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M. V. Milovanović,1 E. Dobardžić,2 and Z. Papić3
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Quantum Hall bilayer phase diagram with respect to interlayer distance bears a remarkable similarity with
phase diagrams of strongly correlated systems as a function of doping, with magnetic ordering on the one end and
Fermi-liquid-like behavior on the other. Moreover, it has been suggested [Phys. Rev. Lett. 101, 176803 (2008)]
that a BCS correlated state of composite fermions with p-wave pairing may exist in the intermediate region. In
the same region, an exact diagonalization study in the torus geometry [Phys. Rev. B 69, 045319 (2004)] pointed
out the existence of state(s) with pseudospin spiraling order. Here we reconcile these two descriptions of the
intermediate state by considering the underlying bosonic representation of the composite fermion paired state
in the long-distance limit, and by performing extensive exact diagonalizations on the torus. We argue that the
spiraling states belong to the manifold of degenerate ground state(s), and are a consequence of Bose condensation
of the quasiparticles (with critical algebraic correlations) at nonzero momenta in the two pseudospin states. The
spiraling states, generated in this way as spin textures, can be identified with meron-antimeron constructions.
Thus, merons—the fractionally charged vortex excitations of the XY magnetically ordered state—constitute some
of the topological sectors. It follows that merons are deconfined in the intermediate state, and allow for a smooth
transition between the magnetically ordered and Fermi-liquid-like phases, in which they are bound in pairs.
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I. INTRODUCTION

Multicomponent fractional quantum Hall (FQH) systems
feature rich physics of strongly interacting electrons. In
contrast to strong electronic correlations in various (material-
dependent) crystal settings, in FQH systems the kinetic
energy is effectively removed from the problem due to the
Landau quantization in strong magnetic fields. This makes the
multicomponent FQH systems a simpler (better controlled)
setting that is amenable to the investigations of fundamental
physics of strongly correlated electrons.

One of the most prominent examples of multicomponent
FQH systems is the quantum Hall bilayer (QHB) at total
filling factor one. The filling factor ν = 2π�2

Bρ is defined
as a product of electron density ρ and the magnetic area
2π�2

B , where �B = √
h/eB is the emergent length scale in

the magnetic field (“magnetic length”) [1]. Alternatively, the
filling factor represents the ratio of the number of electrons
N to the number of magnetic flux quanta N� through the
system. In the case of the ν = 1 QHB studied here, there
are two quantum wells (“layers”) that we label by ↑ ,↓,
and N = N↑ + N↓ = N�. Note that throughout this work we
assume the ordinary electron spin to be fully polarized by the
external magnetic field.

Because of the twofold layer degree of freedom, in general
we need to distinguish the interaction between electrons in the
same layer (“intralayer”) versus electrons in opposite layers
(“interlayer”). The difference between these two interaction
strengths can be tuned experimentally via the parameter
called the bilayer distance d, which makes the physics in
this system much richer compared to an ordinary system of
electrons with spin. The QHB system has indeed attracted
much attention since the time of the theoretical prediction [2,3]
and experimental detection [4] of the ordered state of excitons
(bosons) that forms when d � �B , despite the fact that the

fundamental charge carriers in the system are fermions.
Perhaps equally remarkable and interesting is the physics
at larger (intermediate) distances, typically 1 � d/�B � 2.
There, an intermediate phase of paired composite fermions,
introduced in Ref. [5] [see Eqs. (4) and (5) below], is believed
to exist. On the other hand, an exact diagonalization study
of the system in the torus geometry [6] also pointed out the
existence of pseudospin state(s) with spiraling order in the
intermediate region. Here we reconcile these two descriptions
of the intermediate region by considering the underlying
bosonic representation of the composite fermion paired state
in the long-distance limit, and by performing extensive exact
diagonalization studies on the torus.

This paper is organized as follows. In Sec. II we start with an
overview of the QHB physics from the point of view of model
wave functions. We first discuss the limits of small and large
bilayer distances which are well understood and correspond
to the exciton superfluid and the product of two decoupled
(composite) Fermi liquid states, respectively. We also review
the theoretical evidence for a paired phase in the regime
of intermediate bilayer distances, and briefly motivate and
summarize our contributions. In Sec. III we provide a simple
physical picture for the formation of the putative intermediate
state. Section IV contains results of exact diagonalization
studies of the QHB on the torus. In Sec. V we discuss the
torus results from the composite boson viewpoint, and give
arguments for meron deconfinement in the intermediate region.
We conclude in Sec. VI with a short summary and discussion.
Appendixes contain further results on the intermediate phase.

