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We study the static structure factor of the fractional Chern insulator Laughlin-like state and provide analytical
forms for this quantity in the long-distance limit. In the course of this we identify the averaged over the Brillouin
zone Fubini-Study metric as the relevant metric in the long-distance limit. We discuss under which conditions the
static structure factor will assume the usual behavior of a Laughlin-like fractional quantum Hall system, i.e., the
scenario of S. M. Girvin, A. H. MacDonald, and P. M. Platzman [Phys. Rev. B 33, 2481 (1986)]. We study the
influence of the departure of the averaged over the Brillouin zone Fubini-Study metric from its fractional quantum
Hall value which appears in the long-distance analysis as an effective change of the filling factor. According to
our exact-diagonalization results on the Haldane model and analytical considerations we find persistence of the
fractional Chern insulator state even in this region of the parameter space.
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I. INTRODUCTION

Chern insulators (CIs)1 exhibit integer quantum Hall effect
(IQHE) conductance quantization in the absence of the
magnetic field due to the nontrivial filled band structure
with nonzero topological Chern number. The fractional Chern
insulator (FCI)2–4 is the name for a CI with a partially filled
band (which is akin to a Landau level) in the presence of
strong interactions, which exhibit fractional quantum Hall
effect (FQHE) conductance quantization.

What might be defined as an ultimate goal in the context
of FCI physics would be the understanding of the mechanism
of creation of FCI states in order to be able to suggest the
most convenient experimental settings, whether in cold atoms,
crystal (solid-state) physics, or graphene structures for their re-
alization. Interacting topological insulator5–7 physics, of which
the FCI is a time-reversal-symmetry-broken representative, is
one of the major topics of the current research in the field of
strongly correlated systems. FCIs have been reported in many
models both for fermionic systems2–4,8 and bosonic cold atom
models.9–12 Still there is no complete understanding as to why
some model crystal systems are more convenient than others
for particular FCI states. One way to resolve this problem
would be to study the underlying quantum geometry of the
crystal system and its influence on the gap function of FCIs
in the scope of the usual approximation in FQHE physics: the
single-mode approximation (SMA).13

In practice finding favorable conditions for FCIs means
achieving the understanding of the interplay of several ingredi-
ents: the statistics of the underlying particles, the interactions,
and the background lattice that produces the band with
nontrivial topology characterized by a nonzero Chern number.
We will focus our attention on the influence of the background
lattice, and the structure of its particular band in which the
FCI physics takes place. The band structure is characterized
by two tensors: the Fubini-Study (FS) (or quantum distance)
metric and the Berry curvature. They provide the description
of the evolution of the quantum-mechanical state as it changes
with the change of the Bloch momentum of the lattice. The

question of the role of the FS metric in the context of the FCI
was first raised in Ref. 14. A recent work15 showed how the FS
metric is related to the current noise spectrum, a measurable
quantity. While there is a general understanding that an almost
flat Berry curvature favors the emergence of a FCI phase16

(mimicking the constant magnetic field of the FQHE), there is a
partial understanding what is the influence of the FS metric. We
know that there is no quantization of its value when integrated
over the Bloch momentum phase space, the Brillouin zone,
like in the case of the Berry curvature (which produces the
Chern number). Quite generally its averaged value depends
on the lattice parameters. Thus we cannot reduce the situation
to the one of a single Landau level (FQHE) in which the
relationship between, what we may identify as, Berry curvature
and the FS metric is fixed and not model dependent. Even on
the mean-field level [as we will show in our static structure
factor (SSF) calculations in more detail] we may lose this
relationship. In the geometrical picture of the FQHE17 this
relationship appears as a requirement for a unimodular metric
(a consequence of the fixed relationship between the applied
flux and the number of particles). As pointed out in Ref. 14,
an almost flat metric is needed to mimic the FQHE. Still there
is a remaining question and an open problem that we will
address in this work: how the system sustains the increase of
the averaged FS metric from the FQHE value.

On the other hand we want to point out that there is the
largely unexplored problem and question on the status of
the SMA for the FCI. In the case of the FQHE, the SMA
assumes a particular variational ansatz, based on the action
of the projected to a fixed Landau level density operator on
the ground state, in order to describe the first excited state.
In the search for favorable conditions for FCIs, the SMA is
the most likely tool that is available if we want to understand
the parameter (FS metric) dependence of the measure of the
stability of the FCI state, its gap function. We consider the
SMA in the context of the FCI in an analogous manner as
is done in the FQHE; we assume that the first excited state is
given by the action of the projected to a particular band density
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DOBARDŽIĆ, MILOVANOVIĆ, AND REGNAULT PHYSICAL REVIEW B 88, 115117 (2013)

operator that acts on the ground state. In this work we will pay
special attention to the SSF, the norm of the approximate state,
although the f (k) (the oscillator strength) function, i.e., the
expectation value of the Hamiltonian of the system in the
variational ansatz for the density wave excited state, is also
important and needed. In the literature we find18 a general
statement on the nature of the expansion of the f (k) function
for FCI; the leading term in the long-distance expansion is
quadratic in the low momentum due to the dependence of the
Berry curvature on the Bloch momentum in the FCI. Because
the gap function, in the SMA, is the ratio of the f (k) function
and the norm of the variational ansatz state, i.e., the SSF, this
necessarily means that SSF has the same leading behavior. We
want to point out that the derivation in the same reference18

was done with the usual averaging and long-wavelength-limit
procedures16,19,20 in the FCI, but which were not assumed
or applied in the original work in Ref. 13 on the SMA in
the context of the FQHE. The behavior that was described in
Ref. 13 is the leading behavior of the SSF and f (k) as quartic
in small momenta. This is, we may say, a hallmark of the
FQHE behavior.

In this paper we will rederive this important result of
Ref. 13 to set the stage for the discussion of the FCI case
(Sec. II B). The quartic behavior in the FQHE context is a
consequence of space symmetries and liquid, homogeneous
nature of the system (Ref. 13 and Sec. IV B). Here, in the
introduction, we would like to point out that if FCI systems
remained characterized by the quartic behavior of the SSF, that
would mean that a description based on averaged quantities
(of Berry curvature and metric) is sufficient to describe the
long-distance behavior. At least in this domain one would not
expect much difference between the FQHE and FCI behavior
in their gap function and SSF. On the other hand with the
quadratic behavior of SSF the role of the background variations
would be very important in determining the gap function.
FCIs would represent a nontrivial generalization of the FQHE
behavior.

