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We introduce a microscopic model on the honeycomb bilayer, which in the small-momentum limit captures
the usual (quadratic dispersion in the kinetic term) description of bilayer graphene. In the limit of strong
interlayer hopping it reduces to an effective honeycomb monolayer model with also third-neighbor hopping.
We study interaction effects in this effective model, focusing on possible superconducting instabilities. We find
d,>_,> superconductivity in the strong-coupling limit of an effective #/-model-like description that gradually
transforms into d + id time-reversal symmetry-breaking superconductivity at weak couplings. In this limit
the small-momentum order-parameter expansion is (k, + i ky)2 [or (ky — i ky)z] in both valleys of the effective
low-energy description. The relevance of our model and investigation for the physics of bilayer graphene is also

discussed.
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I. INTRODUCTION

Interaction effects are expected to be important for the
physics of bilayer graphene and may cause a formation of
correlated many-body phases.-? This needs to be contrasted to
intrinsic monolayer graphene, in which a vanishing density of
states at the Dirac points suppresses the influence of electronic
correlations.>® Recent experiments on suspended bilayer
graphene,*”’ which is free of substrate effects, reveal a gapped
state at and around the charge neutrality point. The state may
be of topological origin® due to the observed*® conductance
of the order of e?/h and may exhibit an anomalous quantum
Hall effect, i.e., a quantum Hall effect at zero magnetic field.
In the most recent experiment on high mobility samples, from
Ref. 7, a completely insulating behavior was found.

From the theory point of view, several proposals were
given®!? for the existence of gapped (and gapless) phases at
the charge neutrality point, including those that break the time-
reversal symmetry. Most of them are based on the particle-hole
(excitonic) binding, which is the most natural assumption in
the understanding of a gapped phase at the charge neutrality
point. These theories assume a quadratic dispersion of the
electrons in the low-energy effective description,”’ and direct
hopping between two sublattices in different layers that leads
to the linear dispersion (“triagonal warping”) is neglected. This
assumption is justified if the chemical potential is not exactly
situated at the charge neutrality point.

To explore additional possibilities for gapped phases in
the presence of a finite chemical potential, we discuss here
superconducting instabilities, especially with an eye on the
possibility of topological (fully gapped) superconductivity on
the honeycomb bilayer. Bilayer graphene may be potentially
also viewed as a strongly correlated system with a possibility
to support a layered antiferromagnetic state,'>'* similar to
the Mott physics of high 7, superconductors. The existence
of a layered antiferromagnetic state is supported by the most
recent experiment with high quality samples,” which feature
completely insulating behavior at the charge neutrality point.

There is, so far, no systematic study of superconducting
instabilities in the presence of electron-electron and electron-
phonon interactions on the honeycomb bilayer at finite doping
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(see, however, Ref. 21 for fermions in the presence of weak
electron-electron interactions only at zero chemical potential).
To address this question, we study in the present paper a
microscopic model of a single effective honeycomb monolayer
with reduced nearest-neighbor hopping and third-neighbor
hopping, in addition to intersite attractive interactions. The
kinetic term of the effective model is obtained by integrating
out the “high-energy” degrees of freedom from the direct
interlayer hopping (i.e., assuming strong interlayer hopping
in the honeycomb bilayer), and the intersite superexchange
interaction originates from the Hubbard on-site repulsion. This
model is to a certain degree biased to antiferromagnetism and
d-wave superconductivity but preserves the usual low-energy
description of the bilayer graphene.?’ Moreover, in contrast to
the usual low-energy model of bilayer graphene, the present
model accounts for the lattice symmetry of the original model
(the honeycomb bilayer) that may be relevant for the symmetry
of the superconducting order parameters.

Our primary interest here is to find the most probable
symmetry of a superconducting instability on the honeycomb
bilayer together with an understanding of its nature, i.e.,
whether this instability is topological. We also aim at an
understanding of the change in the superconducting order
parameter and correlations as we go from a monolayer
to a few-layer honeycomb lattice. The mean-field solution
of the introduced model yields a time-reversal symmetry-
breaking d + id-wave superconducting state at weak coupling,
which continuously transforms into a d,>_,2-wave type with
increasing interaction. Near 3/8 and 5/8 filling of the &
bands, i.e., near the Van Hove singularity in the density
of states, the Cooper pairing becomes much stronger. Our
conclusion is that the d 4 id superconducting instability is
the leading superconducting instability of the honeycomb
bilayer with strong interlayer hopping at finite doping, and
the same instability may be present in the bilayer graphene
at finite doping. However, due to the presumed smallness of
the coupling constant and order parameter, as well as strong
quantum fluctuations in two dimensions, it may be difficult to
detect this order experimentally in today’s graphene samples.

