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The Bloch theorem enables reduction of the eigenvalue problem of the single-particle Hamiltonian that
commutes with the translational group. Based on a group theory analysis we present a generalization of the
Bloch theorem that incorporates all additional symmetries of a crystal. The generalized Bloch theorem constrains
the form of the Hamiltonian which becomes manifestly invariant under additional symmetries. In the case of
isotropic interactions the generalized Bloch theorem gives a unique Hamiltonian. This Hamiltonian coincides
with the Hamiltonian in the periodic gauge. In the case of anisotropic interactions the generalized Bloch theorem
allows a family of Hamiltonians. Due to the continuity argument we expect that even in this case the Hamiltonian
in the periodic gauge defines observables, such as Berry curvature, in the inverse space. For both cases we present
examples and demonstrate that the average of the Berry curvatures of all possible Hamiltonians in the Bloch
gauge is the Berry curvature in the periodic gauge.
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I. INTRODUCTION

The Bloch theorem [1] is very useful in description of a
quasiparticle (electron, phonon, etc.) in crystals. The solution
of the Bloch problem can be stated in a representation-
independent form. Namely, the Bloch vector |ψ(k)〉 can be
written as a linear superposition of the localized, in the unit cell
R at position aj , orbitals |R,aj 〉 of a crystal with coefficients,
cj (k), that depend on Bloch momentum k and type of orbital
j in the unit cell:

|ψ(k)〉 =
∑
R,j

cj (k)eik·R|R,aj 〉. (1)

It is obvious that this form satisfies the Bloch theorem
TR′ |ψ(k)〉 = exp(−ik · R′)|ψ(k)〉, where TR′ is the translation
operator for the vector R′.

In this work we present a generalization of the Bloch
theorem that incorporates all additional (beside translational)
symmetries of a crystal. The generalized Bloch theorem
constrains the form of the Hamiltonian which becomes
manifestly invariant under additional symmetries.

Any non-Bravais lattice Hamiltonian is invariably multidi-
mensional (always matrix), and may be affected by unitary
(matrix) transformations, i.e., may transform into various
“gauges.” Different choices may lead to the same topological
invariants (such as Chern number and second Chern number),
and the gauge concept is very useful in characterizing topology,
but when we discuss some physical observables that concern
“geometry,” i.e., the exact configuration of the lattice, it is
natural to work with a special Hamiltonian and thus use
the so-called “periodic gauge.” We show, by using group
theory techniques, that this gauge is constrained by symmetry
arguments.

In the following we would like to illustrate the importance
of choosing the right gauge. The coefficients cj (k) in Eq. (1)
naturally represent the Bloch vector in the space of Bloch
momentum, and therefore can be used in the definition of
the Berry connection. The Berry connection provides a way to
describe how the phase of the Bloch vector varies as we change
the Bloch momentum. The choice of the coefficients in the

expansion of |ψ(k)〉 is by no means unique; they are fixed, up to
overall U (1) phase (j independent but possibly k dependent),
by the form of the Hamiltonian we work with. There is a
freedom of choosing the phases of coefficients connected by
nontrivial diagonal unitary transformations, but two choices—
two forms of Hamiltonians—stand out. The choice in Eq. (1)
implies Berry connection

AB = i
∑

j

c∗
j (k)∇kcj (k),

where B stands for “Bloch gauge.” A different choice,

|ψ(k)〉 =
∑
R,j

uj (k)eik·(R+aj )|R,aj 〉,

on the other hand, implies

AP = i
∑

j

u∗
j (k)∇kuj (k),

where P stands for “periodic gauge.” These are the most nat-
ural choices; they coincide with two possibilities to define the
Fourier transform in the space of the Bloch vectors: |k,j 〉B =∑

R eik·R|R,aj 〉 and |k,j 〉P = ∑
R eik·(R+aj )|R,aj 〉 [2], and

thus two Hamiltonians in inverse space. Although physics
should be invariant under these choices, and we speak of
two gauges, we will show in examples that they define two
different Berry curvatures. So the word gauge in this sense
is a misnomer and we must look for a “physical gauge.” In
this gauge we would be certain that we are defining a physical
Berry curvature, a suitable candidate for the intrinsic magnetic
field in the inverse space. This would define a local magnetic
length that is important to know for example in the case of
fractional physics in the bands with nonzero Chern number.
There are proposals [3,4] for how to measure Berry curvature
in experiments, and thus it is important to know in which gauge
it is defined.

From the Karplus-Luttinger argument [5,6] that the coordi-
nate operator in the inverse space can be represented as

r → −i∇p + AP
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we expect that the periodic gauge is the right choice. This
choice in the literature is commonly used without a complete
understanding of why it is physical. On the other hand, there
are references that use the Bloch gauge (and reach wrong
expectations). By establishing the generalized Bloch theorem
we provide strong arguments that the periodic gauge is the
natural choice given that it, i.e., the Hamiltonian that this gauge
defines, respects the symmetries of the underlying lattice.

Thus the symmetry is a determining factor that provides
the right choice. In the past researchers were finding in
certain examples that the Berry curvature calculated in the
periodic gauge is the most symmetric [7–9]. Here we explore
the symmetry aspect by using the techniques of the group
theory, and finding the form of the Hamiltonian in which
any symmetry action can be made explicit. In most cases,
after simple rewritings, the manifestly invariant Hamiltonian
is equal to the Hamiltonian in the periodic gauge.

We demonstrate that in the case of the isotropic interactions
(which will be precisely defined below) the Hamiltonian that
respects the symmetries of the lattice is uniquely defined by the
generalized Bloch theorem and coincides with the Hamiltonian
in the periodic gauge. In the case of anisotropic interactions
we find, due to a phase freedom in the construction, a family of
generalized Bloch Hamiltonians that respect the symmetries of
the lattice. One of the Hamiltonians corresponds to the periodic
gauge choice. This choice seems a natural choice even in this
case of anisotropic interactions because it can be viewed as
an extension of the isotropic case. In addition we find that the
average Berry curvature of the eigenstates of all possible Bloch
Hamiltonians is equal to the Berry curvature in the periodic
gauge.

The paper is organized as follows: In Sec. II we review the
Bloch theorem and its Hamiltonian construction. In Sec. III,
to begin the generalization, we assume an existence of a basis
in which the action of crystal symmetries is made explicit, i.e.,
a symmetry-adapted basis. In the same section we seek for a
realization—a basis defined by a special class of projectors
that represent an invariance of the action of symmetries—and
reach the form of the Hamiltonian in that basis. In Sec. IV,
we find explicit expressions for the vectors of the basis and
therefore Hamiltonian. In the same section we discuss when
the Hamiltonian that respects all additional symmetries beside
translation is unique or represents a family of Hamiltonians.
In Sec. V, to illustrate the formal procedure described in
the previous sections (Secs. III and IV), we discuss concrete
examples of lattices and constructions of the generalized Bloch
Hamiltonians. Section VI is a short summary.