Thus it is natural to ask the following question: whether,
in a mean-field picture at least, we can talk about the scenario
of Ref. 13 for the FCI, or whether lower order terms in the
SSF and f (k) that depend on the variations in the Berry
curvature and FS metric will determine the gap function.
In this work we will study the SSF for FCI Laughlin-like
states. In doing this one may resort to a numerical calculation
of the SSF of the FCI, which undoubtedly will shed most
light on the nature of the expansion of the SSF, whether or
not we have the quadratic term. Due to the approximations
made and complicated expressions in Ref. 18, that needs to
be checked for concrete FCI states. On the other hand, as will
be described in this work, one may build a mean-field picture
(valid at least in the constant curvature and constant metric
case) based on analytical considerations in the long-distance
limit. By analyzing the single-particle physics of the band with
nontrivial Chern number and its consequences on the SSF
of the FCI, we can find out that the effective (“plasmonic”)
density-density potential in the long-distance limit is inversely
proportional to the averaged over the Brillouin zone (BZ)
FS metric. Thus the averaged over the BZ FS metric plays
the role of the “Landau level” metric in the framework

of the geometrical description of fractional quantum Hall
systems17 and an effective description of FCIs. In the effective
description of the noninteracting CI band the density-density
potential will ensure that the long-distance fluctuations are
suppressed—that the noninteracting system is gapped and the
density is uniform in the long-distance limit. By applying the
Feenberg formula21–23 to the case of interacting quantum liquid
we can track down the influence of the FS metric on the ensuing
coefficient of the quartic term of the SSF. This will generalize
the expression of Ref. 13, formula (4.29), in the original work,
i.e., expression (19) below, to the FCI case. In this way we will
address the open question of how the departure of the averaged
value of the FS metric from the FQHE value (i.e., departure
from the unimodular metric description) affects the physics of
the FCI state.

Thus the problem of calculating the SSF in the context
of FCIs poses many difficulties, and makes transparent the
very nature of the FCIs’ complex background, i.e., the Berry
curvature and FS metric that vary over the BZ. The geometric
picture of FQHE systems proposed in Ref. 17, in the context
of FCIs may find the most nontrivial realization where also
the extrinsic part of the metric degree of freedom (not the one
related to interactions) is nontrivial. In this work, a definite
answer for the SSF behavior in the long-distance limit will
not be given, but, as we already announced, we will analyze
the most relevant properties in the same limit by analytical
means. It will be explained which conditions have to be
fulfilled in order for the FQHE scenario (Ref. 13) to occur in
these systems. To illustrate our main conclusions we analyze
the underlying quantum geometry of the Haldane model1

and the presence of bosonic FCI states in the phase diagram
of the same model with on-site interaction (repulsion) only.
We choose bosons in order to minimize the influence of the
symmetry of the underlying lattice. We will present the whole
phase diagram to have a better view of the influence of the
underlying geometry and make comparison with our analytical
predictions in the region where the magneto-phonon and the
long-distance behavior should be relevant. We find that al-
though the averaged FS metric departs strongly from the FQHE
value (from the unimodular metric requirement) the FCI state
persists for a while as both our analytical and numerical work
indicate.

The paper is organized as follows. In Sec. II the derivation of
the SSF in the context of the FQHE is reviewed. In Sec. III the
role of the FS metric in the context of FCIs and the FCI SSF is
identified. In the scope of a mean-field approximation together
with the assumption of the Laughlin-Jastrow correlations,
the long-distance limit of the SSF for Abelian FCI states is
calculated in Sec. IV. The possibility for the same scenario of
Ref. 13 in the context of FCI states is discussed in the same
section. In Sec. V the background degrees of freedom, the FS
metric and Berry curvature, for the Haldane model based FCIs
are analyzed. In the same section, Sec. V, the phase diagram
of the interacting system of bosons (that live on the lattice
defined by the Haldane model) is presented. Based on the
phase diagram, the identification of possible FCI regions and
a comparison with the calculated background properties and
analytical results was made possible. Section VI is devoted to
conclusions.

115117-2



GEOMETRICAL DESCRIPTION OF FRACTIONAL CHERN . . . PHYSICAL REVIEW B 88, 115117 (2013)

II. THE STATIC STRUCTURE FACTOR
AND LAUGHLIN CASE

A. Static structure factor

We define the static structure factor (SSF) as

s(q) = 1

V
〈�|ρ−qρq |�〉, (1)

where V is the volume of the system, |�〉 is a normalized
many-body wave function, and

ρq =
∫

dr exp{−iq · r}ρ(r), (2)

where

ρ(r) =
N∑

i=1

δ(2)(r − ri) (3)

is the density operator of the system of N particles with
coordinates {ri ; i = 1, . . . ,N}. If we introduce the radial
distribution function,

g(|r1 − r2|) = N (N − 1)

n2

∫
dr3 · · ·

∫
drN |�(r1, . . . ,rN )|2,

(4)

where n = N/V is the averaged density, we can rewrite
Eq. (1) as

s(q) = n + n2
∫

dr g(r) exp{−iqr}. (5)

We will call the first term in s(q) the single-particle part and
the second one the two-body (correlation) part.

In the second quantization language with creation and
annihilation operators in the coordinate space, �̂†(r) and �̂(r),
we have

[�̂(r),�̂†(r′)]± = δ(2)(r − r′), (6)

where the + sign denotes a commutator in the case of bosons,
and the − sign denotes an anticommutator in the case of
fermions. In this language the corresponding expression for
s(q) is

s(q) = 1

V
〈�|

∫
dr �̂†(r)�̂(r) |�〉

+ 1

V

∫
dr

∫
dr′ 〈�|�̂†(r)�̂†(r′)�̂(r′)�̂(r)|�〉

× exp{−iq(r − r′)}. (7)

In other words, by using the basic algebra of particle operators,
i.e. the (anti)commuting relation in Eq. (6), we can recover the
separate single part [first term of Eq. (7)] and two-body part
[second term of Eq. (7)].

Due to the Dirac delta functions in Eq. (6) in this what we
may call an unprojected case, the single-particle part is trivial,
and equal to the value of the density. In the following, in the
context of the lowest Landau level (LLL) physics, instead of
the delta functions we will have Gaussians. This will lead to
a nontrivial single-particle part of the SSF defined in the LLL
by using density operators projected to the LLL.

B. Quantum Hall case: Laughlin case

We would like to calculate the same quantity SSF, defined in
Eq. (1), where |�〉 is the normalized Laughlin wave function.
With respect to Ref. 13, we use the definition of the SSF given
by Eq. (1), in which we divide the density-density correlator
by volume (V ) instead of the number of particles (N ). The
definition used in Ref. 13 corresponds to the norm of the model
state used in the SMA. In the following we will summarize
the results of the weak coupling plasma approach as described
in Refs. 23 and 24. We will rederive the small-momentum
behavior of the SSF found in Ref. 13 in the manner (i.e.,
using the weak coupling approach and the division into the
single- and two-particle parts) that is convenient for the later
application in the FCI case in Secs. III and IV.

