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The Berry curvature in Chern insulators appears to be a non-gauge-invariant quantity and does not immediately
allow local length characterization. However, in two examples of two- and three-band models that we discuss,
we find high-symmetry points in the Brillouin zone that have the Berry curvature invariant under diagonal gauge
transformations, and may serve as expansion points of geometrical description. On the basis of the geometrical
description, in the case of the Dirac based two-band Chern insulators, we conclude that the characteristic length
based on the value of the Berry curvature at the expansion point plays the role of the magnetic length in the
expression for the Hall viscosity. In the case of two-band models, the characteristic “cyclotron” spin is equal to
1/2, while in the three-band kagome case this spin is likely nonquantized and nonuniversal.
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I. INTRODUCTION

Chern insulators (CIs) [1] exhibit integer quantum Hall
effect (IQHE) conductance quantization in the absence of
the magnetic field due to nontrivial filled band structure
with nonzero topological Chern number. In the ordinary
(continuum—not on a lattice) IQHE, the uniform external
magnetic field defines a characteristic length, i.e., the magnetic
length that describes classically speaking “the size of the
particle orbit in the magnetic field,” or a better characteristic
volume per particle. On the other hand, in model CIs, i.e.,
those based on quadratic Hamiltonians, there is no obvious
way to define such a length. Although one is inclined to
consider CI physics as a single-particle problem in a varying
magnetic field (in inverse space), which we identify with the
local Berry curvature, this point of view may be questioned
since the Berry curvature appears to be a gauge noninvariant
quantity (as we will show below). Therefore it is not clear if
it is always possible to define a local, physical characteristic
length in CIs.

On the other hand, the quantization of the particle volume in
the quantum Hall effect (QHE) problem inspired the geometric
approach to fractional QHE (FQHE) [2]. The dynamical metric
degree of freedom is constrained by the demand that the
metric is unimodular (this signifies the quantization of the
volume, i.e., commensuration of flux and particles). Low-lying
collective modes are identified with the oscillations in the
shape of the characteristic volume, i.e., changes in the metric,
and the measure of the density variations is given by a local
curvature. Thus it is natural to ask whether this view of QHE
phenomena may be extended to the domain of (fractional)CIs
given that there is no obvious gauge-invariant local length
characterization.

In the ordinary QHE, there is a quantized response of the
system where the magnetic length enters together with the
characteristic spin of the QHE state [3,4]. This quantity is
Hall viscosity and it was explored in the context of Dirac
based CIs in Refs. [5,6]. A nonuniversal (dependent on the
model parameters) characteristic length that takes place of the
magnetic length in the expression for the IQHE system was
identified. This was achieved considering the system in the

presence of a non-trivial geometric background, and analyzing
its low-energy, long-wavelength response near Dirac points.

In this paper, we will not discuss the response to geometrical
perturbations. Instead, we will try to understand whether the
internal degrees of freedom can be described in geometrical
terms. If this internal “geometrization” exists, its characteristic
length should coincide with the characteristic length for the
response to the geometrical perturbations. We will discuss
specific two and three-band CI and ask whether a geometric
description of a CI ground state in which the characteristic
length plays the role of magnetic length in the expression for
the Hall viscosity is possible.

The response quantity we look for is the Hall viscosity,
and it is a part of a hydrodynamic response, i.e., valid
at long wavelengths and low energies. Thus we also look
for an effective (hydrodynamic) description. Only in some
regions of the phase space we find the coincidence of the
high-symmetry point with gauge-invariant Berry curvature
(this implies the existence of the characteristic length), and
the point of the energy minimum. In this sense, we do not find
the hydrodynamic description always possible especially deep
in the topological state. In the regions where we can use the
hydrodynamic description, we characterize the Hall viscosity
and the corresponding “cyclotron” spin.

The paper is organized as follows. In Sec. II, the meaning
and the form of the gauge transformations in the context
of the Bloch problem will be explained. In Sec. III, the
basic elements of the geometry of the Dirac based two-band
CIs are discussed with the emphasis on the gauge-invariant
Berry curvature at Dirac point, and its special relationship
with the Fubini-Study (FS) metric. After a short overview
of the geometric description of fractional QHE in Sec. IV,
in Sec. V, the geometric description of the noninteracting CI
problem with a zero-flux equation is introduced. The geometric
description of the interacting CI problem was given in terms
of a Lagrangian that mixes “cyclotron” and “guiding center”
degrees of freedom. The form of the Lagrangian was later
used in Sec. VI for a diagnostics of the characteristic length
in agreement with previous studies on the response of the
system. Section VII discusses two-band models in general,
and especially the demand on the expansion point to be the
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point of the smallest energy gap. In Sec. VIII, the geometry of
the three-band kagome model is discussed, i.e., the existence
of the point with the gauge invariant Berry curvature and the
curvature special relationship with FS metric, which enable
the geometric description. Based on the value of the scalar
curvature in a special gauge and the zero-flux equation, the
value of the “cyclotron” spin as a nonuniversal quantity in
this three-band case is inferred. Section IX is devoted to
conclusions.