II. BLOCH THEOREM

A crystal is the system of periodically arranged atoms along
d linearly independent directions. A part of a crystal, called
the unit cell (UC), contains a minimal set of atoms sufficient
to build the whole crystal by the action of discrete translations
for the Bravais lattice vectors R = ∑d

p=1 npbp, where np are
integers and bp are called primitive vectors of the direct lattice.
The quasiparticle basis |k,j 〉 (j enumerates basis vectors-
orbitals; j = 1, . . . ,J ) is described by the quasimomentum
quantum numbers k = ∑d

p=1 kpgp, where kp ∈ (−1/2,1/2]
and gp are called primitive vectors of reciprocal lattice

(bp · gq = 2πδpq ; δpq is the Kronecker delta). The Bloch
theorem states that the basis vector |k,j 〉 translated for the
Bravais vector R changes as

TR|k,j 〉 = e−ik·R|k,j 〉, (2)

where T is the translation operator. In other words, if the j th
basis vector in the zeroth unit cell (R = 0) is |0,aj 〉, then
in the unit cell R it is eik·R|R,aj 〉 and consequently |k,j 〉 =∑

R eik·R|R,aj 〉. Vectors |0,aj 〉 and |R,aj 〉 are identical, but
belong to different blocks, 0 and R, of the vector |k,j 〉,
respectively.

Reduction of operators describing the quasiparticle in a
crystal such as the Hamiltonian, dynamical matrix, over-
lap matrix, etc., invariant under discrete translations, is
straightforward with the help of Eq. (2). Any Hamiltonian
eigenvector |ψ(k)〉 can be expressed as a linear combination
with coefficients [Eq. (1)] cj (k)

|ψ(k)〉 =
∑

j

cj (k)|k,j 〉 =
∑
R,j

cj (k)eik·R|R,aj 〉. (3)

Now, the eigenvalue problem of the Hamiltonian can be
replaced by the set of homogeneous equations in coefficients
cj (k),

∑
j ′

[∑
R′

eik·R′
H

0,j

R′,j ′ − E(k)δj,j ′

]
cj ′ (k) = 0, (4)

for all j, where H
0,j

R′,j ′ are Hamiltonian matrix elements in the
basis |R,aj 〉,

H
0,j

R′,j ′ = 〈0,aj |H |R′,aj ′ 〉. (5)

This set of equations can be written in the form of the
eigenvalue problem of the Bloch Hamiltonian H (k)

H (k)c(k) = E(k)c(k), H (k) =
∑

R

eik·RH 0
R, (6)

where c(k) is a column with components cj (k) and H 0
R is a ma-

trix having matrix elements H
0,j

R,j ′ (k). In some approximations,
e.g., tight-binding (not using Löwdin [10] or Wannier [11,12]
functions), the Kronecker delta in Eq. (4) is replaced by
the overlap integrals, S

0,j

R′,j ′ = 〈0,aj |R′,aj ′ 〉, and the Bloch
reduced overlap matrix S(k) = ∑

R eik·RS0
R appears on the

right-hand side of Eq. (6).
There are many single-particle approximations [13–16]

which can be solved by using the Bloch theorem. In the nearly
free electron approximation the basis consists of functions
〈r|k,G〉 = ψ

(k)
G (r) = ei(k−G)·r (G = ∑d

i=1 migi are vectors of
reciprocal lattice and mi are integers), and the finite set of
reciprocal lattice vectors G depends on the physical situation.
The tight-binding approximation deals with basis |k,αnlm〉,
which are electron orbitals with quantum numbers nlm on the
atom α. In this approximation, the previously used symbol j in
the enumerating basis is replaced by the four numbers (αnlm).
In the harmonic approximation basis |k,αi〉 are orthogonal
unit vectors ei (i = x,y,z) on atom α.
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III. GENERALIZATION

To begin with our generalization, let G be the symmetry
group of a crystal, and let � (corresponding to the quasimo-
mentum quantum number k in the Bloch theorem) label unitary
irreducible representation (IR) D(�)(A). The basis for IR � is
given by the vectors |�,j,a〉 which fulfill

D(A)|�,j,a〉 =
d�∑

b=1

D
(�)
ba (A)|�,j,b〉. (7)

Here, D
(�)
ba (A) is matrix element (b,a) of the d�-dimensional

irreducible representation D(�)(A) and D(A) is the unitary
representation of the group element A. The definition (7)
is viewed as a starting point by some authors and as a
consequence by others [15–19]. The basis (7) is called the
symmetry-adapted basis (SAB). If the group G consists of
translations only, IRs are one-dimensional, D(k)(R) = e−ik·R.
This is the Bloch theorem, Eq. (2). Vectors differing only in a

are called partners. It is also said that vectors |�,j,a〉 for fixed
� and j belong to one multiplet.

In the previous paragraph we introduced the usual approach
of the group theory with the basis vector, |�,j,a〉, that we
will work with, in order to incorporate symmetries beside
translation in the quantum-mechanical description of the
problem defined on the lattice. The introduction of |�,j,a〉
corresponds to the introduction of |k,j 〉 in the case of the
ordinary Bloch theorem; see Eq. (2). The extra label a enables
us to track the action of the orthogonal transformations
that leave an origin unchanged. Namely, by inspecting the
symmetry of the lattice we choose a unit cell and a point
of the highest symmetry, i.e., the origin. [For example, in
the case of the hexagonal lattice, we may choose for such a
point any of two atoms (A or B) in a unit cell. In general an
origin may not be chosen on an atom.] Once we choose the
origin we may inspect how the vectors of the atoms in the unit
cell to which the origin belongs, aj ,j = 1, . . . ,J , transform
under orthogonal transformations. Then we inspect the sets
of all the atoms connected to the basis vectors aj (which
may not belong to the same unit cell and are connected by
the orthogonal transformations). The number of elements of
the set with the largest number of elements defines d� , the
dimension of the irreducible representation � [in the case of
the hexagonal lattice d� = 3 related to three neighboring (to
the atom at the origin) atoms that transform into each other by
C3 symmetry].

Similarly to the case of the Bloch theorem where we
have the decomposition of the basis vector |k,j 〉 over site
orbitals |R,aj 〉, |k,j 〉 = ∑

R exp(ik · R)|R,aj 〉, we have a
decomposition of basis vectors |�,j,a〉 in the case of the
generalized Bloch theorem. First we note that we can write the
Bloch basis vector as |k,j 〉 = ∑

R′ exp(ik · R′)|R′ + R,aj 〉,
which simply means that instead of the reference point 0 we
choose R, i.e., an arbitrary fixed unit cell vector. To understand
the decomposition for |�,j,a〉 we introduce |R′ + R,aj ,a〉 =
exp(ik · R′)|R′ + R,aj 〉 so that we can rewrite |k,j 〉 in the
following form:

|k,j,a〉 =
∑

R′
|R′ + R,aj ,a〉. (8)

Here a = 1 (the index is obsolete in this case) and the sum
denotes the sum over all translations, i.e., group elements.
This rewriting shows in a transparent way the physical view
of the Bloch theorem: by knowing the orbital at arbitrary fixed
R we can easily reconstruct the other orbitals by the action of
translational symmetry. Now, similarly to the Bloch case we
can represent |�,j,a〉 as

|�,j,a〉 =
∑
X

|XR,Xaj ,a〉, (9)

where the sum is over group elements X and (R,aj ) is an
arbitrary site position, and plug Eq. (9) into Eq. (7).