If we assume weak coupling in the Laughlin plasma
approach25,26 we can study expansions of expectation values
as in Eq. (1) in terms of the 2D Coulomb plasma interaction,

v(q) = −4πm

|q|2 , (8)

where positive integer m is connected to the filling factor ν of
the quantum Hall system as ν = 1/m. Because of the expected
screening of the 2D plasma, the contributions in the weak
coupling perturbative approach (in this unprojected case with
the usual density operators) can be organized as in

s(q) = s0(q)

1 − v(q)s0(q)
, (9)

where s0(k) represents the contribution from “irreducible
diagrams.” In the lowest order in m, s0(q) ≈ n = 1/2πm. We
set the magnetic length to 1, lB ≡ 1.

In the lowest Landau level (LLL) we can define the
projected density

ρ̃q =
∫

d2z�†(z) exp

{
iq

∂

∂z

}
exp

{
i
q∗z
2

}
�(z), (10)

where �(z) are second-quantized operators in the LLL,

� =
∞∑
l=0

âl

1√
2π2l l!

zl exp

{
−1

4
|z|2

}
, (11)

z = x + iy is the complex 2D coordinate, and [âl ,â
†
m]± = δl,m.

The derivatives in Eq. (10) act only on the holomorphic part
(dependent only on z) of �(z). We have

ρ̃−q ρ̃q

=
∫

d2z

∫
d2z′

[
exp

{
−iq∗ ∂

∂z′∗

}
exp

{
−i

qz′∗

2

}
�†(z′)

]

×�(z′)�†(z) exp

{
iq

∂

∂z

}
exp

{
i
q∗z
2

}
�(z). (12)

Similarly to the unprojected case, Eqs. (6) and (7), we can use
the (anti)commutation relations of projected single-particle
operators, �(z), to get the division in the single- and two-body
part of the SSF defined by these projected density operators.
As we already discussed the single-particle part of a SSF
corresponds to the diagonal contribution either in momentum
or coordinate space that refers to a single particle. We will
denote by 〈ρ̃−q ρ̃q〉|single the single part of the projected SSF.
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Due to

[�(z′),�†(z)]± = 1

2π
exp

{
z∗z′

2

}
exp

{
−|z|2

4

}
exp

{
−|z′|2

4

}
,

(13)

i.e., equality of the (anti)commutator to the LLL delta function,
the single-particle part of the projected SSF is

〈ρ̃−q ρ̃q〉|single = n exp

{
−|q|2

2

}
. (14)

The two-particle correlations (i.e., when z′ 
= z) stay the same
[examine Eqs. (12) and (7) with the Laughlin wave function
in that case] and therefore the expression for the projected
SSF is

s̃(q) = n exp

{
−|q|2

2

}
+ s0(q)

1 − v(q)s0(q)
− n. (15)

The important correction to the s0(q) ≈ n approximation, i.e.,
the next contribution to the sum of irreducible parts, s0(q), of
order m0, which we will denote by δq , is made of a bubble
diagram. In the diagram the two interaction lines are screened.
Therefore the contribution is

δq = n2 1

2

∫
d2k

(2π )2
Veff(q − k)Veff(k), (16)

where 1/2 is a symmetry factor and

Veff(q) = V (q)

1 − nV (q)
= − 4πm

|q|2 + 2
. (17)

The correction for q = 0 is

δ0 = n
m

2
. (18)

We checked that the correction of the order m0 equal to δq

in s0(q) ≈ n + δq will not change the resulting behavior due
to the inclusion of s0(q) ≈ n + δ0 in Eq. (15) in the weak
coupling case:

s̃(q) ≈ (m − 1)

8
|q|4n. (19)

If we assume that the analytical continuation for m � 1 is valid
we recovered (up to the density difference in the normalization)
the formula of Ref. 13, expression (4.29) in the original work,
that follows from the 2D plasma compressibility rule.

III. FCI CASE: SINGLE-PARTICLE CONTRIBUTION

We start with a lattice system in which Bloch Hamiltonian
H (p) is diagonal with eigenvalues, εm(p), where m = 1, . . . ,r

denotes the band index, and eigenstates, um
α,p, where α =

1, . . . ,r denotes the orbital index in a unit cell, and p is the
Bloch momentum; i.e.,∑

β

hα,β (p)um
β,p = εm(p)um

α,p. (20)

In order to study the partially filled band with Chern number
equal to 1 in which a FCI state occurs, we confine our
description to that band, and drop the index m in the following.
In the case of the FCI we take the projected density to a single

band to be defined as in Ref. 20; i.e.,

ρ̃q =
∑

p

u∗
α,puα,p+qγ

†
pγp+q, (21)

where the summation on the repeated orbital Greek index (α) is
assumed, p and q are Bloch momenta, and γp are normal-mode
operators.

Therefore

ρ̃−q ρ̃q =
∑
p1,p2

u∗
α,p1

uα,p1−qu
∗
α,p2

uα,p2+qγ
†
p1

γp1−qγ
†
p2

γp2+q,

(22)

and because

[γp1−q,γ
†
p2

]± = δp1−q,p2 , (23)

we have

〈ρ̃−q ρ̃q〉|single =
∑

p

u∗
α1,p

uα1,p−qu
∗
α2,p−quα2,p np. (24)

In this expression, np ≡ 〈γ †
pγp〉 is the occupation of the Bloch

momentum p in the many-body FCI state.
After a few steps, which are described in Appendix A,

the expansion in small momentum q of the single part of the
unprojected SSF for the FCI state is

〈ρ̃−q ρ̃q〉|single = n − qiqjngFS
ij + qiqjqk

2
n∂kg

FS
ij + o(q4),

(25)

where we assumed summations over repeated indices. With
the Fubini-Study metric defined by

gFS
ij (p) = 1

2

[
∂iuα1,p∂ju

∗
α1,p

+ ∂juα1,p∂iu
∗
α1,p

− ∂iuα1,pu∗
α1,p

uα2,p∂ju
∗
α2,p

− ∂juα1,pu∗
α1,p

uα2,p∂iu
∗
α2,p

]
, (26)

the coefficients

gFS
ij =

∑
p gFS

ij (p)np

n
(27)

and

∂kg
FS
ij =

∑
p ∂kg

FS
ij (p)np

n
(28)

are averages over the whole BZ. If we assume np = constant,
which we expect to hold at least approximately in the FCI
state, see Sec. IV B [(Eq. (48)] for an explanation of this point,
we can substitute the averages over occupation number to the
ones over the Brillouin zone. Because of the periodicity in the
k space we have that the averaged derivatives over the metric
[Eq. (28)] are equal to zero in the case of FCIs. Also we can
argue that, assuming the inversion symmetry, the expression
in Eq. (28) is zero. Thus

〈ρ̃−q ρ̃q〉|single = n − qiqjngFS
ij + o(q4). (29)

Comparing with the Laughlin case, Eqs. (14) and (15), we
expect that the quadratic term corresponds to the plasmonic
part that has to be canceled in the projected (to the band) SSF
if the FQHE scenario occurs in the context of the FCI.
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Continuing the analysis of the single part to the quartic
order we have

〈ρ̃−q ρ̃q〉|single = n − qiqjn gFS
ij + qiqjqkqln hijkl

+ higher order terms, (30)

where

hijkl = 1

4!