The remaining part of the paper is organized as follows. In
Sec. IT we define our effective two-band model on an effective
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honeycomb lattice with third-nearest-neighbor hopping. The
model is then, in Sec. III, solved by a Bogoliubov-de
Gennes (BdG) transformation for a singlet bond-pairing order
parameter, and we discuss the relevant symmetries. Section [V
presents the phase diagram obtained from a numerical solution
of the BAG equations. In Sec. V, the relevance for the physics of
the bilayer graphene is discussed, and our main conclusions are
presented in Sec. VI. Two appendices summarize analytically
obtained solutions in the weak-coupling BCS limit.

II. MODEL

The honeycomb bilayer lattice consists of two Bernal
stacked honeycomb lattices, each consisting of two triangular
sublattices as illustrated in Fig. 1 such that the unit cell contains
four lattice sites. The Hamiltonian of free electrons on such a
lattice is given by

- 1 Z Z(a by g+ a;,;ﬁbz,}—ﬁ,a +Hc)
-1 Z(a . ay;,+He)
—MEBa,ﬂn¢+ b b ()

Here, the index i = 1,2 denotes the layer and j enumerates
primitive cells. The sum runs over u = iig,i,i,, where

B, ALA, B,
O @, O

(b)

FIG. 1. (Color online) (a) View of Bernal stacked honeycomb
lattices 1 and 2 with corresponding sublattice sites Al, B1 and A2,
B2, respectively. (b) Model reduced to a monolayer model with the
third-neighbor hopping 7 = 2/¢, and the nearest-neighbor hopping
2f (see the text).
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U = a(%,*/?g) and i, = a(%,—*g) are the primitive vectors
of the lattice, and iy = (0, 0) is an auxiliary vector for
denoting the hopping between sites in the same primitive
cell. The norm of these vectors is |ii| = +/3a, in terms of
the distance a between neighboring sites in each layer, and
t is the associated hopping energy, whereas 7, denotes the
interlayer hopping energy between A sites in two different
layers. The finite chemical potential v takes into account
doping, either due to the electric field effect or to chemically
active adatoms. The operators al 7.0 (diii.o) represent electron
creation (annihilation) on the sublattice site A; of the layer

i with spin o = 4,], and bjn ,(bi o) represent those for
electrons on the sublattice site B;. 1 is the chemical potential.
We use units such that = 1.

By introducing the transforms  a; ; , =
> ia;i.explik-j) and  bg, =) b ;  explik- j),
and diagonalizing the Hamiltonian one obtalns the spectrum

Fourier

2

t
=+ 22 |, 2)

EX(k) = +
(9] )

1
=
(=D 2+

where o = 1,2, and £ denote four different branches of
dispersion and

*:Ze”}ﬁzl—i—

In their original work,”® McCann and Falko showed that
the four-band model may be simplified to an effective two-
band model if one considers energies much smaller than z, . In
momentum space, the Hamiltonian in Eq. (1) becomes

ei/?:zl + eilz»ﬁz' 3)

d*k
=3 |, G @
(—t(ral | by i+ vial b,z +He)
_tl(a '%M“‘HC)_M(“ alok+a s ik
+bf’mlzb,,m,; +b) by ) (5)
If we introduce the spinor
W, (k) = (31,0,12vaz,o,ivbz,o,ﬁab1,a,1€)T’ (6)

the Hamiltonian can be expressed as a 4 x 4 matrix:

- =t 0 —ty;
- | —t.  —u =ty -
— i k
m@—;%w TR
—tyI;* 0 0 —U
@)
One may further define 2 x 2 matrices H;} = —ul +

t10y, Hyp = —pl,and Hi; = —t(Re yzo, +Imypoy) = Hyy,
such that the eigenvalue equation can be written in the
following form (k indices are implied):

Hyy Hp | |Yr | Wy
|:H21 H22:||:‘I’2:|_E|:‘1’2:|’ ®)

from which we obtain
{Hyp — Hy(Hy — E) 'Hip} ¥, = EW,. 9
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FIG. 2. (Color online) (a) Noninteracting dispersion and (b) density of states of the projected monolayer model. (c) Linear dispersion in the
vicinity of the K points in the graphene monolayer in comparison to (d) quadratic dispersion in our model. We use 7 = ¢2/¢, for the unit of energy.

If we assume ¢, to be the largest-energy scale and consider the
low-energy limit (E < ), Eq. (9) becomes

2.2
—u Ey2

Heg ¥, = 2w Ry U, = EV,, (10)
e K

with Wy(k) = (b, , .b, . 7).

The two-band model described by the Hamiltonian in
Eq. (10) is also valid in the limit?® where E <« t, < t. For
energies larger than ¢,, one needs to take into account the
other two bands which overlap in energy with those considered
in Eq. (10). In the following sections we use the simplified
two-band model at even larger energies, up to the Van Hove
singularity. Formally, this amounts to increasing artificially
(with respect to the graphene bilayer) the interlayer hopping
t; such that it becomes the largest-energy scale, 7, >> ¢. In that
limit Eq. (10) becomes the exact description of the honeycomb
bilayer for E,t <« t; and for the wave vectors of the whole
Brillouin zone. We will adopt that model in the following.