Note that Eq. (9) is a generalization of the Bloch case in
which with one atom (site) we associate a set of orbitals defined
by the ways, i.e., symmetry operations, that we use to reach
the atom in question from the origin R. So the ket |XR,Xaj ,a〉
cannot be identified by a position (only) but as a vector-orbital
defined also by symmetry operation X. Thus the sum in Eq. (9)
should not be viewed as an ordinary sum but as a direct sum
of vectors. In this way we can view vector |�,j,a〉 as a column
of vectors |XR,Xaj ,a〉 and reach the conclusions below.

Besides permutational representations in D on the left-hand
side of Eq. (7), there are representations Dj that act only
on a general ket |XR,Xaj ,a〉 in |�,j,a〉. In this case a
group element may change also the zeroth unit cell, i.e.,
|A0,aj ,a〉 �= |0,aj ,a〉. Representation Dj may be the repre-
sentation D(l,(−1)l ) for the atomic orbital of an electron with
angular momentum l, the vector representation for phonons,
etc. We decompose D(A) into the permutational part, DP (A),
and Dj (A), i.e., D(A) = DP (A)Dj (A). Acting by DP (A−1)
from the left-hand side we have

Dj (A)|XR,Xaj ,a〉 =
d�∑

b=1

D
(�)
ba (A)|AXR,AXaj ,b〉,

for any group element X which we may choose to be identity.
Thus

Dj (A)|R,aj ,a〉 =
d�∑

b=1

D
(�)
ba (A)|AR,Aaj ,b〉.

Here the group element A transfers the atom aj from the unit
cell R, i.e., (R,aj ), to the atom (AR,Aaj ). Depending on the
group element A, it could happen that AR and R are the same
unit cells and/or Aaj and aj are the same orbitals. The previous
transformation rule can be rewritten (remembering that all the
representations are unitary) as the generalization of the Bloch
theorem

|AR,Aaj ,a〉 =
d�∑

b=1

D
(�)
ab

∗
(A)Dj (A)|R,aj ,b〉, (10a)

where the asterisk stands for the complex conjugation. This
effectively means that to each site in a unit cell R and position
specified by the basis vector aj we associate (ordered mul-
tiple, i.e., d�-tuple) {|R,aj ,a〉; a = 1, . . . ,d�} [which under
orthogonal transformations A is transformed by the matrices
of the irreducible representation � − D

(�)
ab in Eq. (10)]. Notice

that for crystals with only the translational symmetry group,
the representation Dj (R) is always the identity operator
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and Aaj = aj . This gives the Bloch theorem, Eq. (2), i.e.,
|R + R′,aj 〉 = eik·R′ |R,aj 〉.

In the Bloch theorem, it is sufficient to define quasipar-
ticle orbitals and construct the Bloch Hamiltonian. In our
generalization of the Bloch theorem only certain, restricted
by symmetry, linear combinations of orbitals are allowed. To
construct these linear combinations, it is sufficient to extract
group elements A that do not transfer the orbital (R,aj ), i.e.,
(AR,Aaj ) = (R,aj ). These elements form the subgroup SR,j

of the group G called the stabilizer or little group of the orbital
(R,aj ). In other words, atom aj in the unit cell R is the fixed
point of the action of its stabilizer, SR,j . The dimension (the
number of the group elements of SR,j ) we label by sj .

After introducing stabilizers, we are able to find the allowed
linear combinations of orbitals. Let us build the column |R,aj 〉〉
of the vectors |R,aj ,a〉, i.e., d�-tuples. We use this special
ket notation, | . . . 〉〉, to differentiate the introduced column
vector from the ordinary vector-orbital, |R,aj 〉, usually used.
Then, Eq. (10a) can be written in the form |AR,Aaj 〉〉 =
[D(�)∗(A) ⊗ Dj (A)]|R,aj 〉〉, where “⊗” stands for the tensor
product operator. Summing over the stabilizer elements A ∈
SR,j of the previous equality we obtain projectors P

(�)
R,j ,

P
(�)
R,j |R,aj 〉〉 = |R,aj 〉〉,

(10b)

P
(�)
R,j = 1

sj

∑
A∈SR,j

D(�)∗(A) ⊗ Dj (A).

These projectors are the identity operators in the Bloch
theorem, since the stabilizer there consists of only the identity
group element. Therefore the projectors P

(�)
R,j are unnecessary

therein. In our generalization, the projectors (10b) restrict
the linear combinations of the basis |R,aj ,a〉 a = 1, . . . ,d�

to their range. This basis is chosen to have orthogonal
columns with the nonzero components

√
sj |R,aj ,a〉 and unit

length of the ket. If the projector’s range is multidimensional
(TrP (�)

R,j > 1), it can be written, re-enumerating components if
necessary, as a direct sum of one-dimensional projectors. Then
the vectors are taken from the range of these one-dimensional
projectors complemented by zeros in the rest of the space,
ensuring in this way the vectors’ orthogonality.

From Eq. (10a) we see that the group element A /∈ SR,j

transfers the vectors |R,aj 〉〉 to the other vector |AR,Aaj 〉〉 �=
|R,aj 〉〉 making it unnecessary to look for other reduced
projectors. A sufficient set of reduced projectors is for the
atoms not connected by the group action, i.e., for (R,aj ) and
(R′,aj ′ ) if (R,aj ) �= (AR′,Aaj ′ ) for all A ∈ G. Such atoms are
called the orbit representatives of the crystal for the symmetry
group G and are not uniquely defined. However, this has no
influence on the results. Although this generalization holds for
any choice of orbit representatives, even within different unit
cells, we will take them from the same unit cell, R′ = R = 0.
Hereafter, index 0 in P

(�)
0,j and S0,j will be omitted.

We now follow the same steps as in the Bloch reduction of
the Hamiltonian. The Hamiltonian eigenvectors are expressed
as linear combinations

|ψa(�)〉 =
∑

j

∑
A∈Gj

cj (�)
√

sj |A0,Aaj ,a〉, (11)

where subset G0,j ≡ Gj ⊆ G contains elements giving each
atom (A0,Aaj ) ones. Then, the Hamiltonian eigenvalue
problem can be written as the set of homogenous equations in
constants cj (�) with no summation over the repeated index a:

∑
j ′

⎡
⎣ ∑

A∈Gj ′ ,b

D
(�)
ab

∗
(A)He,a;j

A,b;j ′ (�) − E(�)δj,j ′

⎤
⎦ cj ′ (�) = 0.