[
uα,p∂k∂i∂j ∂lu

∗
α,p + ∂k∂i∂j ∂luα,p u∗

α,p

+ 4∂iuα1,pu∗
α1,p

uα2,p∂k∂j ∂lu
∗
α2,p

+ 4 ∂i∂k∂luα1,pu∗
α1,p

uα2,p∂ju
∗
α2,p

+ 6 ∂i∂kuα1,pu∗
α1,p

uα2,p∂j ∂lu
∗
α2,p

]
, (31)

and

hijkl =
∑

p hijkl(p)np

n
. (32)

In the analogy with the Laughlin case we would expect that
the coefficient of the quartic term is a “square of metric,” but
the tensor hijkl cannot be greatly simplified without further
assumptions. Assuming np = constant, we can shift the sum
over p to the one over P = p − q/2, and discuss the product
u∗

α,P+q/2uα,P−q/2 separately. In this case the quartic coefficient
becomes

hFCI
ijkl = gFS

ij gFS
ij

4
+ gijkl

4
, (33)

where gijkl is a tensor. By analyzing the u∗
α,P+q/2uα,P−q/2

product and rewriting it as

u∗
α,P+ q

2
uα,P− q

2
= exp{−iqiAi}f (u,u∗), (34)

where Ai = −iu∗
α,p∂uα,p, the Berry connection, we can find

out the expression for the gijkl tensor in its gauge-invariant
form,

2gijkl = − 1
3 (∂iuα,p∂j ∂k∂lu

∗
α,p + ∂i∂j ∂kuα,p ∂lu

∗
α,p)

+ 1
3 iAi(uα,p∂j ∂k∂lu

∗
α,p − ∂i∂k∂luα,pu∗

α,p

+ ∂i∂kuα,p∂ju
∗
α,p − ∂iuα,p∂j ∂lu

∗
α,p)

+ 4AiAj∂kuα,p∂lu
∗
α,p − 2AiAjAkAl. (35)

Even the condition on the constancy of the metric, ∂i∂jg
FS
kl = 0,

does not simplify the form of the gijkl tensor and the coefficient
hFCI

ijkl . If we choose the LLL basis of Ref. 27, for which gFS
11 =

gFS
22 = B/2, where B is the averaged Berry curvature, i.e.,

B =
∑

p B

ABZ
= 2πC

ABZ
, (36)

where ABZ is the area of the BZ, and gFS
12 = gFS

21 = 0, we
expect to recover the “square of metric” form of the coefficient.
Otherwise, for a general FCI, we expect Eq. (33) to hold.

The main result of this section is Eq. (29) in which by
comparing to the FQHE expression (14), we can identify
the averaged over the BZ FS metric as the relevant metric
in the long-distance limit. With respect to the metric defined in
the context of the geometrical picture of (continuum) FQHE,
Ref. 17, our use of the FS metric brings a factor of 2,
g

FQHE
ij = 2gFS

ij , when we relate them. Thus the requirement for
the unimodular metric in the context of the FQHE translates

to the determinant of the FS metric being equal to 1/4 in
appropriate units. More on this relationship can be found in
Sec. IV B.

IV. SSF FOR FCI

A. Mean-field picture

In the following we will consider a possibility that the
absence of the quadratic term in the expansion of the projected
SSF in the FQHE also occurs in the context of the FCI physics.
In a mean-field picture we may expect that the FCI system
in the long-wavelength limit is a system with density n =
1/2πml2

B , fixed by the value of l2
B ≡ B16 (i.e., averaged Berry

curvature, i.e., Chern number), and that two-body correlations
are described in the same limit with an effective long-range
density-density potential,

vFCI
MF (q) = − 2πm

qiqjg
FS
ij

. (37)

The form of the effective long-range density-density potential
is fixed by the assumption that the cancellation occurs.

The assumption we made is that in an averaged picture the
two-body correlations are still Laughlin-like with a constant
metric, though in the FCI case we have the single-particle
properties, Berry curvature and metric that vary with the Bloch
momentum. In the following we will consider that

gFS
11 = gFS

22 = g � B

2
and

(38)
gFS

12 = gFS
21 = 0;

i.e., the averaged over the BZ FS metric is diagonal with
diagonal element equal to g. The value of g has the lower
bound, B̄/2, as explained in Ref. 14. The lower bound,
B̄/2, corresponds to the FQHE case (“unimodular metric” if
metric and Berry curvature are constant) as we will explain
in Sec. IV B. The diagonal form of the averaged metric
will hold in the context of FCI states based on the Haldane
model Chern insulator, when the assumption np = constant is
applied.

When calculating the SSF for FCI in the approximation we
adopted, we can make one of the two following assumptions.
We can suppose that, in the long-wavelength limit, the
system is described by the Laughlin wave function (or its
generalizations with in general “incongruent” relationship
between flux and particle positions or unknown short-distance
behavior). In that case, we apply the plasma approach of Sec. II,
considering only the long-wavelength domain. Equivalently
we can assume that we have a bosonic quantum liquid system
with the long-range potential to which we can apply the
Feenberg formula21,22 [Eq. (9)] in this limit.

Either way, assuming the analyticity in m and repeating the
steps of Eqs. (16)–(19), we find that the two-particle part of
the SSF of the FCI in this limit behaves as

lim
q→0

sFCI
0 (q)

1 − vFCI
MF (q)sFCI

0 (q)
→ g n|q|2 + g2 n|q|4

(
m

4

B

g
− 1

)
.

(39)
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Within the assumptions made (and that we work with the FS
metric, gFS

11 = gFS
22 = g) we can conclude that the form of the

projected to a band SSF for a FCI state is

s̃FCI(q) = g2 n|q|4
2

(
m

B

2g
− 2

)
+ n qiqjqkql

gFS
ij gFS

kl + gijkl

4
.

(40)

In the case g = B/2, when the Berry curvature and metric
are constant, we expect to recover the usual QHE form
[expression (19)].