II. BILAYER PHASES AND THEIR MODEL
WAVE FUNCTIONS

The QHB at the total filling factor one consists of two
quantum Hall monolayers separated by distance d in the

1098-0121/2015/92(19)/195311(13) 195311-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.101.176803
http://dx.doi.org/10.1103/PhysRevLett.101.176803
http://dx.doi.org/10.1103/PhysRevLett.101.176803
http://dx.doi.org/10.1103/PhysRevLett.101.176803
http://dx.doi.org/10.1103/PhysRevB.69.045319
http://dx.doi.org/10.1103/PhysRevB.69.045319
http://dx.doi.org/10.1103/PhysRevB.69.045319
http://dx.doi.org/10.1103/PhysRevB.69.045319
http://dx.doi.org/10.1103/PhysRevB.92.195311
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z direction (perpendicular to both layers). The tunneling
between the layers can be nearly completely suppressed in
experiment. Therefore, we can assume that N↑ = N↓ and each
layer is at filling one-half. In the following we first give the
basic physical picture of the ground state in the limit of either
small (d � �B) or large distances d � �B , followed by the
discussion of the intermediate regime 1 � d/�B � 2.

A. Small bilayer distances: Exciton superfluid

For small distances, the intra- and interlayer interactions
are of similar strength, and favor each electron in one layer
to be directly on top of a hole in the other layer, which
drives exciton formation. In this simplified picture we can
differentiate between up and down excitons, but due to the
quantum-mechanical uncertainty in which layer an electron
is, we must include the pseudospin (layer) degree of freedom.
The appropriate model function at total filling factor one then
reads [2,3]

�exc(z1, . . . ,zN ) =
N∏

i<j

(zi − zj )e
− 1

4�2
B

∑
k |zk |2 × | → · · · →〉.

(1)

The spatial part of the wave function is written in terms
of two-dimensional (2D) electron coordinates zj = xj + iyj

(regardless of the layer index), and assumes the circular
gauge for the magnetic field in the infinite plane. The spatial
correlations are encoded via the Laughlin-Jastrow factor (zi −
zj ), and the wave function vanishes at large distances because
of the Gaussian term that originates from the single-electron
orbitals [1].

Note that the wave function also contains the pseudospin
part |→ → · · · →〉. The pseudospin of each electron points
to the same direction, due to the combined effect of the
Pauli principle and the Coulomb interaction. The state of each
particle j is given by the pseudospin,

|→j 〉 ≡ 1√
2

(|↑j 〉 + eiφ|↓j 〉), (2)

i.e., the pseudospin is polarized in the XY plane. This happens
because of the capacitor effect which enforces the equality of
total charges in the “up” and “down” layer, and breaks the
SU (2) spin symmetry, assumed to exist at d = 0, down to
U (1). This correlation condensation was detected in several
experiments, e.g., Spielman et al. [4], although the “zero-bias
peak” anomaly was never as high and sharp as in the similar
experiments on superconductors. More recent experiments
using Coulomb drag and counterflow measurements are also
completely in favor of exciton formation (for a recent review,
see Ref. [7]).

B. Large bilayer distances: Product state of two composite
Fermi liquids

When the layers are far apart, it is well known that
each half-filled layer is in the state of the “Fermi-liquid-
like” state [8]. For example, the state of the upper layer is

given by

�FL(z1, . . . ,zN↑ )

= det
(
e

i
2 (kmz̄n+k̄mzn)

) N↑∏
i<j

(zi − zj )2 × |↑ . . . ↑〉, (3)

where we dropped the single-particle Gaussian factors. The
Fermi liquid correlations result from the factor det(eikmrn) that
represents the Slater determinant of plane waves. Here, {k} is
the set of 2D momenta that define the 2D Fermi sphere and we
have substituted kr = (kz̄ + k̄z)/2. The total wave function of
the system in this case is just a direct product of independent
layers,

�FL(z↑
1 , . . . ,z

↑
N↑ ) ⊗ �FL(z↓

1 , . . . ,z
↓
N↓ ).

Notice that both �exc and �FL contain a part which is the
product of the differences of z’s (the Laughlin-Jastrow part).
This part of the wave function fixes the filling factor of the
state, which can be seen as follows. On the one hand, the
highest exponent in any of the z’s is equal to the number of
flux quanta through the system, which is the degeneracy of the
lowest Landau level (LLL). On the other hand, this number
is equal to the number of electrons in the case of �exc, and
twice larger than the number of electrons in the case of �FL,
as follows from the filling factors. Thus, formally speaking the
Laughlin-Jastrow part is the “charge” part of the wave function,
while the rest is the “neutral” part. In �exc the neutral part is
the condensate of pseudospins. In �FL the neutral part contains
the Slater determinant which introduces the complex conjugate
coordinates z̄. Thus �FL in general has a nonzero projection
on many Landau levels and not just the LLL. If �FL is to be
used a LLL trial wave function, in general it must be explicitly
projected via a complicated derivative operator PLLL to make
it a function of z’s only [8]. Nevertheless, in the long-distance
regime with the sample length L � �B , we may assume that z

and z̄’s commute, and thus in this regime the form of the wave
function formally decouples into charge and neutral parts.