The Hamiltonian in Eq. (10) corresponds, in real space,
to a single-layer honeycomb lattice with nearest-neighbor
and third-neighbor hoppings. Whereas the effective hopping
amplitude of the latter is given by #2/¢, , the effective nearest-
neighbor hopping is twice as large.>* This means that due to
the strong interlayer hopping the complete low-energy physics
is projected onto the B1 and B2 sublattices, which themselves
form a hexagonal lattice (see Fig. 1).

As mentioned above, the model is equivalent to the
graphene bilayer in the small-momentum limit, i.e., for
t?/ty|kal*> ~ u < t*/t,, and reproduces correctly the finite
density of states (DOS) at E = 0 of bilayer graphene (Fig. 2).
Finally, the Hamiltonian in Eq. (10) does not take into account

direct hopping between the B1 and B2 sublattices, which
may, though, easily be accounted for by adding —t’yg to
the off-diagonal matrix elements, where ¢’ >~ 0.3 eV is the
associated hopping amplitude. This term yields the so-called
trigonal warping close to the charge neutrality point, which
consists of a splitting of the parabolic band-contact point into
four linear Dirac points.?’ However, these Dirac points are
present only at very low energies, for chemical potentials ||
in the meV range, such that the parabolic band approximation
becomes valid even at low dopings. Since we are interested,
here, in moderate doping, we neglect this additional term and
use the effective band the model in Eq. (10) in the following
sections.

Since we consider the effective hopping ¢>/¢, to be small,
and if there is a significant on-site repulsion U, spin-singlet
bonds between B1 and B2 sites are expected to form due to su-
perexchange processes. Therefore, we apply the  — J model
but relax the requirement of the model that double occupation
of sites is excluded. We justify this by our primary aim: to find
the most probable symmetry of the superconducting instability.
As we will be working in the mean-field approximation, we
just assume an effective nearest-neighbor attractive interaction
between electrons on B1 and B2 sublattices, and in doing
this we favor spin-singlet bond formation. The spin-singlet
formation directly follows from the mean-field approach to the
t — J model.?? If the attractive interaction is not too strong, it
can be simply added to Hamiltonian Eq. (10), with the help of
the term

— T opt -
Hi=—=J ) b5 b1iobs jeiobrjiior (D
i
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where J > 0. Now we apply the BCS ansatz by introducing
the superconducting order parameter as a three component
complex vector:

A= (A, Ay Agy),

where the components are defined by

1

fi = pbijabja, —bjibgay (12

and correspond to the spin-singlet pairing amplitudes of three
inequivalent pairs of nearest neighbors. The interaction part

t2 2.1 ik ot t
H:_ZZ(kak blka+HC +«/_JZ|:ZA3 (bZkai ki_békibl

—uZ(b

Similar to the case of the honeycomb monolayer,??

b + b o P270)-
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H; in the mean-field approximation becomes

f
Hycs = «/_JZA (blm 2.7+l bl}¢ 2;+u¢)+HC
i
+2N Y T|Aal (13)

i

where N is the number of unit cells.

III. BOGOLIUBOV-DE GENNES ANALYSIS
AND PAIRING SYMMETRIES

The complete BCS Hamiltonian in momentum space is
given by

T) + H.c.:|

(14)

we can make our description much more transparent if we apply the following

transformation that diagonalizes the kinetic part of the above Hamiltonian:

)]
bl,lza «/5
where ¢; = arg(y;).

In this basis, where c;,
transforms into

H=Y 1Y (e — el e, + > (—feg — . di, + ﬁJ[Z A cos(k - i — 2<pk)(dT d'y et
/; o o u

diy + Cis
e—i2(p;(d];(r _ Clz(r)i| ’ (15)

and dy,, represent the electron states in the upper and lower band, respectively, the Hamiltonian

4

+ ZzA sin(k - ii — Z(pk)(cﬂ dT - dchT_;i)] + Hc} (16)

Here 7 = t*/t, and €; |V7<|2- The eigenvalues are given by

E; = :l:\/(fe,;)z + 12 427282 + |Ci ) £ 2VA,  (17)

where C; = Y . A cos(k - ii — 200), 8 = 5 A sin(k - ii —
2¢3), and

A = (1 +27°|5;)Pe; + 474 (ReCiImS; — ImC;ReSp)”.

(13)

If all Aj are purely real, i.e., there is no time-reversal symmetry
breaking, then the second term in A is zero and the expression
for the dispersion simplifies to

~ 2
E; = :I:\/(te,;:I: VP 2028+ 202C (19)

In this case S; only renormalizes the chemical potential,
whereas C; plays the main role in the description of the
superconducting order parameter. A comparison between the
Bogoliubov energy dispersion in Eq. (19) and the usual BCS
expression shows that C; can be identified with the gap

function. However, this name may be misleading because Cy
does not describe the gap, as in the example in Eq. (22) below.