B. Discussion

According to Ref. 18 the Berry curvature that varies over
the BZ will produce the quadratic term in the expansion of the
f (k) function [Ref. 13, expression (4.12)] in the SMA for the
FCI. The authors concluded that necessarily the projected SSF
of the FCI has to have the leading quadratic term in order to
have a finite gap in the SMA.

We applied a mean-field approach in calculating two-body
correlations for the SSF of the FCI. It is likely that only an
exact numerical calculation based on a concrete FCI state
may determine whether the quadratic term in the expansion
of the SSF is present or that the quartic term is dominant in
determining the physics and energetics of FCIs (as in the usual
FQHE case).

If we nevertheless maintain that in a mean-field picture the
formula (40) enters the expression for the gap function (as a
denominator, a norm of the SMA state) in the SMA of the
FCI state, we can conclude that large g � B/2 may induce an
instability. In other words s̃FCI(q) will become negative, which
cannot be true for a positive-definite quantity, and this would
signal an instability towards a gapless state [s̃FCI(q) ∼ q3]. In
reality we might expect that either large discrepancy between
g and the lower bound B/2, or strong fluctuations of the FCI
metric may lead to a gapless state. In order to investigate this

question we calculated gFS
ij , hijkl , and the standard deviation

of the FS metric from its averaged value, gFS
ij , in the Brillouin

zone for a particular model. We will present this in Sec. V.
To understand better (see also Refs. 28–30) the absence of

the quadratic term in the FQHE we will discuss the case g =
B/2 (diagonal and constant metric) and B(Berry curvature) =
B̄ in the FCI context. Expanding the expression in Eq. (21) for
the projected density to a single band we have for the linear
term in q

ρ̃q |linear = qk
∑

p

{
iAk(p)γ †

pγp + γ †
p

∂

∂pk

γp

}
≡ qkTk. (41)

In the first-quantization picture the operator Tk is

Tk =
N∑

i=1

{
iAk(pi) + ∂

∂pk
i

}
, k = x,y. (42)

Using the complex representation we can rewrite the linear
term in Eq. (41) in the radial gauge as

N∑
i=1

{
q

(
B̄

4
p∗

i + ∂

∂pi

)
+ q∗

(
− B̄

4
pi + ∂

∂p∗
i

)}
. (43)

The solution must be of the form

�0 = f ({pi}) exp

{
−1

4

∑
|pi |2

}
, (44)

i.e., belong to the LLL; the operators Ri = (B/4)p∗
i + ∂/∂pi

and R
†
i = (B/4)pi − ∂/∂p∗

i we recognize corresponding to
guiding center coordinates in the momentum representation
of the QH problem. They make the simple bosonic algebra
[ai,a

†
i ] = 1, if we take B̄ = 1 and ai = √

2Ri and a
†
i = √

2R
†
i

of the LLL for each particle. In this representation SSF can be
expressed as∑

i,j

〈: exp{q∗R†
i − qRi} :: exp{−q∗R†

j + qRj } :〉

−
∑

i

〈: exp{q∗R†
i − qRi} :〉

∑
j

〈: exp{−q∗R†
j + qRj } :〉,

(45)

where the : : sign denotes the normal ordering. This definition
implies the usage of the density operators in the SSF
calculation that differs by the factor exp{−|q|2/2} from the
usual13 operators. Nevertheless, this trivial difference should
not affect the absence of the quadratic term. Thus applying
the expression in Eq. (45), we see that, after a ground state
value subtraction, i.e., normal ordering—see Appendix B for
an explanation of this point—the quadratic term will not exist
if and only if ∑

i

Ri�0 = 0. (46)

We know that this is satisfied in the disk and spherical geometry
of a continuum system29,31 and expect it to hold even in the
lattice system. The main reason for this is that the generator
of translation should annihilate the ground state which is a
homogenous, liquid state. Therefore it is the existence of a
homogenous ground state that is annihilated by the translation
generator plus the existence of the bosonic algebra of the LLL
that ensures the absence of the quadratic term, and appearance
of the leading quartic term in the FQHE.

If we believe that the same scenario will happen in the FCI
we may consider the possibility that locally, in the BZ, even
for varying curvature, we can have the bosonic algebra

Ri = B̄ + δB

4
p∗

i + ∂

∂pi

and R
†
i = B̄ + δB

4
pi − ∂

∂p∗
i

, (47)

where δB is a weakly dependent function on p. With the
condition that the FCI state must satisfy∑

i

Ri�FCI({pi}) = 0, (48)

and the normal ordering prescription for the bosonic algebra at
each p, the quadratic term will be absent in the low-momentum
SSF expansion.

As we will see in a particular example of a bosonic FCI
state based on the Haldane model at and around the point
p = (0,0) in the BZ, which is a long-distance expansion point,
in this particular model, the Berry curvature is zero. Thus
the effective form of the ground state in this long-wavelength
limit (when the particle momenta are small) may be of the
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Jastrow-Laughlin form; i.e.,∏
i<j

|pi − pj |γ , (49)

where γ is a constant. This form will satisfy Eq. (48) in the
limit for which the Berry curvature and metric matrix elements,
see Figs. 5 and 6 below, are zero. With the assumption that the
cancellation of the quadratic terms in the small-momentum
expansion of the projected SSF occurs, we expect γ = mB

2g
.

In this subsection we provided arguments as to why the
Girvin-MacDonald-Platzman scenario may be relevant in
the FCI context, and in the following, when a comparison
with numerical results is made, we will use the expression
(40) as the description of the leading behavior of the
projected SSF.

V. FCIS BASED ON THE HALDANE MODEL

A. Exact-diagonalization results

The Haldane honeycomb model1 is the first studied example
of a Chern insulator. Several numerical evidences of a robust
FCI have been reported for bosons with on-site repulsion on
such a lattice.9,32,33 Weaker FCIs have also been observed
when bosons are replaced by fermions34 (note that the on-site
interaction is then replaced by a nearest-neighbor interaction).
We will use the honeycomb lattice layout of Ref. 2, as shown
in Fig. 1. The one-body Hamiltonian can be written in Bloch
form as h(k) = d0I + ∑

i diσi using the Pauli matrices and
where

d0 = 2t2 cos φ [cos kx + cos ky + cos(kx + ky)],

dx = t1[1 + cos(kx + ky) + cos ky],
(50)

dy = −t1[sin(kx + ky) + sin ky],

dz = M + 2t2 sin φ [sin kx + sin ky − sin(kx + ky)].

FIG. 1. (Color online) The Haldane model on the honeycomb
lattice with A (in red) and B (in blue) sublattices. The lattice
translation vectors are e1 and e2. The amplitude of the nearest-
neighbor hopping is t1 and the next-nearest-neighbor hopping is
t2 exp(iφ) (in the direction of arrows). The sublattice chemical
potential is set to +M on A sites and −M on B sites.