II. BERRY CURVATURE AND GAUGE
TRANSFORMATIONS

In this section, the meaning and the form of the gauge
transformations in the context of the Bloch problem will be
explained. We will closely follow the notation of Ref. [7].

Let the periodic crystal tight-binding Hamiltonian be

H =
∑
j,k

tjkc
+
j ck, (1)

where j or k is a shorthand notation for a site in a crystal,
j ≡ R + aj ( or k ≡ R + ak). Vectors, R + ai , describe the
positions of the sites where R is the vector of a particular unit
cell, and ai ,i = 1, . . . ,n − 1 is the relative position of an atom
i inside the unit cell with respect to the one at R. Note that
the vectors aj are not unique, that is, we can define different
embeddings of atoms in the unit cell.

We diagonalize the Hamiltonian in the inverse space with
Bloch eigenvectors,

|�n(k)〉 =
∑
R,j

ujn(k) exp{i(R + aj )k}|R,j 〉, (2)

corresponding to eigenvalues εn(k),

H|�n(k)〉 = εn(k)|�n(k)〉. (3)

In order to define Berry curvature we define the embedding
operator,

U em(k) =
∑
R,j

exp{ik(R + aj )}|R,j 〉〈R,j |, (4)

and its action on the Bloch vector as

|�n(k)〉 = U em(−k)|�n(k)〉. (5)

The Berry curvature is

Bn(k)

= −i
(〈
∂kx

�n(k)
∣∣∂ky

�n(k)
〉 − 〈

∂ky
�n(k)

∣∣∂kx
�n(k)

〉)
. (6)

Because there is always more than one way to embed the
atoms, i.e., fix coordinates of the atoms in the unit cell, the
uin’s are defined up to the shifts by the vectors of the unit cell,
i.e.,

ujn(k) → ujn(k) exp[ik(aj − a′
j )], (7)

i.e., by the vectors aj − a′
j = bj ,j = 1, . . . ,n − 1—the vec-

tors of a unit cell.
Another way to write the Bloch vector is

|�n(k)〉 =
∑

j

unj (k)c+
kj |0〉, (8)

where we defined a state,

c+
kj |0〉 =

∑
R

exp[ik(R + aj )]|R,j 〉. (9)

As a quantum-mechanical state it is defined up to a phase,

c+
kj → exp[iαj (k)]c+

kj , (10)

and therefore we have a freedom in choosing unj (k):

unj (k) → exp[−iαj (k) + iα(k)]unj (k). (11)

Here, α(k) is the usual phase of the U(1) transformation. We
consider the phases αj (k)’s to be analytic periodic functions
in inverse space:

αj (k) = αj (k + K) + mod 2π, (12)

where K is any vector of the inverse space, so that the matrix
element,

〈�(k1)|�(k2)〉
=

∑
j,K

exp(−iKaj )uj (k1)∗uj (k1 + K)δk2,k1+K, (13)

remains unchanged under gauge transformations. In general, as
we will show in examples, the Berry curvature is not invariant
under these transformations, which include those described in
the expression (7). Nevertheless, one may expect an existence
of a “physical gauge,” which will respect the symmetries of
the crystal [8,9], but we will not go into that question further.
Our program will be to find gauge invariant quantities and give
their physical interpretation.

In Fig. 1, the Berry curvature of the Haldane model [1] for
the value, ϕ = 0.125π , of the phase of the complex hopping
between second neighbors, is shown for three different gauges:
in the case with the Hamiltonian of Ref. [1] and eigenstate uk

nonperiodic in the inverse space, and two other states of the
form g(k) uk , where g(k) is a nontrivial gauge transformation.

FIG. 1. (Color online) The Berry curvature of the Haldane model
in the Brillouin zone on the hexagons: (top left) in the case with
no gauge transformation [g(k) = I ], (top right) g(k) = g1(k), and
(bottom right) g(k) = g2(k). Gauge transformations g1(k) and g2(k)
are defined in the text. Bottom left is given part of graphene sheet
with direct lattice vectors b1 and b2 and sublattices A and B.
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We define g(k) as diagonal gauge transformations with the
following form:

g(k) =
[

exp[iα1(k)] 0
0 exp[iα2(k)]

]
, (14)

where α1(k) and α2(k) are analytic, and everywhere well de-
fined functions of k. In the second case (unit cell reparametriza-
tion), g(k) is

g1(k) =
[

1 0
0 exp(ikb2)

]
, (15)

while in the third case,

g2(k) =
[

1 0
0 exp{i[k(b1 + b2)]2}

]
. (16)

Here, vectors bj ; j = 1,2, of the direct lattice are shown and
defined in the same figure. In all cases, the Chern number
C = −1, is the same. However, what is also remarkable is that
the value of the Berry curvature at the high-symmetry point K

stays the same. We will discuss this more in the following.