C. Intermediate distances: A paired phase

Given that the QHB ground state in the limits of both small
and large d is in a liquid phase, it seems unlikely that a possible
intermediate state is a charge-density wave (that breaks the
translation symmetry).

A possible way to describe this evolution is to start from
the Bose condensate which is smoothly modified by two Fermi
condensates that grow as the distance d increases [9]. In such
a study on the sphere [5] it was found that the two Fermi
condensates pair in the manner of weakly paired BCS px +
ipy wave Cooper pairs. (We use the phrase “weakly paired”
to denote Cooper pairs that are not exponentially localized.)
Thus, at the end of the evolution of the superfluid state one
may expect the following wave function [5]:

�PSF({z↑},{z↓}) =
N/2∏
i<j

(z↑
i − z

↑
j )2 ×

N/2∏
i<j

(z↓
i − z

↓
j )2

× det(g(r↑
m − r↓

n )), (4)
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to describe the system. We use here and below a shortened form
of the wave functions with spin, where spatial coordinates
carry spin. It is understood that by combining the spatial
wave functions with spinor wave functions, and summing
with proper sign factors over all ways of choosing which
electrons have which spin, we get proper totally antisymmetric
wave functions. In Eq. (4) “det” denotes the antisymmetrized
product of N/2 pairs of Cooper pair wave functions, g(r↑

m −
r↓
n ), where m,n = 1, . . . ,N/2 and m 
= n. The Cooper pair

wave function g(r↑
m − r↓

n ) describes px + ipy pairing, i.e., at
small distances it behaves as [10]

g(r↑
1 − r↓

2 ) = (z1 − z2)lh(|r1 − r2|), (5)

with h(0) 
= 0, and l = 1 which fixes the relative angular
momentum of the Cooper pair.

Based on the study of Ref. [5], other numerical studies
(summarized in Sec. III), and our results (Sec. IV), we will
adopt the view that an intermediate state does exist and can be
modeled as a BCS p-wave paired state of composite fermions.
The question of whether in the thermodynamic limit we obtain
a critical region (phase) or rather a critical point is more subtle
because of the limitations of all the existing numerics to small
system sizes. Therefore, we will use the term “intermediate
phase” loosely, keeping in mind the possibility of it becoming
a critical point in the limit of a very large (clean) system.

In the remaining part of this section, we will introduce
in a formal way a possible alternative description of the
intermediate state based on the picture of composite bosons,
which we expect to be relevant in the long-distance limit. First,
we would like to point out that the most natural long-distance
weak pairing behavior of the pair function in Eq. (4) with l = 1
would be

g(r↑
1 − r↓

2 ) ∼ 1

(z̄1 − z̄2)
. (6)

This coincides with the existence of a BCS description with
a gap function 	k ∼ kx + iky , i.e., 	k is an eigenfunction of
rotations in 2D with l = 1 (see Ref. [11]).

This generic behavior may be used to define a suitable
candidate for a projected p-wave paired composite fermion
wave function valid at all distances in the LLL,

�̃PSF = PLLL

⎧⎨
⎩det

(
1

z̄
↑
m − z̄

↓
n

) N/2∏
i<j

(z↑
i − z

↑
j )2

N/2∏
i<j

(z↓
i − z

↓
j )2

⎫⎬
⎭,

(7)

where PLLL denotes the necessary projection to the LLL (see
Appendix B for the details of the projection). Here we confine
ourselves to the long-distance regime, i.e., consider Eq. (4)
with (6). In this regime, the particles may be considered
pointlike as the relevant probing wavelengths are much larger
than �B . Thus, to obtain the long-distance properties we use
Eq. (4) with (6), instead of the proper LLL function [Eq. (7)],
assuming as usual that the universal (topological) properties
are insensitive to the microscopic differences between the
two wave functions. In the following, we will explain how
in this regime of the p-wave composite fermion pairing we
can also consider a composite boson representation, which
will enable us to describe the topological features (degenerate

ground states on the torus and quasiparticle content) of the
intermediate state.

Thus the model wave function for the state into which the
superfluid evolves, in the long-distance limit when z and z̄

commute, is

�PSF =
N/2∏
i<j

(z↑
i − z

↑
j )2

N/2∏
i<j

(z↓
i − z

↓
j )2det

(
1

z̄
↑
m − z̄

↓
n

)
. (8)

Using the Cauchy identity, we can rewrite the wave function
in the following form:

�PSF =
∏
i<j

(zi − zj )det

(
1

z
↑
m − z

↓
n

)
det

(
1

z̄
↑
m − z̄

↓
n

)
. (9)

Again, at long distances the charge and neutral part formally
decouple, and the neutral part can be viewed as a wave function
of some underlying composite boson quasiparticles. Further-
more, the neutral part is the product of two determinants, and
a careful conformal field theory (CFT) analysis [12,13] will
allow for an existence of a branch of gapless excitations (see
Appendix A) on top of this nonchiral state.