(12)
In these equations e is the unit group element and corresponds
to R = 0 in the Bloch theorem. This set of equations can be
expressed as the eigenvalue problem

H (�)c(�) = E(�)c(�),
(13)

H (�) =
∑

A∈Gj ,b

D
(�)
ab

∗
(A)He,a

A,b(�),

of the reduced Hamiltonian H (�) and the matrix elements of
H

e,a
A,b(�) are

H
e,a;j
A,b;j ′ (�) =

√
sj ′

sj

〈0,aj ,a|H (Dj ′(A)|0,aj ′ ,b〉), (14)

where Dj ′(A)|0,aj ′ ,b〉 is the orbital on the atom (A0,Aaj ′ ).
The index a on the left-hand side in Eq. (13) is omitted as the
reduced Hamiltonian does not depend on the choice for the
nonzero vector |0,aj ,a〉.

In this section we represented the Hamiltonian in a
symmetry-adapted basis. Therefore the possible action of
symmetries on the Hamiltonian can be made explicit and we
can ask whether the Hamiltonian is invariant under an arbitrary
action of the symmetries. To claim the invariance of the
constructed Hamiltonian(s) we have to find and examine the
structure of |0,aj 〉〉 vectors, defined by P

(�)
j |0,aj 〉〉 = |0,aj 〉〉,

and their transformation properties. We will do this in the
following section.

IV. THE SYMMETRY CONSTRAINT ON GAUGE

Let the symmetry group of a crystal have, beside trans-
lations (R), one or more orthogonal transformations, A. An
orthogonal transformation leaves the origin (R = 0) intact.
We will consider only the orthogonal transformations that do
not commute with translations as only such transformations
affect k and vectors |0,aj 〉〉. Namely, it can happen that an
orbit representative is not on the axis of rotation, and/or in the
reflection plane, etc., and an additional translation is needed
to bring the atom to its original position after some orthogonal
transformation. In such situations, k-dependant phases appear
in vectors |0,aj ,a〉. To extract this dependance, we need further
analysis.

If the reduced projectors (10b) are multidimensional
(TrP (�)

j > 1), the results of the analysis coincide [20] with the
case of equal numbers of orbit representatives and atoms in
the unit cell, when the reduced projectors are one-dimensional.
Therefore, the symmetry group will be reduced by the factor
of maximal TrP (�)

j , and all projectors will be one-dimensional.
Notice that, in this case, the number of orthogonal transforma-
tions is equal to d� = sj and all sj are the same.

In the analysis of the k dependance of phases we will work
only when � is the general irreducible representation (label
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� is redundant). Phases for the irreducible representations at
special points and along special lines can be deduced as limits
of the phases for a general IR. To find k dependance of phases
we will explicitly construct IR using the method of induction.
Induction of a (general) IR is performed, usually, from
an (Abelian) translational group with the one-dimensional
IR D(k)(bi) = exp(−ik · bi). In this case, the IR of the
orthogonal group transformations, D(A), does not depend on
the quasimomentum and the matrix element (1,1) of the general
d�-dimensional IR for translation is D11(bi) = exp(−ik · bi).
The irreducible representation of translations is diagonal and
other diagonal matrix elements satisfy

d�∑
b=1

D1b(A)Dbb(bi)Db1(A−1) = e−ikAbi . (15)

To understand this requirement we notice that orthogonal
transformations (A) when acting on vector |0,aj 〉〉 rearrange
its components, i.e., partners of the multiplet. Given a vector
|0,aj 〉〉 we can track down which component a of |0,aj 〉〉 is
transformed to the first component of |A0,Aaj 〉〉. In this way
the particular a and A are connected in the way of a bijection
which we denote by A(a). Thus we have the row D1b(A) =
δab and column D−1

b1 (A) = δab in Eq. (15); i.e., the sum is
redundant. At the end we see that the requirement in Eq. (15)
means that the equivalent translation for bi in the reference
frame of the partner a is given by Daa(bi) = exp[−ikA(a)bi].

The physical content of orbitals is irrelevant in the analysis,
and we will take representations Dj to be the one-dimensional
identity operator. If two orbitals (0,aj ) and (A0,Aaj ) are
connected by the orthogonal group element A, then the vector
|A0,Aaj 〉〉 is a linear combination of the vector’s |0,aj 〉〉
components; see Eqs. (10). On the other hand, there is a
translation R that maps the initial atom (0,aj ) to (A0,Aaj )
and each component |0,aj ,a〉 gains the phase factor, see
Eq. (15), D∗

aa(R) = exp{ikA(a)R}. The equivalence of these
two symmetry operations implies a consistency condition that
has to be imposed on the vectors |0,aj 〉〉. This (formally)
coincides with the usual scalar condition in the quantum field
theory: � ′(k) ≡ D(A)�(k) = �(A−1k), where �(k) fields
in our case are vectors |0,aj 〉〉. The solution is given in the
following general form:

|0,aj ,a〉(k) = exp
{
ikA(a)aj − ika0

j

}|0,aj ,a〉(k = 0). (16)

The phase part affected by orthogonal transformations is fixed
by the consistency requirement. If an orthogonal transfor-
mation (A) transfers vector aj into vector Aaj that is equal
to aj + R, where R is the corresponding translation, i.e.,
Aaj = aj + R, and the diagonal matrix of the translation
is D∗

aa(R) = exp{ikA(a)R} [see Eq. (15) and below], the
phase part must be exp{ikA(a)aj }. There is also an overall
phase freedom given by the phase, exp{−ik · a0

j }, where a0
j is

invariant under orthogonal transformations. This invariance
of a0

j under orthogonal transformations ensures consistent
definition (the same gauge) for the orbitals connected by the
group action.

Let as first discuss the case of isotropic interactions.
Isotropic interactions are defined by the condition that the
strength between a fixed orbital j and all j ′ at the same
distance from j is the same. Then the only a0

j invariant under

all orthogonal transformations is the zero vector, i.e., a0
j ≡ 0.

Any orthogonal transformation will act only as an orthogonal
matrix. Under an arbitrary orthogonal transformation B on the
|0,aj 〉〉 vectors in the generalized Bloch Hamiltonian, Eq. (14),
the summation over A becomes the one over B−1AB = A′,
which covers again Gj , and makes the Hamiltonian invariant.