III. DIRAC BASED TWO-BAND CIS AND INTRODUCTION
TO THE GEOMETRIC DESCRIPTION OF THE SINGLE

PARTICLE PROBLEM

In the usual gauges [1,10], the Hamiltonian of the Haldane
model around K point (the graphene expansion point) is

Hk =
[ −p v(kx − iky)
v(kx + iky) p

]
, (17)

where k = kx + iky is the complex Bloch momentum, v =
(
√

3/2)t1a, p = 3
√

3 sin(ϕ)t2, with the first-neighbor hopping
parameter t1 and the second-neighbor hopping parameter t2,
the distance between second neighbors on the honeycomb
lattice a, and the phase of the complex hopping between
second neighbors ϕ. To the second order in k, we find that
the normalized Bloch state of the lower band effectively, i.e.,
in the long distance is

uk =
[

1 − l2
D

|k|2
2

−lDk

]
, (18)

where lD = v/2p. The Berry curvature at point K is

B(K) = −i
(
∂kx

u+
k ∂ky

uk − ∂ky
u+

k ∂kx
uk

) = 2l2
D. (19)

The Berry field characterizes the change of phase of the
Bloch state inside the Brillouin zone. Here we notice two
characteristic lengths, lD and lB = √

B(K). We notice that the
substitution l2

D = l2
B/2 in (18) will lead to the Gaussians of the

lowest Landau level (LLL), [1 − l2
D|k|2/2 ≈ exp(−l2

B |k|2/4)]
in inverse space.

One can check that the value of Berry curvature at K point
is invariant under the gauge transformations, uk → g(k)uk ,
where

g(k) =
[

exp[iα1(k)] 0
0 exp[iα2(k)]

]
, (20)

and α1(k) and α2(k) are analytic, everywhere well defined
functions of k.

The Berry curvature at the other, time-reversed, K point
is infinite, and this point cannot be an expansion point for a
geometrical description of an interacting problem. This point
is isolated and does not contribute to the integral for the Chern
number. With singular U(1) gauge transformations like k∗/|k|
we can reverse the values and behavior of K points.

The corresponding quantity that characterizes the change
of amplitude of the Bloch state is Fubini-Study metric [11,12].
It describes the change incurred by changing the Bloch
momentum from k to k + δk in the Bloch state uα,k ≡ uα(k),
where α labels the Bloch state components, i.e.,

|〈uα(k)|uα(k + δk)〉| = 1 − gFS
ij (k)

2
δki δkj + · · · , (21)

where gFS
ij (k) is the Fubini-Study metric,

gFS
ij (k) = 1

2

[
∂iuα1,k∂ju

∗
α1,k

+ ∂juα1,k∂iu
∗
α1,k

− ∂iuα1,ku
∗
α1,k

uα2,k∂ju
∗
α2,k

− ∂juα1,ku
∗
α1,k

uα2,k∂iu
∗
α2,k

]
.

(22)

The indices i and j refer to the momentum space indices,
ki and kj , and we assumed the summation over the repeated
indices.

The space of Bloch vectors is CP 1, i.e., a space of vectors
that are normalized and have two complex components. In
such a space, with metric gFS

ij (k) ≡ gij , the affine connection
is given by


k
ij = 1

2gkm(gmi,j + gmj,i − gij,m). (23)

The connection defines the curvature tensor Ri
jkl and the scalar

curvature R = gjlRi
jil . Inserting (22) for the gij , we find that

in the case of Haldane model R = 8 across the Brillouin zone
[13]. This is in agreement with the expectation of the behavior
of the scalar curvature in CP n, n = 1.

Let us introduce

wFS
i = 1√

2
[∂iu − (u+∂iu)u] ≡ 1√

2
Diu. (24)

The u denotes a Bloch two-component vector, and we
suppressed the orbital index α, α = 1,2 in wFS

i,α . In terms of
wFS

i the Berry curvature is

B = 2(−i)
(
wFS+

i wFS
j − wFS+

j wFS
i

)
, (25)

and the Fubini-Study metric is

gFS
ij = wFS+

i wFS
j + wFS+

j wFS
i . (26)

Therefore the wFS
i ’s play the role of complex vielbeins that is

zweibeins in two dimensions. Due to the relationship between
Berry curvature and (the square root of) the determinant of the
FS metric, det(gFS

ij ) ≡ gFS,

B

2
=

√
gFS, (27)

valid in the whole BZ in the case of two-band models, we
can express the local spin connection, �FS

i , and curvature
RFS = εij ∂i�

FS
j , in terms of the complex zweibeins of the

FS metric, Eq. (24). The derivation and expressions can
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be found in Appendix. The result for the spin connection is

�i = − 1√
g

εkl(∂iw
+
k )wl + 1

2
√

g
εkl∂kgil + i

4
∂i(ln g), (28)

with wi = wFS
i,α and gij = gFS

ij this becomes �FS
i . The ex-

pression (28) is also the spin connection for a general
nonunimodular metric for which

B̃

2
= √

g, (29)

gij = w+
i wj + w+

j wi, (30)

and

B̃ = 2(−i)(w+
i wj − w+

j wi), (31)

hold. The expression for the temporal part of the spin
connection is

�0 = − 1√
g

εkl(∂0w
+
k )wl + i

2
∂0 ln g, (32)

where we assumed gi0 = 0,i = 1,2, and time-dependent
zweibeins.