The symmetry analysis of the order parameter on a
honeycomb lattice?? yields the basis vectors which correspond
to s, dy2_2, and d,, waves, respectively:

A, 1, 1
A=1AQ@ -1, —1). (20)
A, 1, -1

The function C; corresponding to these symmetries is shown
in Fig. 3, in comparison with the monolayer case. The last
two possibilities belong to a two-dimensional (2D) subspace
of irreducible representation of permutation group S3.2* This
means that any superposition of these two order parameters,
which we may identify with the d,>_,» [(2,—1,—1) of Eq. (20)
and permutations] and d,, [(0,1,—1) of Eq. (20) and permuta-
tions] solutions of d-wave superconductivity, is possible from
a symmetry point of view. In spite of this principle possibility,
the precise realization of a particular order parameter is a
question of energy calculations. One notices that the spatial
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FIG. 3. (Color online) C;, in the first Brillouin zone calculated for three possible symmetries on monolayer and projected bilayer lattices.

point symmetry of the underlying honeycomb lattice is Cs,,
which includes 277 /3 rotations, whereas a transformation from
dy>_ > to d,, involves 7 /4 rotations. The order parameters thus
have a different symmetry than the underlying lattice, as one
may also see in Fig. 3, such that the two order parameters do
not represent degenerate ground states. Indeed we find, within
the BCS mean-field theory, that the d,>_ > solution has a lower
energy than the d,, solution.

This finding needs to be contrasted to the case of p-wave
superconductivity on the square lattice.?' In the latter case,
superpositions of the p, and p, solutions are also permitted
by the symmetry of the order parameter, but both solutions are
related to each other by 7 /2 rotations that respect the point
symmetry of the underlying (square) lattice. The p, and p,
solutions are therefore degenerate.

The above arguments indicate that the C3, symmetry of
the honeycomb lattice is dynamically broken, only through
interactions, via the formation of a d,>_,> order parameter.
This is similar to the findings of Poletti ef al. in the context
of superfluidity of spinless fermions with nearest-neighbor
attraction.’* Also in this case, the C3, symmetry is dynamically
broken. Notice finally that in the small-J limit, i.e., at weak
coupling or in the low-energy limit, the BAdG system recovers
the symmetry of the C3, group but has also an (emergent)
continuous rotational symmetry that will lead to a d,>_,» £
i3 dy, instability (see Appendix A).

In the case of an s-wave order parameter with A =
A (1,1,1), a small-wave-vector expansion (|g|a < 1) around
the K points yields

V3
Ski+q ~4+—qalA.  (21)

V3
CIZi+§ ~ :F—qulA, 2

2
Thus both couplings are nonzero and no simple effective
picture emerges by looking at the Hamiltonian in Eq. (16).
The lower excitation energy branch can be approximated in

the small-momentum limit as

Ej = Ju? = 2uleg ;+ 37%(131a)° A7

~ i = 3B3ui — (T 0110, (22)

where we have used €,z =~ 9(|gla)*/4.

If the coupling strengths are such that E; has a minimum
at ¢ = 0, that is for (JA)?> > 3uf, a special superconducting
instability may be realized (if other possibilities, order param-
eters, have higher free energy).” In the absence of trigonal
warping at very low doping, we obtain a time-reversal invariant
superconducting instability with two kinds of Cooper pairs
with p, +ip, and p, — ip, pairings. Due to the forms of Cj
and Sy, in the above Hamiltonian in the small-momentum limit,
p-wave Cooper pairings are expected. For a sufficiently large
chemical potential, one can neglect S; in Eq. (19) and the
system may be unstable towards a p, gapless superconductor,
with gap minima on the Fermi surface, i.e., on a circle.

For A = A(2,—1,—1), the small-momentum expansion
around the K points yields

2 2
Cioyg(dvy) ~ —3w&
. q" 23)
St ia(de ) = F6-= = A
g1
and for A = A(0,1,—1)
Ckﬁ—t?(dxy) ~ 2\/5%:‘]2); A,
lql
., (24)
(q _qy)

S, +q(dvy) ~ FV3 X|Z] A.

| 2

The gap function Cy, thus clearly shows the d,>_,> and the d,,
symmetry in Egs. (23) and (24), respectively.
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Notice that one may superpose two waves in the manner

Ci(d £ id) = Cy(dy_ ) + iN3Cy(dyy) (25)

and

Si(d + id) = Sp(dy_y) + iv/3S;(dyy), (26)

which is identified with the d + id-wave superconducting
phase in the following. In the small-wave-vector limit, the
combined forms of Cy,

Cioiad +id)~ FiSg .5 ~3(q: +ig,) /11> 27)

and

;d—id)~ iSp - ~3(q —ig))*/1q  (28)

restore the rotational symmetry—they are indeed eigenstates
of rotation in two dimensions with the value of angular
momentum equal to 2. Thus a fixed complex combination
in real space, either d,>_,> + i3 dyy or dy_y2 — i3 dyy,
leads to the same form of the expansion in small momenta
at both valley points, either Eq. (27) or Eq. (28). Because it
is the same irrespective of the valley K or K’ one obtains
a solution that spontaneously breaks time-reversal symmetry.
Thus we can identify the solution with the broken time-reversal
symmetry d + id state. Something similar happens in the
monolayer case, but the d-wave symmetry is recognized as
a global dependence of the order parameter on the k vector
in the Brillouin zone around the central " point (see Ref. 26)
and p-wave behavior around K + points.”’ In the bilayer case
the time-reversal symmetry breaking d-wave order parameter
emerges as a property of the low-energy small-momentum
effective description around the K points, as shown above.