The unique Hamiltonian defined by a0
j ≡ 0 in this general-

ization of the Bloch theorem coincides with the Hamiltonian
in the periodic gauge. The periodic gauge is defined as the
gauge in which the Bloch vector, |ψ(k)〉, is invariant under
the translation by G = ∑d

i=1 migi in the inverse space. Then
the coefficients in Eq. (11) cj (k) transform as

cj (k + G) = cj (k) exp{−iGaj }. (17)

In the case when a0
j ≡ 0 for each j the Hamiltonian matrix

elements transform as

H
a;j
b;j ′ (k + G) = H

a;j
b;j ′ (k) exp{iG(aj − aj ′ )}. (18)

This follows from the solution (16) for the vectors that define
the generalized Bloch Hamiltonian and the fact that, in each
component of the vector, A(a)aj in the exponent can be rewrit-
ten as A(a)aj = R + aj , i.e., as a translation by R, a Bravais
lattice vector. The invariance of the eigenvalue problem under
the translation by G implies (17). Thus, in the case of isotropic
interactions, the generalized Bloch Hamiltonian is the unique
Hamiltonian that is invariant under orthogonal transformations
and coincides with the Hamiltonian in the periodic gauge.

We showed that the requirement that the Bloch eigenvector
be invariant under the translation by any G in the inverse
space, |ψ(k + G)〉 = |ψ(k)〉, i.e., the requirement on its
coefficients in (17), or the requirement that the Hamiltonian be
invariant under orthogonal transformations leads to the same
Hamiltonian.

Let us now consider anisotropic interactions. In this case
the invariance under orthogonal transformations does not
constrain all a0

j to zero; i.e., there will be nonzero a0
j which

are invariant under orthogonal transformations. Thus instead
of a unique Hamiltonian we can have a family of Hamiltonians
invariant under orthogonal transformations. The Hamiltonian
that represents the periodic gauge choice, i.e., a0

j ≡ 0 for
each j , belongs to this family. The anisotropic case may be
considered as an extension of the isotropic case when we
start to continuously change the interaction strength along
some directions. If we demand a continuous change of Berry
curvature, or any physical quantity in the inverse space, along
this process, then the periodic gauge choice is a natural choice
even in the case of anisotropic interactions.

We see that in the case of the anisotropic interactions
the generalized Bloch theorem, which ensures the invariance
under orthogonal transformations, does allow various gauges
with some of the a0

j ’s being nonzero. If furthermore the
choice of a0

j ’s leads to periodicity of the coefficients, cj (k),
cj (k + G) = cj (k), and of the Hamiltonian, we deal with the
Bloch Hamiltonians. The periodicity in the inverse space is the
usual, defining requirement for the Bloch Hamiltonians. This
choice for the Hamiltonian, the so-called Bloch gauge choice,
is often used in the literature on the fractional Chern insulators,
such as in Refs. [21–23], irrespective of whether the Bloch
Hamiltonian is invariant under orthogonal transformations.
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TABLE I. Phases ϕ(k) of the phase factor exp[iϕ(k)] that could
be acquired by the certain transformations of quasimomentum k in the
off-diagonal Hamiltonian matrix elements in two gauges. Diagonal
elements do not change.

Transformation

Orthogonal Adding G

Gauge Bloch ϕ(k) 0
periodic 0 const.

As long as we ask for physical (“gauge invariant”) quantities,
such as energy spectrum, degeneracy of the ground state on
the torus, and Chern number, this is justified. But if we seek
description in the inverse space and look for quantities that may
be considered as observables, such as density in the inverse
space, internal field, i.e., Berry curvature, or the quantities that
depend on local values of Berry curvature such as anomalous
Hall conductance, we have to be careful. We can find the
quantities (easily) in the periodic gauge (the natural gauge that
respects symmetries) or if we use the Bloch gauge we have to
keep track and include real-space embeddings of orbitals [24].

As we already emphasized there is the need for the periodic
gauge even in the case of anisotropic interactions where
the Bloch Hamiltonian may be invariant under orthogonal
transformations. In general the off-diagonal elements of the
Bloch Hamiltonians under orthogonal transformations acquire
phase factors that depend on the quasimomentum k; see
Table I. But though the periodic gauge is unique and physical,
as we demonstrated by developing the generalized Bloch
theorem, there is an interesting connection between the
Berry curvatures of all possible Bloch Hamiltonians and the
Berry curvature in the periodic gauge. Namely, as we will
demonstrate in examples, the average of the Berry curvatures
of Bloch Hamiltonians, defined by a choice of the unit cell and
its partner cells connected by orthogonal transformations, is
equal to the Berry curvature in the periodic gauge.

V. BERRY CURVATURE CHARACTERIZATION

In the following two-dimensional examples, quasimomen-
tum is parametrized as k = (k1,k2) = (k · b1,k · b2). As we are
interested in the Berry curvature, IRs are general and Dj = 1.
Berry curvature is defined as

B = i
[〈
∂kx

un(k)
∣∣∂ky

un(k)
〉 − 〈

∂ky
un(k)

∣∣∂kx
un(k)

〉]
, (19)

where |un(k)〉 is the Hamiltonian eigenvector, n is the band
index, and derivatives are along the kx and ky directions in
reciprocal space. Besides U (1) symmetry that leaves Berry cur-
vature unchanged, permutation of vector’s |un(k)〉 components
also leaves invariant Berry curvature. These permutations are,
in fact, freedom in the choice of the order of the basis vectors
|0,aj 〉.

All three models, analyzed here, are relevant in the
description of the (fractional) quantum anomalous Hall effect,
i.e., (fractional) Chern insulators. The Berry curvature, usually
viewed as an intrinsic magnetic field in reciprocal space, is
responsible for various effects. The dispersion of its local
values gives a criterion for the stability of fractional Chern

FIG. 1. Honeycomb lattice with two sublattices A (circles) and
B (disks), with on-site energies M and −M , respectively. Nearest-
neighbor hopping amplitude is t1, while next-nearest-neighbor com-
plex hopping amplitude is t2e

iϕ in the arrow direction. Vectors b1

and b2 are direct lattice vectors. Light and dark gray areas are two
differently shaped unit cells.

insulator states [22,25–27]. Naturally, its symmetry has to be
the same as the symmetry of a crystal. In the examples in this
section it is shown that the Hamiltonian constructed by the
generalized Bloch theorem, i.e., by using full symmetry of a
crystal, has the most symmetric Berry curvature. In addition,
this curvature is compared with the curvatures of the Bloch
Hamiltonians.

We will give detailed explanations in the first example, the
Haldane model, making its exposition self-contained and also
enabling a reader to follow easily the rest of the examples in
this section.

The first and most relevant example is the Haldane
model [28] defined on the honeycomb lattice (see Fig. 1).
The symmetry group of this model is C3hT2, where Cnh (in
Schoenflies notation) is the group of rotations for 2π/n about
the z axis and reflection in the horizontal plane, T2 is the group
of two-dimensional translations along vectors b1 = a

√
3(1,0)

and b2 = a
√

3(−1/2,
√

3/2), and a is the nearest-neighbor
(NN) distance. Here, for simplicity, the symmetry group is
taken to be C3T2.

