z↓)1/2

(z↑ − z↑)1/2(z↓ − z↓)1/2

× det

(
1

(z↑ − z↓)2

) ]
. (21)

Thus a possible interpretation of the Gaffnian state is that
it represents a HR pairing state of neutral semions, semions
because we have taken in front the factor

∏
(z − z)3/2 that

describes the charge part. The original semions that paired by
way of a permanent in the usual definition [Eq. (18)] have
relative fermionic statistics with respect to the new semions of
Eq. (21).

We can try to extend our pairing arguments from spin-
singlet HR and Jain states to Gaffnian and Jain states at 2/3
filling (2/5 in the case of fermions). We expect that the Jain
state at 2/3 filling can be viewed as an underlying state of
weakly paired semions as in the following expression (we
neglect the projection to the LLL in the following):

�Jain = S
[ ∏

(z − z)3/2 (z↑ − z↓)1/2

(z↑ − z↑)1/2(z↓ − z↓)1/2

× det

(
z∗
↑ − z∗

↓
z↑ − z↓

) ]
. (22)

Due to the previously proven identity [Eq. (14)]

χ2 = χ1

χ110
det

(
z∗
↑ − z∗

↓
z↑ − z↓

)
, (23)

we can rewrite Eq. (22) as

�Jain = S
[ ∏

(z − z)3/2 (z↑ − z↓)1/2

(z↑ − z↑)1/2(z↓ − z↓)1/2

χ2χ110

χ1

]
= S(χ1χ2) = χ1A(χ2) = χ1χ2, (24)

as we anticipated. The last identity, in which A is the antisym-
metrizer, follows from the antisymmetry already encoded in
χ2 under exchange of any i and j . Moreover, we can start from
the definition of the bosonic Jain state,

�Jain = χ2χ1, (25)

use the same identity in Eq. (23), and conclude that

�Jain = det

(
z∗
↑ − z∗

↓
z↑ − z↓

)
×(z↑ − z↑)(z↓ − z↓)(z↑ − z↓)2, (26)

i.e., come to an expression for �Jain in terms of two groups
of particles. As we emphasized below Eq. (14), the division
between ups and downs in Eq. (26) is arbitrary and we do not
have a regular paired state with a charge part clearly separated
from a pairing function. As before, but without the need for
the symmetrizer S, we have

�Jain =
∏

(z − z)3/2 (z↑ − z↓)1/2

(z↑ − z↑)1/2(z↓ − z↓)1/2

× det

(
z∗
↑ − z∗

↓
z↑ − z↓

)
. (27)
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Therefore we conclude that the Jain state at 2/3 filling can
be (to a certain degree) viewed as a topological superconductor
of anyons in a weak-pairing phase. The physical consequences
of such a statement are not obvious. The pairing is very much
disguised. We may also talk about neutral fermions and their
pairing, but there is no simple relationship between them and
the underlying particles—in this case bosons.

Edge decorations in the root configuration of the Jain
state in comparison with the Gaffnian clearly point to the
presence of neutral excitations that follow from pair breaking.
To understand better how edge decorations are connected
with the pairing structure in Gaffnian and Jain states that
we demonstrated previously in Eqs. (18), (21), (22), and
(24), we will take out S (symmetrizer) in the definition of
the Gaffnian [Eq. (15)]. As a result we get a spinful state
with root configuration (2̄002̄002̄002̄) where 2̄ represents a
spin singlet on a single orbital. (This is analogous to the
HR case.) We may imagine pair-breaking neutral excitations
with spin which would lead to root configurations of the form
(2̄0↑0↓↑0↓02̄), but this would be too restrictive to describe
the root configuration of a Jain state which is ferromagnetically
ordered with the total projection along the quantization axis
equal to zero in the pseudospin space: (2010110102). We can
convince ourselves of this particular ferromagnetic ordering
by analyzing the expression Eq. (22) for the Jain state.
Nevertheless, we see the similarity between pair-breaking
neutral excitations that carry spin and quasiparticle-quasihole
excitations25 on both ends of the Jain state. Here quasiparticle-
quasihole excitations correspond to neutral fermions in the HR
and JSS case. Instead of a pair of neutral fermions of opposite
spins in the polarized Jain case we have a quadrupolar26

excitation, two quasiparticle-quasihole pairs that are spread
out over the ground state. Namely, we need two (neutral)
dipoles of corresponding but opposite momenta to make
a k = 0 excitation that decreases in energy when we are
approaching the critical Gaffnian state. The situation is similar
to the spin-singlet HR and JSS case with opposite-spin neutral
fermions as sketched in Fig. 1.

With all that we have said about Jain states, we can
expect that IQH effect (IQHE) wave functions that describe
noninteracting fermions can be described as some kind of
weakly paired topological superconductors where the ex-
tremely weak pairing of a time-reversal-symmetry-breaking
d wave, which is just a phase, changes into the description of
fermionic correlations between different LLs. As we already
demonstrated the Slater determinant of two filled LLs can be
written as

χ2 = det

(
z∗
↑ − z∗

↓
z↑ − z↓

)
(z↑ − z↓). (28)

We emphasize that the division between ups and downs is
arbitrary; the only requirement is an equal number of ups and
downs, i.e., an even total number of fermionic particles. The
factor (z↑ − z↓), similar to the Jastrow-Laughlin factor but
not the same, carries the information about the filling factor,
i.e., from the number of flux quanta that particles experience,
N