K¢+q Ki+q

IV. PHASE DIAGRAM

We have found the ground state of our model Hamiltonian
for a broad range of J and u by minimizing the free energy.
At zero temperature, as a function of the order parameter, it is

given by
- > E +2NJZ|AM| (29)

kelBz a==*1

where the first sum is over all wave vectors k in the first
Brillouin zone and two Bogoliubov bands with positive
energies. The ground state is defined as a global minimum
of the free energy in the order-parameter space. In the present
study, we concentrate on superconducting order parameters in
a variational approach, and thus we cannot exclude that other
correlated (nonsuperconducting) phases may have an even
lower energy. In the mean-field approach, superconducting
ground states are expected even for infinitesimal positive
values of J.

The order-parameter space is six-dimensional, because
it is defined by three complex numbers. However, adding
the same phase to all three complex parameters does not
modify the physical state, so one can always make one
of the parameters purely real (we set Ay, , real) and
reduce the order-parameter space dimensionality to 5. We
used the amoeba numerical method?® to directly minimize
the free energy. Five-dimensional minimization often reveals
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FIG. 4. (Color online) (a) Order-parameter amplitude A in the
(u,J) parameter space, obtained by a minimization of the free
energy, (b) single-particle excitation gap, (c) contribution of id,,, and
(d) s-wave component in the ground-state order parameter. The green
dashed line marks where A drops below 10~*. Below this line, our
numerics is not reliable. We use 7 = 2/¢, for the unit of energy.

more than one local minimum, but we were always able to
identify the lowest-lying state to a satisfying level of certainty.
However, for small values of J, the local free-energy minima
are extremely shallow, with energies only slightly lower than
the free energy of the normal state. Such features in the
free-energy landscape are completely clouded by numerical
noise due to the discretization of the first Brillouin zone. Our
numerical calculations are therefore limited to higher values
of J, which give a solution with the amplitude of the order
parameter larger than 10™*. This is marked by the dashed lines
in Fig. 4.

Our results are shown on Fig. 4, where the relevant
quantities are represented by color in the (u,J) plane. The
amplitude of the order parameter is shown in Fig. 5(a).
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FIG. 5. (Color online) (a) Order-parameter amplitude A and (b)
single-particle excitation gap as a function of J, for u = 0.04,0.55,1.
(c—e) The contributions of three relevant symmetry components. The
d,>_,» component is the dominant one for large J. The contribution
of id,, increases with decreasing J until the two contributions are
equal and we find a pure d + id-wave symmetry. We use 7 = 12/t
for the unit of energy. The data are plotted only above the value for
the coupling J which is numerically significant, as mentioned in the
text (see also the dashed green line in Fig. 4).

Upon small to moderate doping, the SC instability increases
and becomes particularly favorable at the filling 5/8, which
corresponds to the chemical potential ©/7 = 1, and the Van
Hove singularity in the noninteracting DOS. For further
doping the SC instability decreases. This gives to Fig. 4(a)
roughly the look of the inverse DOS of Fig. 2(b). The gap
in the single-particle excitations is shown in Fig. 4(b). It
is particularly pronounced in the case of strong mixing of
dy>_y» and id;, symmetry components, as we can see from
Fig. 4(c). The contribution of different pairing symmetries
is defined by the ratio w of different components of A,
where

A= Age;+iA e+ Ad”é\dn + l'A,‘gl'w édxy =+ Adey? édxz,yz s
(30)

with & = (1,1,1)/+/3, &4, = (0,1,-1)/v/2, and &4, , =
(2,—1,—1)/«/6. Figure 4(c) shows the ratio w(idyy) =
[Aig,,|/IAl, and Fig. 4(d) shows the ratio w(s) = |Ag|/[A].
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The contributions of is and d,, components are negligible in
all cases, and d,_,2 is the dominant component.

The numerical results are, for clarity, also shown in Fig. 5
for three chosen values of the chemical potential, wu/f =
0.04,0.55, 1. Figure 5(a) shows a sudden increase in the pairing
amplitude with the increasing interaction J (note the logarith-
mic scale on the y axis). For small J, the pairing amplitude is
much larger for u /7 = 1, i.e., at the Van Hove singularity, and
in this case the single-particle excitation gap is also larger due
to the strong mixing of d,>_» and id,, symmetries. Contribu-
tions of relevant components are compared in Figs. 5(c)-5(e).
Athigher values of J one has a pure d,>_,> symmetry, whereas
a mixture of d,»_,» and id,, symmetries is found at lower
values of J. The contribution of id,, symmetry increases with
decreasing J, and almost pure d + id symmetries are usually
found at the lowest accessible values of J.