M (resp. −M) is the chemical potential added to the A (resp.
B) sites, t1 is the amplitude of the (real) nearest-neighbor
hopping term, and t2 exp(iφ) is the complex amplitude of the
next-nearest-neighbor hopping term. The two components of
the lattice momentum k are defined as kx = k · e1 and ky =
k · e2, where e1 and e2 are the lattice vectors. For our numerical
calculations, we set t1 = t2. The Haldane model has two bands.
If M/t1 > 3

√
3 sin(φ), the two bands are trivial. If M/t1 <

3
√

3 sin(φ) then each band carries a nonzero Chern number
(either C = +1 or C = −1).

We consider N bosons on the Haldane honeycomb model
with a lattice of Nx unit cells in the e1 direction and Ny unit
cells in the e2 direction. The filling factor is thus defined as ν =
N/(NxNy). We add the on-site Hubbard-type density-density
interaction Hint = ∑

i : nini :, where the sum runs over all
the sites. To focus on the band topological properties, we use
the flat-band approximation described in Ref. 4: We start from
the original Bloch Hamiltonian h(k) = ∑2

α=1 Eα(k)Pα(k)
where Eα(k) and Pα(k) are the dispersion and the projector
onto the αth band, respectively. Then we focus on the
lowest band and consider the effective one-body flat-band
Hamiltonian heff(k) = P1(k). From a physical perspective,
it means that we set the band gap to infinity and we make
the lowest band completely flat. In this approximation, the
effective many-body Hamiltonian is written Heff = P1HintP1.

To study the stability of the FCI phase, we focus on the
energy spectrum. In the FCI regime at filling factor ν = 1/2,
the Laughlin-like state on a torus geometry is characterized
by two almost degenerate low-energy states separated by a
large gap from higher energy excitations. A typical low-energy
spectrum is shown in the left panel of Fig. 2. The energy
splitting between the two lowest energy states is called the
spread δ. In the case of the FQHE, the spread should be equal
to zero due to the center of mass degeneracy. A necessary
condition to be able to distinguish the two lowest energy states
is for δ to be smaller than the gap � (defined as the energy
difference between the third and the second lowest energy
levels). Another necessary condition to claim a Laughlin-like
is hosted in this system is related to the quantum number
of the two lowest energy states: If they are associated with
a Laughlin-like state, they should be given by the counting
principle described in Ref. 20.

We have computed the phase diagram when tuning φ and M

at filling ν = 1/2 for two different system sizes: N = 8 on an
Nx = Ny = 4 lattice (Fig. 2) and N = 10 on a Nx = 5,Ny = 4
lattice (Fig. 3). We show both the gap � and the spread δ

[actually 1 − min(δ,�,1) such that we have 1 when the spread
is 0 and 0 if δ > �]. When the band structure parameters
are set to values leading to a trivial band, we clearly see that
the FCI phase completely disappears. In the nontrivial region,
both system sizes suggest a robust Laughlin-like state around
M = 0 and φ = 0.11 − 0.12π .

B. The single-particle background

We now consider the one-body Hamiltonian properties. In
the left panel of Fig. 4, we show the nonuniversal nature of
g; the averaged over the BZ diagonal element of the quantum
distance (FS) metric, more precisely gABZ (where ABZ is the
BZ area), is illustrated for the (two band) Haldane model with
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FIG. 2. (Color online) Left panel: Typical low-energy spectrum for the FCI Haldane model as a function of the linearized two-dimensional
momentum (kx,ky). Here we have set N = 8, Nx = Ny = 4, M = 0, and φ = 0.12π . The spread δ is the splitting between the two lowest energy
states, corresponding to the twofold-degenerate Laughlin states. The gap � is defined as the energy difference between the third lowest energy
and the second lowest energy, irrespective of the momentum sector. Middle panel: The energy gap � as a function of the two tight-binding
model parameters φ and M/t1, for N = 8 bosons on a Nx = 4,Ny = 4. The gap is set to zero when the two lowest energy states are not in the
expected momentum sectors of the Laughlin state, here at (Kx = 0,Ky = 0) for both states. The red line denotes the separation between the
Chern insulator phase (upper part) and the trivial phase (lower part). Right panel: The corresponding spread δ [displayed as 1 − min(δ/�,1)]
as a function of φ and M/t1. A color value of 1 would correspond to a perfectly twofold-degenerate ground state (i.e., δ = 0).

fixed parameters t1 = t2 = 1. The standard deviations divided
by the averaged values g and the standard deviations of the
Berry curvatures of the Haldane model are shown in the middle
and right panels of Fig. 4. Note that both the relative deviations
of the FS metric and those of the Berry curvature are minimal
around the point (M,φ) = (0,0.11π ). This is around the same
region that we have observed the strongest Laughlin-like state
in our finite-size numerical calculations.

To provide a more detailed insight of this point (M,φ) =
(0,0.11π ), we provide in Fig. 5 the values of the gFS

ij tensor
(in an orthogonal coordinate system): gFS

11 ,gFS
12 ,gFS

21 , and gFS
22 as

functions of the Bloch momentum in the Brillouin zone. We
also give in Fig. 6 the values of the Berry curvature at the same
point in the phase space.
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FIG. 3. (Color online) Left panel: The energy gap � as a function
of the two tight-binding model parameters φ and M/t1, for N =
10 bosons on a Nx = 5,Ny = 4. The gap is set to zero when the
two lowest energy states are not in the expected momentum sectors
of the Laughlin state, here at (Kx = 0,Ky = 0) and (Kx = 0,Ky =
2). The red line denotes the separation between the Chern insulator
phase (upper part) and the trivial phase (lower part). Right panel: The
corresponding spread δ [displayed as 1 − min(δ/�,1)] as a function
of φ and M/t1. A color value of 1 would correspond to a perfectly
twofold-degenerate ground state (i.e., δ = 0).

C. Discussion

When we compare the results of exact diagonalizations
(Fig. 2 for N = 8 and Fig. 3 for N = 10 particles) with
background properties (Fig. 4) we notice that the FCI state is
the most probable, with significant gap and twofold degeneracy
of the ground state, whenever both the variations of Berry
curvature and metric are small and the averaged value of
the metric is close to the unimodular requirement; i.e., the
value of the diagonal element, ḡ11ABZ, is close to π in the
left panel of Fig. 4. Nevertheless the results indicate that
the FCI state extends and persists for a while beyond this
optimal-FQHE region. This occurs despite the understanding
that the unimodular requirement is a strong condition for
FQHE, and together with Berry curvature variation should
influence decay.