IV. THE GEOMETRIC DESCRIPTION OF (F)QHE:
OVERVIEW

In the case of (F)QHE, the kinetic part of the Lagrangian
with geometric degrees of freedom is described in
Refs. [14–16]. In Ref. [14], the nematic degrees of freedom
act as geometric in the description of the FQHE. The part of
the Lagrangian that is linear in time derivative is

Ln = sρ�n
0 + · · · , (33)

where s is the total spin of the topological state with both
cyclotron and guiding center contribution. The density ρ

is given by ρ = ν/2πl2
B , where ν is the filling factor and

lB is the magnetic length. The time component of the spin
connection, �n

0 = εij z∗
i ∂0zj , comes from the geometric, i.e.,

nematic degree of freedom described by the unimodular
metric gn

ij = z∗
azb + z∗

bza . This unimodular metric is a matrix

exponential, ĝn = exp Q̂, where Q̂ is the traceless, geometric
nematic matrix order parameter. In the same reference, the
well-known expression for the Hall viscosity in (F)QHE
[3,4], η

FQHE
H = sρ/2, was derived on the basis of the nematic

description.
On the other hand, in the geometric description of FQHE

introduced in Refs. [2,15], only guiding center metric is
the dynamical degree of freedom. The resulting term in the
Lagrangian is

Lgc = s̄ρ�0 + · · · , (34)

where s̄ is the guiding center spin. For the ideal Laughlin state
s̄ is equal to s̄ = (m − 1)/2, while in Eq. (33) s is equal to
s = m/2. The expression (34) can be derived considering the
Wen-Zee form [17] of the Chern-Simons (CS) action on curved
spaces with the introduction of the dynamical spin connection
which couples to the guiding center (particle) current [16].

V. THE GEOMETRIC DESCRIPTION OF THE GROUND
STATE OF NONINTERACTING AND INTERACTING

DIRAC BASED TWO-BAND CIS

Due to the presence of the (constant) curvature in the space
of Bloch vectors for two-band CIs, we may expect an additional
flux just as in the continuum case. The equation of state of
the single particle problem (noninteracting Chern insulator)
(expressed in the form of quadratic Hamiltonians) is

B(k) − s
√

gFS
RFS

2
= 0, (35)

because RFS = 8, and we take s = 1/2. Using the spin
connection (28), we can also write (35) as

B(k) − sεij ∂i�
FS
j (k) = 0. (36)

This equation tells us that the total local flux in BZ experienced
by particles is zero.

In the quantum-mechanical description of the noninteract-
ing particle in 2D in the presence of perpendicular to the
plane magnetic field, there is no difference between coordinate
and momentum representation in the rotational symmetric
gauge. The only exception is the place of the dimensional
factor, (magnetic length)2, in the Gaussians of the lowest
Landau level. Therefore, at least in the case with the rotational
symmetry around a high-symmetry point, we expect that
the form of the appropriate effective Wen-Zee action in the
(fractional)CI case is the same as in the FQHE case with the
indices referring to (k,t), momentum-time instead of (r,t),
space-time. Therefore we will assume in the following that
the effective description of fractional CIs can be given by the
same form of the Wen-Zee Lagrangian in the inverse space
of Bloch vectors. The point of the effective description should
coincide with the point of the smallest gap, i.e., the low-energy
description. In this way, we have chosen the expansion point
in the usual way for a condensed matter system as the point of
low-energy description. However, potentially (as we will see
in the two examples of two- and three-band CIs), in the case
of the projection to flat bands, the expansion points may be
defined as points of gauge-invariant Berry curvature solely. In a
basic description of the Lagrangian, we omit terms that specify
energetics. These terms will differentiate between these two
cases: with and without (flat) energy dispersion, but the basic
response and form of the Lagrangian will not differ.

Therefore we take (36) as the equation of the single-particle
problem and introduce the dynamical spin connection,

�i(k,t) = �FS
i (k) + δ�i(k,t), (37)

with δ�(k,t) due to interactions. In terms of zweibeins, we
have

�(k,t) = �̃(wFS + δw), with �̃(wFS) = �FS. (38)

The Wen-Zee action for CIs is given by

L = �

[
−α∂α

4π
− (∂A − sr∂�)α

2π

]
, (39)

with a shorthand notation for a field βμ: ελμν∂μβν ≡ ∂β.