In the following, we will in simple terms, illustrating the
general approach described in Secs. III and IV, explain the
steps that lead to a unique (generalized Bloch) Hamiltonian
that respects all symmetries. The first step is to find vectors on
which the symmetry is realized, i.e., on which the irreducible
representation acts on and realizes the symmetry operations.
The second step is to use these vectors to constrain the space
of the eigenproblem; these vectors will make a (symmetry
constrained) basis for the eigenproblem, and express the
Hamiltonian in this basis.

To start with, let us consider all symmetry operations and
objects (general vectors) that they act on in the case of the
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Haldane model. In Fig. 1 we choose the light-gray area as a
unit cell, and the origin is fixed at the beginning of vectors
b1 and b2. The symmetry operation, C3, counterclockwise
rotation for 2π/3 around the origin, acts as a permutation, 1 →
2 → 3 → 1, for three A or B atoms. So, besides considering
spacial images such as C3A, we may associate 3-tuples to
each atom and consider that the 3-tuple at A is transformed
into the 3-tuple at C3A by the following matrix that represents
permutation:

D(C3) =
⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠.

This represents the part, i.e., the generator in the IR, cor-
responding to rotations in the group C3T2. To construct the
generators D(b1) and D(b2), for the translations T2 we first
notice that we may associate the first component of the 3-tuple
at atom A in the unit cell to the description of that atom A in that
cell because of the permutational link among 3-tuples of three
A atoms connected by rotation. Thus, the first component of the
3-tuple at A (that belongs to the unit cell) should transform by
an ordinary translation, i.e., should be multiplied by exp(−ik1)
and exp(−ik2) for the translations by b1 and b2, respectively.
We reach the rest of the atoms by rotations. It is natural to
represent equivalent translations in their reference frames as
exp(−ikRb1) and exp(−ikRb2), where R is the orthogonal
transformation, i.e., R = C−1

3 ,C−2
3 rotation that is necessary

to reach the reference frames of the other two atoms. In this way
we avoid singling out atom A in the unit cell and consider all
three atoms at equal footing, which is a symmetry requirement.
Thus the generators for the translations are

D(b1) = diag(e−ik1 ,ei(k1+k2),e−ik2 ),

D(b2) = diag(e−ik2 ,e−ik1 ,ei(k1+k2)).

This concludes the illustration in the Haldane case of the
general method of the induction of IR generators given by
Eq. (15) in Sec. IV.

Then we consider atoms A(a
√

3/2,−a/2) and
B(a

√
3/2,a/2) (see Fig. 1) in the unit cell as two orbit

representatives, i.e., representatives of two groups of atoms
that cannot be connected by symmetry operations. We call the
stabilizers of orbit representatives, A and B, two subgroups
of the symmetry group, SA and SB , that leave the positions of
atom A and atom B unchanged, respectively. They are

SA = {
e,(C3| − b2),

(
C2

3

∣∣b1
)}

,

SB = {
e,(C3|b1),

(
C2

3

∣∣b1 + b2
)}

,

where e ≡ (e|0) is the identity group element and (R|R)
is the group element in Koster-Seitz notation (orthogonal
transformation R followed by translation for vector R). The
3-tuples at atoms A and B we denote by |A〉〉 and |B〉〉,
respectively. To fulfill the requirement that the symmetry is
realized on these 3-tuples, we demand that all members of SA,
which we denote by Ā, leave |A〉〉 unchanged; i.e.,

|A〉〉 = 1

3

∑
Ā∈SA

D∗(Ā)|A〉〉 = PA|A〉〉. (20)

We applied Eq. (10a) for each symmetry operation and
summed. In Eq. (20) PA denotes a projector (P 2

A = PA and
P

†
A = PA) that constrains the description of |A〉〉, i.e., singles

out a certain combination of orbitals. Analogously we place
a constraint on vector |B〉〉; i.e., |B〉〉 = PB |B〉〉. Projectors
PA and PB correspond to the ones that enter Eq. (10b) in
Sec. IV of the general construction. These projectors are
one-dimensional, i.e., TrPA = TrPB = 1, and determine |A〉〉
and |B〉〉 up to a phase. Nevertheless, we can infer what that
phase should be. Namely, as can be found from projectors
PA and PB or from a general consistency argument between
translations and rotations in Sec. IV, see Eq. (16), the solutions
can be expressed in the following form:

|X,a〉(k) = exp
{
ikRX(a)aX − ika0

X

}|X,a〉(k = 0),

where X = A,B, and a = 1,2,3 for the three components
of the IR. Also RX(a) can be understood as the symmetry
operation to transfer atom X from the unit cell to the positional
partner a where we have RX(1) = I. Vectors aA/B in the
phases of both |A,1〉 and |B,1〉 are positions of the orbit
representatives, while the vectors in the second and third
components are position of atoms C−1

3 aA/B and C−2
3 aA/B ,

respectively. The overall phase with vector a0
X is constrained

by the requirement that a0
X be invariant under all orthogonal

transformations. This ensures the same gauge, i.e., a consistent
definition, fixing of 3-tuples in whole lattice space, i.e.,
atoms that can be reached by orthogonal transformations
R : Ra0

X = a0
X. In this way only the part with aX is affected;

i.e., aX → RaX. In this example the introduced vector a0
X is

the zero vector, as the only vector in the xy plane invariant
under the rotations. In three dimensions this vector can be
along the z axis, but by adding horizontal plane reflection it
becomes zero. Thus

|A〉〉 = (
ei

k1−k2
3 ,e−i

2k1+k2
3 ,ei

k1+2k2
3

)T
,

|B〉〉 = (
ei

2k1+k2
3 ,e−i

k1+2k2
3 ,e−i

k1−k2
3

)T
,

where T stands for transposition.
Therefore we determined the two vectors of the orbit

representatives, |A〉〉 ≡ |0,aA〉〉 and |B〉〉 ≡ |0,aB〉〉, and by
that we determined-fixed all 3-tuples on all atoms of the lattice
that can be reached by symmetry operations, R. These 3-tuples
we denote by |R0,RaX〉〉, X = A,B.

The next step, after the fixing the 3-tuples, i.e., the vectors
on which the symmetry of the lattice is realized, is to look
for the form of the Hamiltonian in the basis that these vectors
make. An arbitrary vector from the constrained space or the one
on which the eigenproblem is now defined can be expressed
as

|ψa〉 =
∑

X,R∈GX

fX|R0,RaX,a〉 =
∑
X

fX
̂|X,a〉,

where fX are the coefficients of the expansion. In the previous
equation GX denotes a set of group elements that connect
atoms in orbit X. The label a can denote any index of the
IR—due to their equal roles, i.e., symmetry, the choice of
the index a is arbitrary; i.e., a can be 1, 2, or 3 in our case.
The final form of the Hamiltonian matrix does not depend
on this choice. To find the form of the Hamiltonian in this
space we have to evaluate the matrix elements HX

Y , where
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X and Y can be either A or B. The matrix element HX
Y

may be viewed as a sandwich between ̂〈X,a| and ̂|Y,a〉. But,
because of the symmetry instead of ̂〈X,a| we may take just
〈X,a| ≡ 〈0,aX,a|. In other words it is irrelevant which atom
in orbit X we choose as a reference point from which we
will measure relevant interaction parameters for the matrix
element HX

Y . Thus, also following the general exposition in
Eqs. (13) and (14), in this case in which sA = sB = 3, we
have

HX
Y = 〈0,aX,a|H ̂|Y,a〉 =

∑
R∈GY

〈0,aX,a|H |R0,RaY ,a〉.