↑
φ = N

↓
φ = N/2 − 2, we can read off the filling factor,

ν = 2.
The interesting question concerns the relationship between

weakly paired d-wave superconductors and the topological

insulator, i.e., the IQHE with Chern number equal to 2. This
question is highly relevant in the context of fractional Chern
insulators27 (i.e., the FQHE without a magnetic field) with
Chern number larger than 1.11–13 Besides the relationship be-
tween bulk Hamiltonians defined on a lattice as demonstrated
in Ref. 14, there is obvious similarity in the edge theories:
Both are made up of two Dirac fermions,4 which, expressed as
Majoranas, represent a theory with SO(4) symmetry which is
equivalent to SU (2) × SU (2) symmetry. We may ask what
is the symmetry of bulk d-wave Hamiltonians in order to
identify the degrees of freedom which are transformed under
the symmetry. First there is obvious spin rotation symmetry,
SU (2)spin, due to the underlying spin degree of freedom in the
Hamiltonian; the ground-state wave function

�d = det

(
z∗
↑ − z∗

↓
z↑ − z↓

)
(29)

is a spin-singlet eigenstate of SU (2)spin since it is a collection
of BCS spin-singlet pairs. Second, besides particle-hole
symmetry, there is no additional internal symmetry in the
BCS Hamiltonian. Only in its ground-state wave function
is the number of complex conjugated and the number of
nonconjugated variables (“LL index”) expected to be the same
or, expressed in an equivalent way, their difference should
be conserved. Hence we may talk about an internal U (1)
symmetry. What we can conclude is that the symmetry that
is present in the bulk is enlarged at the edge to SU (2)spin ×
SU (2)internal.

On the other hand, in the case of the IQHE at ν = 2, at
the edge we may talk certainly about a symmetry that acts
on the LL index in parallel with the spin symmetry on the
edge of d-wave superconductors. Therefore on the edge we
have an SU (2)LL index × SU (2)internal symmetry. [Note that
here SU (2)internal should not be identified with that in the
context of the d-wave superconductor.] There are no explicit
degrees of freedom in the bulk that would correspond to or lead
to SU (2)internal symmetry on the edge. Interestingly, the bulk
ground-state wave function has the form which can be seen in
Eq. (28)—it is invariant under arbitrary assignment of ups and
downs. Equation (28) relates the ground-state wave function of
d-wave superconductors and the IQHE at ν = 2 and therefore
indicates a pairing structure in IQHE wave functions. There is
no pseudospin degree of freedom in the IQHE (Hamiltonian)
in the bulk, but the ground-state wave function looks as if there
is an additional ferromagnetically ordered pseudospin degree
of freedom next to the LL index. And the symmetries related
to these structures exist on the edge.

Therefore IQHE and polarized FQHE states underlie a
pairing construction which incorporates the “right” mutual
statistics of constituents that is achieved by their d-wave
pairing. At the same time their construction incorporates an
explicit projection to a ferromagnetic, i.e., one-component,
state so that the paired nature is suppressed. In this way
latent pseudospin degrees of freedom that are paired in the
ground-state wave functions appear in the root configurations
of the model wave functions and on the edge by way of
enlarged symmetry.
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VII. CONCLUSIONS

Haldane-Rezayi and Jain spin-singlet states are canonical
examples of d-wave pairing of FQHE wave functions. We
explicitly showed d-wave pairing in the case of the JSS state.
The root configuration of the JSS state was derived; in it we
could recognize the role of composite (neutral) fermion pairs in
the transition from the JSS to the HR state. We demonstrated
this transition in an exact diagonalization study. Besides its
intrinsic interest the study enabled us to draw parallels and
conclusions concerning polarized FQHE and IQHE states. We
found the presence of d-wave pairing in these states although
it is suppressed due to their one-component nature.
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APPENDIX: NUMERICAL CONSTRUCTION
OF COMPOSITE FERMION WAVE FUNCTIONS

First we discuss the construction of lowest-Landau-level
spin-polarized composite fermion (CF) wave functions of the
form

φ = PLLL
[
χ

2p

1 χn

]
.

In Ref. 19 it was demonstrated that when constructing wave
functions of this form the Jastrow factor χ

2p

1 can be moved

inside the determinant coming from χn. The LLL projection
can then be performed before taking the determinant. In
addition, analytical expressions for the application for the
LLL projection operator can be derived. In this manner the
computational cost of constructing such wave functions is
dramatically reduced.

Extending this, it was discovered that this method can be
applied even for cases where the wave function in question
does not have this form. For example, the bosonic wave
functions considered in Ref. 20 that are associated with the
CF state at filling factor ν = n

n+1 fall into this category:

φB = PLLL [χ1χn] .

It was shown that this wave function can be approximated well
with

φ′
B = χ−1

1 PLLL
[
χ2

1 χn

]
,

which is amenable to the technique from Ref. 19. The overlap
for N = 8 is |〈φB |φ′

B〉|2 = 0.9820.20

In the case of the JSS wave function it was hoped that a
similar method could be applied. We constructed the wave
functions

φ′
JSS = χ−1

001PLLL
[
χ2

1 χ2
]

and

φ′′
JSS = χ110PLLL [χ1χ2] .

However, it was found that these do not offer good approxi-
mations of the JSS state even for small systems. The overlaps
with the JSS state for N = 8 are |〈φJSS|φ′

JSS〉|2 = 0.790 and
|〈φJSS|φ′′

JSS〉|2 = 0.792. Note that for φ′′
JSS the term inside the

projection is not of the form χ
2p

1 χ2 and thus is not amenable
to the technique described in Ref. 19. However, this wave
function is still less computationally intensive to construct than
φJSS [Eq. (1)] since the application of the projection operator
before performing the product operation makes this operation
much less demanding.
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