In the Lagrangian, sr = s + δs = 1/2 + δs, with δs due to
interactions, and Aμ represents the static Berry connection
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with A0 = 0. The particle density current is given by

jμ = 1

2π
∂α, (40)

and the classical equation of motion for field α is

jμ = 1

2π
(∂A − sr∂�) = −δs∂�FS − sr∂δ�. (41)

Here, j0 represents departure from the uniform density in the
ground state. Therefore the change in the particle density
comes from both, cyclotron (single particle background)
and guiding center (interacting) degrees of freedom through
their interference. After integrating out α (particle degree of
freedom), we obtain

L = �

4π
(A − sr�) (∂A − sr∂�) . (42)

The part of the Lagrangian linear in time derivative is

L = �

4π

(−2srB�0 + 2s2
r εij ∂i�j�0 + s2

r εij�i∂0�j

)
= �

2π
δsB�0 + · · · . (43)

In the last line, we approximated (2sr )δs ≈ δs and
s εij ∂i�j ≈ B.

Before discussing Eq. (43) in detail let us make a few
comments. First, we would like to point out that we are de-
scribing two-band problem. The one-band (i.e., interacting and
filled band) problem is trivial as the density, i.e., occupation
number, is constant. In the two-band problem, the mixing of
“cyclotron” and guiding center degrees of freedom is expected
and this motivates the coupling we introduced in Eq. (39).
Also we are assuming that the system preserves, despite band
mixing, the Hall conductance quantization. We justify this by
an assumption that interactions act as small perturbation which
do not change the Chern number quantization.

We should also comment that we used the same form of
the spin connection, Eq. (28), for the dynamical zweibein w =
wFS + δw as for the Bloch vector based zweibein, Eq. (24).
Thus we assumed that at any momentum-time point B̃/2 =√

g holds (see Sec. III), where B̃ is the dynamical Berry field,
based on the dynamical w. This assumption can be stated
differently as a demand that for the dynamical Berry curvature
B̃ and connection Ã the following requirement holds,∫

BZ
B̃d2k =

∫
BZ

εij ∂i × Ãj d2k = 2πC. (44)

Here, C is the Chern number equal to |C| = 1 as in the case
without the interactions. Then this can be solved (reduced
over the S2, i.e., two-sphere angle integration) by taking
Ãj = (−i)ũ∗∂j ũ where ũ is the two-component complex
normalized vector field, i.e., we can have wi,α = Diũα/

√
2.

Thus, at any point, B̃/2 = √
g holds and the expression for

the spin connection, Eq. (28), follows. Also, in this way, it
follows that we consider the space of (dynamical) zweibeins
which are smoothly connected to those based on Bloch vectors
in the noninteracting problem.

VI. DISCUSSION

In Eq. (43), the quantity δs plays the role of the guiding
center spin. If the same formalism is applied to the FQHE
in the case of ideal Laughlin case, we would have δs/2π →
δs/2πm = (m − 1)/4πm, compare with Eq. (34). In that case,
A is the external vector potential of uniform magnetic field and
RFS is zero.

If the rotational symmetry is assumed, the coefficient in
the Lagrangian (�/2πm)δsB = (�/2πm)δsl2

B in the inverse
space becomes (�/2πm)δs(1/l2

B) in the ordinary space. The
coefficient in the ordinary space can be rewritten as �δsρ and
enters the expression for the Hall viscosity of guiding centers
in FQHE:

η
FQHE
H = �δsρ

2
= �δs

(
1

4πml2
B

)
. (45)

In this way, we might expect fixing m = 1 that the same
formula in the case of CIs holds. But first we should carefully
examine and compare expressions for the spin connection,

�0 = εij w∗
i ∂0wj√

g
, (46)

in the Lagrangian in Eq. (43) in both cases, FQHE and CI. We
will study small deformations, i.e., small fluctuations from a
flat ground state configuration. This will just serve as a way to
detect the role of the characteristic length in the contribution
to the Hall viscosity from the internal (interacting) degrees of
freedom.

Namely, in the context of FQHE, wi and g are dimension-
less quantities and det g = 1 (unimodular metric requirement).
To study the geometry deformations, we rewrite �0 in terms
of zweibeins e1

i and e2
i , i = 1,2 defined as

e1
i = 1√

2
(wi + w∗

i ) and e2
i = i√

2
(wi − w∗

i ). (47)

The resulting expression is

�0 = e1
1∂0e

1
2 − e2

2∂0e
2
1. (48)

Then we study deformations around a flat configuration, ei
j =

δi
j , encoded in the following:

e1
1 = 1 + e1, e2

2 = 1 − e1, e1
2 = e2

1 = e2, (49)

with e1 and e2 small deformation parameters. We find

�0 = 2e1∂0e2. (50)

On the other hand, in the case of two-band CIs, zweibeins
have two components denoted by α in wi,α . Thus ei

j → ei
jα

and can be easily found in the long-distance approximation in
the Dirac case, Eqs. (17) and (18):

e1
1 = lD

[
1
0

]
, e2

2 = lD

[−1
0

]
, e1

2 = e2
1 =

[
0
0

]
. (51)

We induce deformations as

e1
1 = lD

[
e1 + 1

e1

]
, e2

2 = lD

[
e1 − 1

e1

]
,

e1
2 = −e2

1 = lDe2

[
1
1

]
, (52)
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i.e., we make deformations (study fluctuations) equal in
both sublattices (otherwise we would make a spin torque
transformation [18]). Here, e1 and e2 are small deformation
parameters. Taking that