Our numerical calculations were performed on processors
with 8 GB of RAM, which limited the number of k points
in the first Brillouin zone to 4000 x 4000, but we checked
that results do not djffer qualitatively even with a much
sparser 2000 x 2000 k grid. A much denser and probably a
nonuniform discretization of the first Brillouin zone would be
needed to probe the weak-coupling behavior of our model,
that is for values of J below the dashed lines in Fig. 4.
Notice, however, that the system in the small-J limit may be
treated analytically within the weak-coupling limit, the results
of which are presented in Appendices A and B, for the cases
of finite and zero chemical potential, respectively.

In this weak-coupling regime and at finite chemical poten-
tial, we find that the d + id superconducting order parameter
yields the lowest mean-field energy, when compared to order
parameters that respect time-reversal symmetry (Appendix A),
in agreement with our numerical results for larger values of
J. In the weak-coupling limit, in the symmetry-protected
subspace of d,>_,» and d,, order parameters the complex

combination d,>_,>» + i\/gdxy leads to a fully gapped system
with no nodes at the Fermi surface. This means that the gap is
proportional to |C;| = const, and maximum gain in the energy
for this superconducting instability is obtained. Notice that this
topological instability is in line with a theorem for the BCS
description, according to which a time-reversal symmetry-
broken 2D superconducting state has a lower free energy, as
compared to time-reversal symmetric ones, when confronted
with two-dimensional representations of the superconducting
order parameter.’! Indeed, as mentioned after Eq. (20), the
d>_y> and d,, components of the order parameter A form a
two-dimensional irreducible representation of the symmetry
group of the honeycomb lattice. Although the theorem of
Ref. 31 was derived for a single band, it is expected also
to apply to the present case at finite doping when the
higher Bogoliubov band is irrelevant for the superconducting
instability. This instability occurs at any strength of attractive
interaction at finite doping since the gap opens as

JA [ Sz _1 } 31)
xexp|————

V3 p(w)J
(see Appendix A), in terms of the DOS p(Er) at the Fermi
level Ef. This is simply the BCS expression with the pairing
potential equal to J.
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Finally, we notice that the weak-coupling analysis yields
a different picture at zero doping (Appendix B), where
a time-reversal-symmetric superconducting order parameter
(with any real combination of d,>_,> and d,,) is energetically
favored.

V. POSSIBLE RELEVANCE FOR BILAYER GRAPHENE

In the following we will discuss the possible relevance
of our model for the physics of bilayer graphene. With an
estimate?® for the Coulomb on-site repulsion, U ~ 10 eV,
intralayer nearest-neighbor hopping,** t ~ 3 eV, and interlayer
hopping,®® ¢, ~ 0.4 eV, bilayer graphene may have a ten-
dency to develop strongly correlated electron phases. Notice
that, although similar energy scales are found in monolayer
graphene, the latter is to great accuracy described in terms
of (quasi-)free electrons because of a vanishing DOS at the
Fermi level, in the absence of intensive doping.'~> In contrast,
electronic correlations are much more efficient in bilayer
graphene as a consequence of the finite DOS even at the
band-contact points. This finite DOS may also be invoked
when considering screening. Whereas screening is highly
inefficient in monolayer graphene, and one needs then to take
into account the long-range nature of the electronic interac-
tion potential, the screening properties in bilayer graphene
are similar to those in usual 2D electron systems with a
parabolic band dispersion, albeit with a rather small band
mass (~0.05m, in terms of the bare electron mass). In this
sense, an approach based on the Hubbard model, as used here
excluding nearest- and further-neighbor interactions, is better
justified in bilayer than in monolayer graphene. However,
this remains a strong approximation, as in the case of 2D
electrons in GaAs heterostructures, and numerical calculations
indicate that longer-range terms remain relevant also in bilayer
graphene.”

Generally, the interplay between a strong on-site repulsion
U and the hopping terms ¢ and ¢, leads to antiferromag-
netic Heisenberg-type exchange interactions, J ~ /U ~
1eV between nearest neighbors in the same layer and J, ~
ti /U ~ 16 meV between nearest neighbors in opposite layers.
Although clear evidence for antiferromagnetism is lacking
in bilayer graphene, the quadratic dispersion of juxtaposed
conduction and valence bands (together with the nonzero
density of states) favor antiferromagnetic fluctuations.’> Be-
cause the low-energy electrons move preferentially on the B1
and B2 sublattice sites, one needs to estimate an effective
exchange interaction between them that may be obtained
from a perturbative expansion, Jeg ~ J2J| /13 ~ /U3 ~
100 meV.