After an application of Eq. (10a) (as a basic representation of
group action) we have

HX
Y =

∑
b,R∈GY

D∗
ab(R)〈0,aX,a|H |0,aY ,b〉. (21)

This equation corresponds to Eqs. (13) and (14) in the general
construction. For example, if X = A and Y = B we have
to take into account the near-neighbor coupling t1, between
atom A and atoms from the orbit with the representative B.
Thus besides the sum over b, in order to evaluate HA

B , we
also have to sum over surrounding atoms that we enumerate
by group elements R necessary to reach them from the
representative B, {e,C2

3 ,−b2}.
As we pointed out in the previous paragraph, off-diagonal

element HA
B describes the interaction of the orbit representative

A with its three nearest-neighboring B atoms. These three
atoms are images of the group elements’ {e,C2

3 ,−b2} action
on the orbit representative B. Since the first component
|A,1〉 = exp[i(k1 − k2)/3] is nonvanishing, we can take a = 1
in Eq. (21) in this section, or Eqs. (13) and (14) in the
general construction. Now, we need matrix elements of IR
D1b(R), conjugate them, multiply with corresponding |B,b〉,
and sum over b. Only nonzero matrix elements of IR for
previous group elements are D11(e) = 1, D12(C2

3 ) = 1, and
D11(−b2) = exp(ik2), and the Hamiltonian (NN interactions
is t1) off-diagonal matrix element is

〈A,1|t1
{
[D∗

11(e) + D∗
11(−b2)]|B,1〉 + D∗

12

(
C2

3

)|B,2〉}
= HA

B = t1
(
ei

k1+2k2
3 + ei

k1−k2
3 + e−i

2k1+k2
3

)
.

Element HB
A is equal to HA

B

∗
. To find diagonal matrix

elements we have to sum over six interactions. Note that
orbit representatives’ hopping amplitude with three atoms is
t2 exp(iϕ) and with the other three t2 exp(−iϕ). In this way we
obtain

H
A/B

A/B = ±M + 2t2[cos(k1 ± ϕ) + cos(k2 ± ϕ)

+ cos(k1 + k2 ∓ ϕ)],

where upper signs are for HA
A and the lower ones for HB

B .
Although stabilizers are different for atoms in the dark-gray
area (see Fig. 1), we find that vectors |A/B〉〉 are just
permutations of the previous vectors, and Hamiltonian matrix
elements are the same. The resulting Hamiltonian stays the
same for any choice of orbit representatives, not necessarily
in a unit cell. Adding general reciprocal lattice vector G =
m1g1 + m2g2 to k, the diagonal Hamiltonian elements stay as
they are, while off-diagonal element HA

B gains constant (as

FIG. 2. (Color online) Berry curvatures, in the Brillouin zone, of
the lowest energy band for the Haldane model, with parameters M =
1, t1 = t2 = 1, and ϕ = 0.125π . In the lower part is the curvature for
the generalized Bloch Hamiltonian constructed here (Hamiltonian
in the periodic gauge). Upper left is for the Bloch Hamiltonian for
the light-gray (see Fig. 1) and upper right for the dark-gray unit
cell.

mi are integers) phase 2π (2m1 + m2)/3. This does not affect
the Berry curvature. The rotation of the k vector for integer
multiple of 2π/3 does not change the Hamiltonian at all.

The Berry curvature of the lowest energy band for the
Haldane model is given in Fig. 2; parameters are M = 1, t1 =
t2 = 1, and ϕ = 0.125π . It can be seen that the generalized
Bloch Hamiltonian has the most symmetric Berry curvature.
The curvatures of the Bloch Hamiltonians for the light and dark
gray unit cells (see Fig. 1) have only translational symmetry, in
the reciprocal space. By rotating light and dark gray unit cells
for 2π/3 and 4π/3 and constructing the Bloch Hamiltonians
for such unit cells, the Berry curvature is also rotated for the
same angle. The average of all three Berry curvatures, sepa-
rately for light and dark gray unit cells, is equal to the Berry cur-
vature of the generalized Bloch Hamiltonian. The equivalent
conclusion will hold in other examples. Notice that rotation
of the light-gray unit cell is equivalent to fixing one atom and
making the Bloch Hamiltonians for that atom and its nearest
neighbors.

The second example is the kagome [29,30] lattice model
(see Fig. 3). The atoms are indistinguishable, and the symmetry
of the crystal is a product of axial group C6 and 2D translations
along b1 = 2a(1,0) and b2 = 2a(−1/2,

√
3/2), where a is the

nearest-neighbor distance. The whole crystal can be obtained
by this group action on a single atom. Nevertheless, the
resulting Hamiltonian is equal to the Hamiltonian constructed
with symmetry group C2T2 having three orbit representatives.
For the sake of simplicity and to have the representation by
vectors with lower dimension (2 instead of 6), we will take
as symmetry group C2T2 with three orbit representatives. The
general irreducible representation of the generators is

D(C2) =
(

0 1
1 0

)
,

D(b1) = diag(e−ik1 ,eik1 ),

D(b2) = diag(e−ik2 ,eik2 ).
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FIG. 3. (Color online) Kagome lattice model with three sublat-
tices R [gray (red) disks], G [light-gray (green) disks], and B [dark-
gray (blue) disks]. Complex nearest-neighbor hopping amplitude is
t1 − iλ1 = t1e

−iφ in the arrow direction. Vectors b1 and b2 are direct
lattice vectors. Light and dark gray areas are two differently shaped
unit cells.

As the resulting Hamiltonian does not depend on the choice of
orbit representatives, we will take, for example, atoms from the
dark-gray unit cell R(−a/2,a

√
3/2), G(−a/2,−a

√
3/2), and

B(−a,0) (see Fig. 3). Stabilizers for these atoms are SR =
{e,(C2|b2)}, SG = {e,(C2|−b1 − b2)}, and SB = {e,(C2| −
b1)}. Again, the projectors for these stabilizers are one-
dimensional with vectors

|R〉〉 =
(

ei
k2
2

e−i
k2
2

)
, |G〉〉 =

(
e−i

k1+k2
2

ei
k1+k2

2

)
, |B〉〉 =

(
e−i

k1
2

ei
k1
2

)

in their ranges and in the necessary gauge. Here, as in
the previous example, vectors a0

j are zero. Also, the first
components have aj vectors equal to the positions of orbit
representatives, while, in the second components, vectors are
the positions of atoms rotated for π .