√
g ≈ l2

D in the ground state near
expansion point, we have for the spin connection,

�0 ≈ εij w∗
i ∂0wj

l2
D

= 4e1∂0e2. (53)

Therefore in performing the same deformations we find that
there is an extra 2 in the final expression for the spin connection
and eventually Hall viscosity in the case of CIs. The Hall
viscosity of the internal degrees of freedom in the inverse
space is

ηinv
H = �δs

(
l2
B

2π

)
, (54)

leading to the Hall viscosity in the ordinary space:

ηH = �δs

(
1

2πl2
B

)
= �δs

(
1

4πl2
D

)
. (55)

The expression is in the complete agreement with the conclu-
sion of Hughes et al. [6]. They found that in the case of Dirac
based CIs the role of the magnetic length is taken by the lD
length in the expression for the Hall viscosity. Thus we find
that a geometric description of the Dirac based Haldane model
is possible. That is also true for any Dirac based CI, i.e., CI
which low-energy description is given by Eqs. (17) and (18).

VII. TWO-BAND MODELS IN GENERAL

The two-band Haldane model is specific in having the
property that we can recognize the effective cyclotron orbits
in real space by looking at the Bloch vector in the expression
(18). Namely, the weight on one of the sublattices is much
larger (in the long-distance limit) than on the other sublattice
of the hexagonal lattice. Thus if we consider a superposition
(wave packet) of Bloch vectors with Gaussians in k space as
cutoffs:

u(z) =
∫

dk
[

1
−lDk

]
exp

(
−l2

D

|k|2
2

)
exp[i(K + k)r]

= exp(iKr)

[
1

− z
lD

]
exp

(
−|z|2

2l2
D

)
, (56)

with coordinate z = x + iy, we recognize cyclotron orbit(s)
with lB = lD/

√
2 as a characteristic length for the size of

the orbit. If lB∼a, i.e., lD∼a (lattice constant), we expect a
QH like (LLL like) description of Haldane model based CI.
Indeed, small ϕ (phase of complex hopping) for which lB∼a

is the condition that characterizes a region of phase space of
Haldane model (as shown in Ref. [19]) that is closest to the QH
background and optimal for fractional CI physics. This region
is closest to the effective (gapless) Dirac description and thus,
it seems, recovering the Hall viscosity with lD playing the
role of magnetic length is expected. Therefore the question
is, when we lose the correspondence B(K)∼B̄ (average Berry
curvature) or lD∼a, i.e., for sin(ϕ)∼1, whether the Dirac based
description is still appropriate and geometric description is
still possible. Figure 2 shows Berry curvature and direct gaps
at points K and M , and the dispersion of the Berry curvature

FIG. 2. Berry curvature and direct gaps at points K and M , and
the dispersion of the Berry curvature as functions of ϕ.

as functions of ϕ. We can see that with the increase of ϕ the
point K becomes a point of larger direct gap with respect
to point M though we are still in what we may call a QH
region—the region of small Berry curvature dispersion. The
point M does not have Berry curvature invariant under gauge
transformations and thus it is not obvious candidate for the
point of geometric description. Thus we may say that for larger
ϕ the geometric description is not clearly defined.

On the other hand, in the case of the two-band based
on quadratically dispersing Dirac model [18,20], the Berry
curvature at the expansion point K is equal to zero. In this
case, the geometric description of the ground state of CIs
that we introduced in the Dirac based Haldane model is not
possible. This makes the identification of the characteristic
length difficult, especially in these models and bands with
Chern number |C| > 1 that we will not consider further.

VIII. THREE-BAND KAGOME MODEL

In this section, we discuss whether the geometric de-
scription in the case of three-band kagome model [21] is
possible. The model is parameterized by the complex phase
φ, t1 + λ1 = t1 exp(iφ) is a complex hopping parameter, and
the system is gapless when φ = 0 and φ = π/3. The effective
description at φ = 0 is given around K point in BZ (with linear
Dirac-like dispersion) and at φ = π/3 is given around 
 point.
In Fig. 3, we plotted the energies and direct gaps between the
lowest and middle band at points K , M , and 
.

We considered two gauges present in the literature,
Refs. [21] and [22] with phase φ = π/4, and examined the
lowest lying band—a very good background for fractional CI
states [22]. In Fig. 4, the Berry curvature in BZ is plotted
in these two gauges. We notice how very different graphs
exemplify the fact that the Berry curvature is nongauge
invariant quantity. Nevertheless, we used both gauges in the
search for a universal expansion point as found in the case of
the Haldane model. We looked whether Eq. (35) is fulfilled
in BZ in both gauges and results are presented in Fig. 5.
Though point K in the gauge of Ref. [22] is very close to
the fulfillment we could not find an appropriate expansion
point for the geometric description.
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FIG. 3. Energies and direct gaps between the lowest and middle
bands at points K , M , and 
.