Remember that the effective hopping parameter in the
projected honeycomb lattice (between the B1 and B2 sites)
is a more subtle issue because it is derived in the limit where
t; > t,in contrast to the natural order in bilayer graphene. In
order to make a comparison between our effective model and
that of bilayer graphene, in view of the correlated phases we
consider, it is therefore more appropriate to define the effective
hopping indirectly from the value of Jeg and U, Jegr ~ tesz /U,
which yields a value of f. ~ 1eV that should replace the
value 7 in the previous sections.
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Therefore modeled with two effective parameters, Jeg and
t.tr, bilayer graphene may be compared with the effective hon-
eycomb lattice considered in our paper and the corresponding
t — J model. The main feature of bilayer graphene appears to
be that Jg ~ 0.1%.¢ < fefr, and in considering the relevance
of our model we should confine ourselves to weak couplings
and small or moderate dopings; because we simplified the
high-momentum physics of the bilayer (by considering the
large ¢; limit) we should confine ourselves to lower dopings.
First one sees from Fig. 4 that the gaps are in the meV
range (2 to 5 meV for the maximal gaps) if one considers
the energy scale . ~ J ~ 1 eV. Thus our results indicate
very small energy scales that are unlikely to be resolved in
today’s graphene samples. Furthermore we should use .
and J for ¢ and J for the exponent in the weak-coupling
analysis in Appendix A. Because we estimate fef/ Jegr ~ 10,
the weak-coupling analysis yields an exponential suppression
and gaps below 1 meV, in agreement with our numerical
findings shown in Fig. 4.

VI. CONCLUSIONS

We presented an analysis of a model of a honeycomb
bilayer with attractive interactions that (1) supports d +
i d superconductivity with the canonical effective (low-
momentum) description ~(k, + i ky)2 at both valley points and
(2) transforms at moderate and strong couplings into d,>_»
superconductivity. The implied #J model may be relevant for
future investigations of such a complex and intriguing system
as the graphene bilayer. We discussed the possibility of a
superconducting instability in this framework and concluded
that d 4 id is the leading superconducting instability in the
case of the graphene bilayer at moderate dopings and low-
energy scales.

We would like to point also to the difference between the
monolayer and bilayer case that follows from the symmetry
analysis of the simple model with attractive interactions and
the ensuing short-range order parameter on both Ilattices.
In the effective description around K points an s wave
and p wave are found’>?° in the monolayer case, and a
p wave and d wave are found in the bilayer case. The
bilayer honeycomb lattice appears at moderate dopings as
yet another stage on which time-reversal symmetry-breaking
d-wave superconductivity may appear (see Refs. 22,33-37 for
moderately doped monolayer) and may be driven by similar
physics as in the case of predicted instabilities at special (very
high) dopings of a honeycomb monolayer.*®*° In the case
we presented, the canonical*® low momentum description,
~(ky + i ky)z, holds due to the quadratically dispersing Dirac
electrons.

ACKNOWLEDGMENTS

We thank A. M. Black-Schaffer, M. Civelli, M. Franz,
and Y. Hatsugai for useful discussions. Furthermore, we
thank D. Tanaskovi¢ for support and his implication at
the early stage of this project. J. V. and M. V. M.
are supported by the Serbian Ministry of Education
and Science under Project No. ON171017, and M. O.
G. is supported by the ANR (Agence Nationale de la

214505-8



d-WAVE SUPERCONDUCTIVITY ON THE HONEYCOMSB ...

Recherche) project NANOSIM GRAPHENE under Grant No.
ANR-09-NANO-016. The authors acknowledge financial sup-
port from the bilateral MES-CNRS 2011/12 program. This
research was funded in part by the NSF under Grant No.
NSF PHY05-51164; M. V. M. and M. O. G. acknowledge
the hospitality of the Kavli Institute for Theoretical Physics,
University of California, Santa Barbara. Numerical simu-
lations were run on the AEGIS e-Infrastructure, supported
in part by FP7 projects EGI-InSPIRE, PRACE-1IP, and
HP-SEE.

APPENDIX A: WEAK-COUPLING ANALYTICAL
SOLUTION AT FINITE CHEMICAL POTENTIAL

Here, we present briefly the weak-coupling analysis of
superconducting order in the effective bilayer model. In order
to simplify the notation, we use the letter ¢ to denote the
effective hopping 7. The DOS at the Fermi level, p(EFr), is on
the order of the inverse hopping parameter 1/¢. Notice that if
only a parabolic band is taken into account it remains fixed at its
Er = 0 value, but corrections to the parabolic approximation
immediately yield a contribution that varies linearly with
the Fermi level, in agreement with the DOS plotted in
Fig. 2(b).