In the narrow region along the M = 0 line of the FCI phase
we observe the decline of the gap (Fig. 7, upper panel) along
the increase of the metric average value and variations of Berry
curvature and metric (Fig. 7, lower panel). In this region we
do not expect a formation of the charge density wave but
possibly a transition into another liquid state, superfluid, the
relevance of the magneto-phonon physics, and a correlation
with long-distance SSF behavior. The liquid transition should
be accompanied with the collapse of a magneto-phonon gap
and nonanalytical behavior in the SSF. But what we find is
persistence of the gap beyond FQHE region (Fig. 7, upper
panel) that is in a qualitative agreement with our analytical
estimates of the coefficient of the quartic term [Fig. 7, lower
panel, and Eqs. (31), (32), (33), and (40)]; the coefficient is
always positive and grows with the increase of the metric
averaged value and variations in the background properties.
According to the SMA, the gap is inversely proportional to
the coefficient in the long-distance region and, at least, for the
magneto-phonon gap we expect its decay but not closing—the
behavior that we see in our exact-diagonalization results.

If we had approximated the last term in Eq. (40) with
n|q|4g2/2 we would not have such an agreement with exact-
diagonalization results; namely this approximation predicts
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FIG. 4. (Color online) Left panel: ḡ11ABZ = gABZ for the Haldane model as a function of φ and M with t1 = t2 = 1. Middle panel: The
corresponding deviation of g11, i.e., �g11/ḡ11. Right panel: The relative deviation of the Berry curvature B with respect to its averaged value.

phase transition before reaching φ = π/2 at 2g/B = m.
Therefore the persistence of the FCI signatures in numerical
results is likely a consequence of variations in metric and other
background properties.

Thus we find evidence that a FCI state may persist and
sustain a large deviation from the (unimodular) metric of
the FQHE state. An example of the metric deviation in the
conventional FQHE is found in the experiments with a tilted
field.35 Though the analogy is not complete, because of the
anisotropy in the FQHE case, there the determinant of the
(external, one-particle) metric deviates from the value 1 due to
an effective increase of the probability to find electrons in the
plane normal to the external magnetic field without tilt.36 Thus
as in the FQHE case,37 a new physics and further broadening
of the definition of the FQHE phenomena may occur in the
FCI physics. Unfortunately in the FCI case, at present, we
are limited by system sizes in the exact diagonalizations to
further explore this phenomenon. That the departure from the
FQHE case is nontrivial and important is also underlined by
the observation that in the phase diagram of the model we

FIG. 5. (Color online) The values of the FS metric with re-
spect to its mean values at (M,φ) = (0,0.11π ). The mean values
are ABZ〈g11〉 = ABZ〈g22〉 = 1.13 and 〈g12〉 = 〈g21〉 = 0 in units of
ABZ|B|/2 = π . In the figure the graphs are ordered as the metric
matrix elements. All four metric matrix elements are zero at k = (0,0)
momentum.

considered having the metric near the FQHE value seems
sufficient for the presence of the twofold degeneracy of the
ground state, although this does not guarantee a good size of
the gap. This can be seen by comparing the averaged values of
the metric (Fig. 4, left panel) with the spread characterization
of the phase diagram (Figs. 2 and 3, right panel).

VI. CONCLUSIONS

Based on the SSF calculations we studied the role of band
geometry in the context of the FCI physics. We identified
that the averaged over the BZ FS metric plays the role of the
quantum distance metric in the long-wavelength domain based
on the calculations of the single-particle part of the projected
to the band SSF. We discussed the behavior of the complete
projected SSF in a mean-field framework, and whether and
under which conditions the scenario of Ref. 13 is possible in
the FCI context. We illustrated the role of the band geometry
in the phase diagram of interacting bosons that live on the
lattice of the Haldane model. The Laughlin ν = 1/2 bosonic
FCI state is the most pronounced for the FQHE value of the
metric (unimodular requirement) when variations over the BZ
of the FS metric and Berry curvature are minimal. But the
Laughlin-like phase persists even with the metric increase in an
agreement with the mean-field treatment of the long-distance
physics of FCIs. Further investigations are necessary which

FIG. 6. (Color online) The values of the Berry curvature in the BZ
at (M,φ) = (0,0.11π ) with respect to its mean value, B = −2π/ABZ,
denoted by dash line. Plotted values of B are in units of π/ABZ.
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FIG. 7. (Color online) More detailed description of the M = 0
line in the phase space. (a) The values of the gap and spread of the
system with 10 particles. (b) Relative deviations of Berry curvature,
metric element g11, and the coefficient h ≡ h1111 defined by Eq. (31).

may provide us also with reasons for occurrence and stability
of FCI states.
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APPENDIX A: FCI STATE: SINGLE-PARTICLE
CONTRIBUTION

Here we analyze the expansion in small momentum to the
quartic order of the expression in Eq. (24) that represents the
single-particle contribution to the projected SSF. To fourth
order with assumed summations on repeated indices i,j,k

uα,p−q = uα,p − qi∂iuα,p + qiqj

2
∂i∂juα,p − qiqjqk

3!
∂i∂j ∂kuα,p + o(q4), (A1)

and therefore

uα1,p−qu
∗
α2,p−q = uα1,pu∗

α2,p
− qiuα1,p∂iu

∗
α2,p

+ qiqj

2
uα1,p∂i∂ju

∗
α2,p

− qiqjqk

3!
uα1,p∂i∂j ∂ku

∗
α2,p

− qi∂iuα1,p u∗
α2,p

+ qiqj ∂iuα1,p∂ju
∗
α2,p

− qi

qkqj

2
∂iuα1,p∂i∂ju

∗
α2,p

+ qiqj

2
∂i∂juα1,p u∗

α2,p
− qiqj

2
qk∂i∂juα1,p ∂ku

∗
α2,p

− qiqjqk

3!
∂i∂j ∂kuα1,p u∗

α2,p
+ o(q4). (A2)

Because uα,pu∗
α,p = 1 and therefore uα,p∂iu

∗
α,p + ∂iuα,p u∗

α,p = 0 we have to second order

〈ρ̃−q ρ̃q〉|single = n + o(q2). (A3)

To the second order we have

u∗
α1,p

uα1,p−qu
∗
α2,p−quα2,p ≈ 1 + qiqj

2

[
uα,p∂i∂ju

∗
α,p + ∂i∂juα,p u∗

α,p + 2 ∂iuα1,p u∗
α1,p

uα2,p∂iu
∗
α2,p

]
. (A4)

Due to

Aij

[
uα,p∂i∂ju

∗
α,p + ∂i∂juα,p u∗

α,p + 2∂iuα1,p∂ju
∗
α1,p

] = 0, (A5)

for any symmetric Aij we have

〈ρ̃−q ρ̃q〉|single = n − qiqj

∑
p

gFS
ij (p)np + o(q3), (A6)

where

gFS
ij (p) = 1

2

[
∂iuα1,p∂ju

∗
α1,p

+ ∂juα1,p∂iu
∗
α1,p

− ∂iuα1,pu∗
α1,p

uα2,p∂ju
∗
α2,p

− ∂juα1,pu∗
α1,p

uα2,p∂iu
∗
α2,p

]
(A7)

is the Fubini-Study metric. To the third order we find

u∗
α1,p

uα1,p−qu
∗
α2,p−quα2,p ≈ 1 + qiqjg

FS
ij (p) − qiqjqk

3!