Nevertheless, we notice in Fig. 4 that the Berry curvature at
point M may be a gauge-invariant quantity. A close inspection
shows that this is the case at M points for which the Berry
curvature acquires the same, finite value [∼ sin(φ)] that is
invariant under diagonal gauge transformations with g(k) =
diag( exp[iϕ1(k)], exp[iϕ2(k)], exp[iϕ3(k)]) in the whole in-
terval φ ∈ (0,π/3). These M points may serve as expansion
points for the geometrical description especially because at
and in the neighborhood of these points the relationship
B/2 =

√
gFS holds for any φ ∈ (0,π/3) in the gauge of

Ref. [21]. In Fig. 6, one can see an illustration of this in the
case φ = π/4. Thus, at these M points two main assumptions
of the geometric program (1) gauge invariant Berry curvature
and (2) the equation B/2 =

√
gFS holds. We conclude that

in the special gauge of Ref. [21] we can describe three-band
kagome model in a geometrical way analogous to the one in
the two-band case. Also, as can be seen from Fig. 3, in an
interval close to φ = π/4 point M has the smallest direct gap
among points K,M , and 
, i.e., points of energy extrema [23].
Figure 7 shows that in this interval the scalar curvature RFS,
in the special gauge of Ref. [21], is a decreasing monotonic
function of φ and its values are from the interval (2,4). At
φ = π/4, this value is exactly two. Therefore the “cyclotron”
spin that we infer assuming that the Eq. (35) holds in this case

FIG. 4. (Color online) Berry curvature in three-band kagome
model in TMW (left) and WBR (right) gauges.

FIG. 5. (Color online) Left-hand side of Eq. (35) as a function on
Brillouin zone for three-band kagome model in TMW (left) and WBR
(right) gauges. In K points in TMW, gauge value is ≈0.74, while in
WBR gauge values are different for K (≈0.24) and K ′ (≈0.056)
points. Local spin s(K) = 2B/R

√
g that fulfills Eq. (35) have values

≈−0.85 in TMW gauge, while in WBR, gauge in K points is ≈0.26
and have closest value to 1/2 in K ′ points which is ≈0.52.

FIG. 6. (Color online) The analysis whether in the gauge of
Ref. [21] the equation B/2 = √

gFS is fulfilled at φ = π/4. Plotted is
the difference B/2 − √

gFS.

FIG. 7. The scalar curvature, RFS, in the special gauge of
Ref. [21], as a function of φ, at M points.
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is nonquantized, nonuniversal (dependent on the parameter of
the model - φ) as opposed to the two-band case. This likely
means that the Hall viscosity of the filled band is a nonuniversal
quantity, which can not be expressed in the semiquantized form
(i.e., the result of Ref. [6]) of two-band system in which spin is
quantized and the unit of length is given by the Berry curvature
at the point of the effective description. Note that the gauge
of Ref. [21], in which the geometric description was possible,
and in which the spin for the kagome case was inferred, is
nonperiodic in the inverse space and thus physical according
to the Ref. [8].

IX. CONCLUSIONS

The Dirac-based two-band CIs (like Haldane model) are
special for having a gauge-invariant Berry curvature at the
expansion (Dirac) point, and that can be described by a local,
zero-flux equation everywhere, see Eqs. (35) or (36). This is
a basis for a geometric description (Sec. V) of the interacting
problem, near the low-energy expansion point, and allows an
introduction of a characteristic length. This is the length that
in the long distance characterizes the size of the particle orbit
just as in QHE, and plays the role of magnetic length in the
expression for Hall viscosity (Secs. VI and VII).

In the other model considered, three-band kagome, we find
a point that has gauge-invariant Berry curvature, supports a
geometric description, and satisfies the zero-flux equation with
nonquantized and nonuniversal “cyclotron” spin (Sec. VIII).

We found that in some regions of phase space of model CIs
the geometric description is possible. The “geometrization” is
more probable near QH regions as shown in the two examples,
but being in QH region does not guarantee geometrization.
Although a gauge-invariant characteristic length may exist,
the expansion point may not be the point of the lowest energy
gap. Therefore, with these exemptions and new features, the
physics of CIs seems richer than in ordinary QH and provides
new mechanisms for the QH phenomena.

Based on the two examples that we analyzed, we conjecture
that in the Brillouin zone of every band with Chern number C
equal to C = 1 or −1, we can find a high-symmetry point with
the following form of its Bloch vector in its neighborhood,

[
c1,c2, . . . ,c

x
i kx + c

y

i ky,ci+1, . . . ,cn+1
]T

, (57)

where cx∗
i c

y

i − c
y∗
i cx

i �= 0 and |ck| = 1/
√

n if k �= i. This is
a generalization of the skyrmion expression in Eq. (18) in
a two-dimensional k space (a plane instead of BZ in the
long-distance approximation) to higher band models and
their |C| = 1 bands. Due to the invariance of the Berry
curvature under the diagonal gauge transformations of the
expression (57) we may associate with the expansion point
the physical characteristic length, lD . This length is connected
with the size of the “skyrmion,” l2

D = −i(cx∗
i c

y

i − c
y∗
i cx

i )/2.
The characteristic length may characterize the response of the
system either in flat (projected) or nonflat bands.