In the case when A = A(1,1,1), a weak-coupling BCS
analysis that takes into account only electrons in the lower
Bogoliubov band gives

t
JA = /2tE, ex —24J§n—>, (A1)
p( wp(Er)J

with E. as an energy cutoff around the Fermi value, for the
solution, and

SEL E 1
ﬂ:—(JA)ZM)( F)_’ (A2)
N t 437
for the gain in the mean-field energy, 6 Eyrp, by the pairing

instability.
The weak-coupling BCS analysis in the case of electron
doping (. > 0) for d,>_ 2 and dy2_y2 + i V3 dyy gives

A ﬁE ( 87 1 N 1) A3
=—F.exp|——= =1,
T TP\ BeENT T2

for the solution which we denoted by A = A, and

A \/EE ( 87t 1 +1)
=4/ 7 EceX - = P
3P\ T BpENT T2

in the case of the d,, wave. For the energy gain one obtains

(A4)

SEmp(d_y2) 8 Emp(dyy) ) 33
= =—(JA Er)—=, (A5
N N (JAG) p(EF) o (A5)
andforad,_» +i V3 dy, wave one finds
SEY 3J3
—ME = —(JA) P(Ep)=— (A6)

N 27

Because of its twice lower mean-field energy, the d,>_,» +
iﬁdxy time-reversal symmetry-breaking instability, which
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we call in short the d wave, is more likely than d,>_,.-
and d,,-wave order parameters. In the large-doping limit, the
energy minimization is also much more efficient for the d
wave than the p, wave, as seen in the small value of the
ratio

OE = exp
SEd. 2E.

_27‘[ x 8 1 (2 _ 1>i| (A7)
V3 p(ER)J \2u ’

for u < % The most natural choice for E,. is to be of the
order of u as a first energy scale when we start from the
smallest one, i.e., J. The time-reversal symmetry-breaking
d-wave solution of our BCS mean-field Hamiltonian is also
expected from a theorem proved in Ref. 31. The theorem was
derived for 2D one-band models that reveal both time-reversal
symmetry and a point symmetry described by the dihedral
group D, [or the O(2) rotation symmetry in the case of
continuum models]. It states that generally a time-reversal
symmetry-breaking superconducting state has a lower free
energy than time-reversal symmetric ones if one is confronted
with a 2D representation of the symmetry group. In the case of
weak coupling that we consider here, i.e., J < u,and p > 0
(electron doping), we have an effective one-band theory of
electrons to which the theorem can be applied. Also, the
dispersion of the complex d-wave order parameter is more
complicated in our case (than in Ref. 31), as can be seen in
Egs. (17) and (18). But in the weak-coupling limit the J* term
can be neglected in Eq. (18), and we obtain expressions that
are reminiscent of those of Ref. 31.

In the following we investigate more closely an effective
low-energy description of the d-wave instability, in the
case of high electron doping, and discuss only the lower-
energy Bogoliubov band. Therefore our effective Hamiltonian
is

H, = Z(te,; — M)C]%Uc,;g + Z(A’;CIETCLQ + H.c.), (A8)
ko k

where Ap ~ (k, — iky)2/|k|2. In the weak-coupling BCS
analysis it can be easily shown that the Hamiltonian is
completely equivalent to the one with A ~ (k, — iky)z,
because both Hamiltonians have an effective description on a
Fermi circle defined by te; = p. With this adjustment we have
exactly the form of the BCS Hamiltonian studied in Ref. 40
on time-reversal symmetry-breaking superconductors in two
dimensions. In the so-called weak-pairing case for finite . > 0
that we want to study, the minimum of Bogoliubov excitations
moves to finite values of 12, teg = W, i.e., to the Fermi surface
of free particles. The Cooper pair wave function g(¥) may be a
nonuniversal function of |F| where 7 is the relative coordinate
of the pair. On the other hand, the dependence of the function
on the angle of vector 7 is fixed and can easily be derived
in the Bogoliubov formalism to be g(|F|) o § o« (x — iy)2
where z = x + iy is the two-dimensional complex coordinate.
Thus the relative angular momentum of the Cooper pair
is I = —2. The weak-pairing phase is topological, gapped
in the bulk because u > 0, and possesses a doublet of
spin-1/2 Dirac edge modes.*’ In our case, because of the
fermion doubling on the honeycomb lattice and the existence
of the two K points (valleys) [and because around each
one we have the same effective description given by the
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Hamiltonian in Eq. (16)], we expect four Dirac modes on the
edge.

APPENDIX B: WEAK-COUPLING ANALYTICAL
SOLUTION AT ZERO CHEMICAL POTENTIAL

In the weak-coupling limit at & = 0, when both Bogoliubov
bands are taken into account we find for d,>_,> symmetry

E 3 —1le
JAY = =< ENEVE—— Bl
3 eXP( e B1)

with ¢ = ﬁ%, for the solution, and
SEC? 9

MF d\2
OFME 7 (JADY, B2
N 26‘( ) (B2)
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for the energy gain. On the other hand, for d + id symmetry

we find
: 2E. 3 5
JAFd = ‘/——exp SNErE— (B3)
3 2c
and
s Ed+id '
—xf = —9¢ (J A4Fid)?, (B4)
Because
8Ed+id aEd-Hd B
dom = dy =4 (B5)
SEyg" SEyp

any real combination of d,>_,> and d., waves is more likely
than the d + id wave.
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