[
uα,p∂k∂i∂ju

∗
α,p + ∂k∂i∂juα,p u∗

α,p

+ 3∂iuα1,pu∗
α1,p

uα2,p∂k∂ju
∗
α2,p

+ 3∂i∂kuα1,pu∗
α1,p

uα2,p∂ju
∗
α2,p

] + o(q4). (A8)

Again differentiating uα,pu∗
α,p = 1 three times we have

Aijk

[
uα,p∂i∂j ∂ku

∗
α,p + ∂i∂j ∂kuα,p u∗

α,p + 3∂i∂kuα1,p∂ju
∗
α1,p

+ 3∂iuα1,p∂j ∂ku
∗
α1,p

] = 0, (A9)
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and therefore

u∗
α1,p

uα1,p−qu
∗
α2,p−quα2,p ≈ 1 + qiqjg

FS
ij (p) + qiqjqk

2

[
∂kuα,p∂i∂ju

∗
α,p + ∂i∂juα,p∂ku

∗
α,p − ∂iuα1,pu∗

α1,p
uα2,p∂k∂ju

∗
α2,p

+

− ∂i∂kuα1,pu∗
α1,p

uα2,p∂ju
∗
α2,p

] = 1 + qiqjg
FS
ij (p) + qiqjqk

2
∂kg

FS
ij (p). (A10)

APPENDIX B: SSF DEFINITION

By expanding the expression in Eq. (45) we immediately
see that the quadratic contribution in q will be

∑
i,j

|q|2(R†
i Rj + RiR

†
j ). (B1)

Therefore even when the condition in Eq. (46) is applied
we have a nonzero contribution to the quadratic order. The
expression in Eq. (45) does not correspond to the usual
definition of the SSF as in Ref. 13, and only after an additional
subtraction it reproduces the well-known behavior in the
classical (continuum) FQHE.

We will illustrate and explain the source of this discrepancy
in the coordinate representation of the continuum FQHE. First,
by using Eqs. (10)–(14) we see that13

s̃(q) = s(q) − n

(
1 − exp

{
−|q|2

2

})
. (B2)

[This is most easily seen in the first-quantization picture of the
many-body problem considering the action of the translation
operator in the LLL, exp{iq∂/∂z}; we rederived Eq. (B2) in
Sec. II A in the second quantization as a step towards the
discussion of the FCI state.]

To extract the quadratic contribution to s̃(q) we consider
the expansion of the unprojected SSF, s(q), and the following
correlator of unprojected densities,

1

V

∑
i,j

〈exp{iq · ri} exp{−iq · rj }〉. (B3)

If we assume the conservation of the angular momentum and
use the complex notation of the LLL for the quadratic term,
after the subtraction of “self-terms” i.e., those generated by∑

i〈exp{iq · ri}〉, we have for the quadratic term the following

expressions,

1

V

∑
i,j

〈q · riq · rj 〉 = 1

V

|q|2
4

∑
i,j

〈z∗
i zj + z∗

j zi〉

= 1

V

|q|2
2

∑
i,j

〈
∂

∂zi

zj + ∂

∂zj

zi

〉

= n|q|2. (B4)

To get the final expression we used the properties of the LLL
functions (which are holomorphic up to the Gaussian factor)
and the property of the homogeneity of the ground state,
i.e., that its holomorphic part is annihilated by the

∑
i ∂/∂zi

operator [Eq. (46) in the momentum representation].
The substitution of the expression (B4) for s(q) in Eq. (B2)

would lead to a nonzero, quadratic in q contribution to s̃(q).
This difference in the value that we have for s(q) must stem
from a difference in the subtractions: the one used in Ref. 13
and the other, when in a static correlator the ground-state values
of the two densities are subtracted (“self-terms”), implied by
the expression of Eq. (45). Namely, in the classical reference
the subtraction (i.e., a procedure to avoid divergences) is
introduced for s(q) at any q 
= 0 as

s(q) = n + n2
∫

dr[g(r) − 1] exp{−iq · r}, (B5)

because the combination, g(r) − 1, leads to the absence of the
divergences for large r . For example, in the integer QH case we
have (as an exact expression) g(r) = 1 − exp{−r2/2}, and this
leads to the usual, well-known behavior s(q) ≈ n|q|2/2 and
s̃(q) = 0. In Ref. 13 it was shown that s(q) ≈ n|q|2/2 for any
liquid ground state of the system that conserves the angular mo-
mentum and particle number. The difference between this con-
clusion and the result in Eq. (B4) stems from different subtrac-
tion procedures, and can be traced back to two different defini-
tions of the SSF. The first definition is given in Eq. (B5) and de-
fines a static limit of the time-ordered density-density correla-
tor, and the second one describes a static correlator from which
“self-terms” are subtracted [as in the expression of Eq. (45) in
the momentum representation in the projected case].
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11M. Hafezi, A. S. Sörensen, E. Demler, and M. D. Lukin, Phys. Rev.
A 76, 023613 (2007).

115117-11

http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.106.236804
http://dx.doi.org/10.1103/PhysRevLett.106.236804
http://dx.doi.org/10.1038/ncomms1380
http://dx.doi.org/10.1038/ncomms1380
http://dx.doi.org/10.1103/PhysRevX.1.021014
http://dx.doi.org/10.1103/PhysRevX.1.021014
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1063/1.3293411
http://dx.doi.org/10.1103/PhysRevLett.108.126405
http://dx.doi.org/10.1103/PhysRevLett.107.146803
http://dx.doi.org/10.1103/PhysRevLett.107.146803
http://dx.doi.org/10.1103/PhysRevLett.110.185302
http://dx.doi.org/10.1103/PhysRevA.76.023613
http://dx.doi.org/10.1103/PhysRevA.76.023613
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30B. Yang, Z. Papić, E. H. Rezayi, R. N. Bhatt, and F. D. M. Haldane,

Phys. Rev. B 85, 165318 (2012).
31G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991).
32Y.-F. Wang, H. Yao, Z.-C. Gu, C.-D. Gong, and D. N. Sheng, Phys.

Rev. Lett. 108, 126805 (2012).
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