Note added. While we were in the last stage of the
preparation of our manuscript, a preprint [8] appeared with
some of the claims on the noninvariance of the Berry curvature
that are also present in our manuscript.
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APPENDIX: SPIN CONNECTION AND SCALAR
CURVATURE IN THE SPACE OF BLOCH VECTORS

In this appendix, we derive the spin connection and scalar
curvature in the case of two- and three-band CIs if Eq. (A2)
holds. The metric is defined as

gij (k) = w+
i wj + w+

j wi, (A1)

where the two-component spinor wi is defined as wi = [∂iu −
(u∗∂iu)u]/

√
2 = Diu/

√
2 and has components wiα . Indices

i,j, . . . are momentum space indices and take values 1,2, while
α,β, . . . label components of spinors.

Now we use the relationship between the Berry curvature
and the determinant of the metric tensor

B(k) = 2
√

g, (A2)

and we notice that

B(k) = −i(∂xu
+∂yu − ∂yu

+∂xu)

= −i(Dxu
+Dyu − Dyu

+Dxu)

= −2iεijw+
i wj . (A3)

Combining (A2) and (A3), we can define

wj = − i√
g

εjkwk, w+j = i√
g

εjkw+
k , (A4)

where εij is the totally antisymmetric tensor (Levi-Civita) in
two dimensions.

Then the following relations hold:

w+jwj = 1, wj
αwjα = − i√

g
εjkwkαwjα = 0,

w+j
α w∗

jα = − i√
g

εjkw+
kαw+

jα = 0. (A5)

In the last two relations, there is no sum on α, while in the first
there is w+jwj = ∑

α w
∗j
α wjα = 1. We also have

w+
i wj = 1

2
(gij + i

√
gεij ), gij = 1

g
εikεjlgkl,

w+iwj = 1

2

(
gij − i√

g
εij

)
, (A6)

wj = −i
√

gεjkw
k, w+

j = i
√

gεjkw
+k.

Next we introduce local flat (“Lorentz”) indices a,b,. . . =
1,2; they are related with the metric ηab = diag(1,1). Fol-
lowing Ref. [16], we construct two dimensional vielbeins,
i.e., zweibeins e a

i and the inverse zweibeins e i
a from the

two-component spinors wi :

e 1
iα = 1√

2
(wiα + w+

iα), e 2
iα = i√

2
(wiα − w+

iα),

e i
1α = 1√

2

(
wi

α + w+i
α

)
, e i

2α = i√
2

(
wi

α − w+i
α

)
. (A7)
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These zweibeins relate space and flat indices and are con-
structed in such a way that they are real. The following
formulas are valid:

gij = ηab

∑
α

e a
iαe b

jα, ηab = gij

∑
α

e i
aαe

j

bα,

∑
α

e a
iαe j

aα = δ
j

i ,
∑

α

e i
aαe b

iα = δb
a . (A8)

Using the metricity condition

∇ tot
i e a

jα = ∂ie
a

jα + � a
i be

b
jα − 
k

ij e
a

kα = 0 (A9)

and the vanishing torsion 
k
ij = 
k

ji , we can calculate the spin
connection in terms of zweibeins. From (A9), it follows

� a
i b =

∑
α

e a
kα

(
∂ie

k
bα + 
k

ij e
j

bα

) = −
∑

α

(∇ie
a

jα

)
e

j

bα,

where ∇i is a covariant derivative with respect to the

k

ij (Christoffel) connection. In Eq. (A9) ∇ tot
i is the total

covariant derivative of the zweibein, that is with respect
to both spin connection and the 
k

ij connection. We also
used

∑
α ∂j (e i

aα)e b
iα = −∑

α e i
aα(∂j e

b
iα), which follows from∑

α e i
aαe b

iα = δb
a . Since we are in two dimensions, there are

only two independent components of the spin connection �12
i

and i = 1,2. Inverting relations (A7), we can write the spin
connection in terms of wi as

� 12
i = − 1√

g
εkl(∇iw

+
k )wl

= − 1√
g

εkl(∂iw
+
k )wl + 1

2
√

g
εkl∂kgil + i

4
∂i(ln g).

(A10)

From this spin connection, one can calculate the scalar
curvature R. It is given by

R = Rab
ij e i

a e
j

b = 2R12
ij e i

1 e
j

2 = − 2√
g

εij ∂i�
12
j

= − 2√
g

εij εmn

{
∂i

(
1√
g

) [
−(∂jw

+
m)(wn) + 1

2
∂mgjn

]

+ 1√
g

[
−(∂jw

+
m)(∂iwn) + 1

2
∂i∂mgjn

]}
, (A11)

where we used that R12
ij = ∂i�

12
j − ∂j�

12
i = −R21

ij and R11
ij =

R22
ij = 0 because of antisymmetry.
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