Now, as in the Haldane example, with the help of Eqs. (13)
and (14), the generalized Bloch Hamiltonian is

H = 2t1

⎛
⎜⎝

0 e−iφ cos k1
2 eiφ cos k1+k2

2

eiφ cos k1
2 0 e−iφ cos k2

2

e−iφ cos k1+k2
2 eiφ cos k2

2 0

⎞
⎟⎠.

It is obvious that this Hamiltonian is invariant under the
rotation for π . A rotation for 2π/6 and reordering basis vectors
[(RGB) → (GBR)] leaves the Hamiltonian unchanged. This
means that the Berry curvature is invariant under rotation for
2π/6. By adding an arbitrary vector of reciprocal lattice to k,
off-diagonal elements might change their sign which is of no
influence on the Berry curvature.

The Berry curvature of the lowest energy state of the
generalized Bloch Hamiltonian is given in Fig. 4 (lower).
Notice that it has the full symmetry of the crystal. Above
are the Berry curvatures, also for the lowest energy state, of
the Bloch Hamiltonians for light-gray (left) and dark-gray
(right) unit cells (see Fig. 3). Again, the average of any of
these two Berry curvatures and ones rotated for π (i.e., of

FIG. 4. (Color online) Berry curvatures of the lowest energy band
for the kagome model (parameters are t1 = 1 and φ = π/4) in the
Brillouin zone. Upper left is of the Bloch Hamiltonian for the light-
gray (see Fig. 3) and upper right for the dark-gray unit cell. Lower is
for the generalized Bloch Hamiltonian constructed here.

the Bloch Hamiltonians for unit cells rotated for π , which
is the symmetry of the model), is the Berry curvature of
the generalized Bloch Hamiltonian. Notice that the Berry
curvature for the light-gray unit cell is symmetric under
rotation for 2π/3, like that unit cell, while for the dark-gray
unit cell has only the translational symmetry.

Finally, the third example is the brick-wall model [4].
In order to illustrate the case with anisotropic interactions
with nonzero vectors a0

j , we took the model without the
next-nearest-neighbor hopping amplitude t2 = 0 (see Fig. 5).
This model is invariant under the 2D translations along b1 =
d
√

2(1,0) and b2 = d
√

2(0,1), where d is the NN distance,
and the rotation for π about the horizontal U axis (center line
of b1 and b2). The general irreducible representation for these

FIG. 5. The brick-wall lattice model (t2 = 0) with two sublattices
A (circles) and B (disks), with on-site energies M and −M ,
respectively. The nearest-neighbor hopping amplitude is t1, only
between connected atoms. The distance of NNs is d . Dashed line
is the group element U , horizontal axis of rotation for π . Vectors b1

and b2 are direct lattice vectors. Gray area is one choice for unit cell.
Other choices are A atom from that unit cell with one of the nearest
neighbors, B atom 2, 3, or 4.
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FIG. 6. (Color online) Berry curvatures of the lowest energy band
for the brick-wall model (parameters are M = 1, t1 = 1, and t2 =
0) in the Brillouin zone. All the curvatures are for the unit cells
containing atom A in the origin (see Fig. 5). Upper left is for the Bloch
Hamiltonian for the gray unit cell [a0

B = (b1 + b2)/2] and upper right
for the unit cell with B atom 3 [a0

B = −(b1 + b2)/2]. Lower is for the
generalized Bloch Hamiltonian with a0

B = 0, i.e., the Hamiltonian in
the periodic gauge.

generators is

D(U ) =
(

0 1
1 0

)
,

D(b1) = diag(e−ik1 ,e−ik2 ),

D(b2) = diag(e−ik2 ,e−ik1 ).

The stabilizers for the atoms A and B in the gray UC are equal
SA = SB = {e,U}. Vectors from the range of the projector for
this stabilizer are

|A〉〉 = e−ik·a0
A

(
1
1

)
, |B〉〉 = e−ik·a0

B

(
ei(k1+k2)/2

ei(k1+k2)/2

)
,

with an arbitrary a0
A/B along b1 + b2, aA = 0, and aB = (b1 +

b2)/2. Since one of the vectors a0
A/B is redundant, we can take

a0
A = 0 and let a0

B = c(b1 + b2) with an arbitrary constant c.
With the vectors |A/B〉〉, the generalized Bloch Hamiltonian
matrix elements are HA

A = M = −HB
B and

HB
A

∗ = HA
B = e−ik·a0

B t1

(
2 cos

k1 − k2

2
+ ei

k1+k2
2

)
.

Notice that the Hamiltonian matrix elements are invariant
under the rotation for π about U , while adding general
reciprocal lattice vector G = m1g1 + m2g2 to k brings a
constant phase π + c(m1 + m2)2π into off-diagonal elements.

Different vectors a0
B provide different gauges. If a0

B is equal
to zero we have for the generalized Bloch Hamiltonian the
Hamiltonian in periodic gauge. If we choose a0

B to be equal
to the position of the B atoms 1 or 3 [a0

B = ±(b1 + b2)/2,
with plus for the atom 1 and minus for 3], then the generalized
Bloch Hamiltonian is the Bloch Hamiltonian for the unit cells
with central atom A and B atoms 1 or 3, respectively. Notice
that the symmetry does not allow a construction of the Bloch
Hamiltonian for the unit cells with the B atoms 2 or 4.

Again, all the possible (by varying a0
B) Berry curvatures

for the generalized Bloch Hamiltonian have the symmetry of
the model. The Berry curvature of the lowest energy state
of the Hamiltonian in periodic gauge (a0

B = 0) is given in
the lower part of Fig. 6. Others are the curvatures for the
lowest energy state of the Bloch Hamiltonians constructed
with different unit cells, atom A being one in the origin and
the B atom being 1 or 3. The unit cells with atoms 1 and 3
have U symmetry and therefore their Berry curvatures, upper
left and upper right in Fig. 6, respectively, have the following
transformation property: UB(k1,k2) = −B(k2,k1). Although
the symmetry of the curvatures is the same, the average of
these two curvatures is the curvature of the generalized Bloch
Hamiltonian for a0

B = 0, i.e., the Hamiltonian in the periodic
gauge. As a consequence, here, like in the Haldane model, the
Berry curvature of any eigenstate of the Hamiltonian in the
periodic gauge is the average of the curvatures of the Bloch
Hamiltonians constructed for the unit cells made of one fixed
atom and its nearest neighbors.

VI. SUMMARY

The Bloch theorem is generalized to the case when a
crystal is invariant under more symmetry operations than just
translations. The method applied can be used even in the case of
the systems without translational symmetry such as molecules.
In this generalization the method provides the most symmetric,
in the reciprocal space, Hamiltonian and Berry curvature. The
resulting Hamiltonian coincides with the Hamiltonian defined
by the periodic gauge. In addition it is shown, for any energy
band, that the curvature of the Hamiltonian in the periodic
gauge is equal to the average of the curvatures of the Bloch
Hamiltonians for all possible unit cells.
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