These formal arguments also suggest that there is a
possibility of interpreting the intermediate phase in the QHB
in terms of bosonic quasiparticles that correlate in a special
way via Eq. (9). From Eq. (9) (see also Appendix A) we can
read off that the one-particle exciton (or composite boson)
correlation function is

lim
r→∞〈ψ†

↑(r)ψ↓(0)〉 ∼ 1

r2
. (10)

Therefore, instead of the long-range order that we had in
Eq. (1), in this ground state we have quasi-long-range order.
Indeed, in the finite-size study performed in Ref. [5], it was
noticed that the excitonic superfluid order parameter, i.e.,
〈ψ†

↑(r)ψ↓(0)〉, persists in the state with no correlated bosonic
quasiparticles in the manner of Eq. (1) (i.e., the so-called “111”
state [14]).

It follows that these critical bosons [Eq. (9)] may exist in a
region between a ferromagnetically ordered and a completely
disordered phase, and thus we may expect a gapless mode and
compressible behavior in the neutral sector. This is supported
by exact diagonalization studies on the sphere [15], but also
by the detection of ordered (correlated) behavior in early
experiments [4], which were performed at distances where
we expect the physics of the intermediate state to be relevant.

But what makes the intermediate region so attractive, as we
will show in greater detail by exact diagonalization studies
on torus [Sec. IV], is the existence of competing ground
states at momenta that diverge in the thermodynamic limit,
and thus define different sectors of the system. This signals
a topological structure that coexists with gapless behavior. A
convenient way of describing various sectors, as we will argue,
is to take the composite boson view of the ground-state pairing
correlations. Then Bose condensates under different boundary
conditions [11,16] can be identified with the competing ground
states from exact diagonalization studies on the torus.

As usual in topological systems, the torus ground states can
be connected with quasiparticles of the topological phase under
consideration. We expect this also to be valid in our gapless
system, and by Bose condensing in two different pseudospin
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states, we will be able to connect different ground states with
meron spin textures. This opens a door for the possibility
that merons—fractionally charged vortices of the XY ordered
state [3]—exist as free (deconfined or not bound in pairs)
quasiparticles in the intermediate state.

The first exact diagonalization study on the torus that
pointed out the existence of the competing ground states
with momenta that diverge in the thermodynamic limit was
done by Park [6] (see Appendix C for a brief review of the
relationship between Ref. [6] and our work). In Ref. [6]
a spiraling structure in the competing ground states was
identified, and it was argued that the intermediate phase
possesses a pseudospin spiral order. Therefore, the competing
states were interpreted as new developing ground states that
replace the XY ordered state (valid for smaller distances)
due to a (classical) symmetry-breaking ordering. On the other
hand, in this work we give numerical and analytical reasons
to consider an intermediate state with richer topological
content than the XY ordered state (which has a simple integer
quantum Hall effect characterization). In the intermediate
phase, due to topological order, new quasiparticles emerge
and define additional ground states on the torus which
have a spiraling structure. In this way our work suggests
a way to reconcile and unify the views of the intermediate
phase based on the previous numerical approaches, especially
Refs. [5,6].

III. THE FORMATION OF THE INTERMEDIATE STATE:
A PHYSICAL PICTURE

One may naively estimate that the transition to a disordered
phase occurs around d ∼ �B , and this estimate is in agreement
with several results in the literature that we summarize here.
(i) The calculated threshold for the disappearance of the
long-range correlated composite bosons and the extrapolated
estimate for the vanishing of the long-range order parameter in
Ref. [5]. (ii) The change in the DMRG spectrum computed in
Ref. [17], i.e., a “change in the nature of excited state” with a
“sudden decrease in the excitation gap.” (iii) An abrupt change
in the velocity of the Goldstone mode in Ref. [15]. (iv) Exact
diagonalization (ED) studies (EDs) presented here as well as
in Ref. [6], showing the level crossing for the first excited state
around d ∼ �B .

The physical picture of the evolution of the bilayer is the
following: In the ordered XY phase we have locally equal
probability to find an up and down exciton. As we increase
the distance between the layers, the intralayer Coulomb
interaction becomes dominant and we need to place the up
excitons, and separately down excitons, further apart. One
natural resolution would be an Ising order (charge density
wave), but another viable possibility is to slowly disturb the
long-range ordering and create spin textures as ground state(s).
In the magnetic description of Ref. [18], the tendency to
create spin textures may be recognized by the presence of
frustrating next-nearest-neighbor Ising couplings. Thus the
magnetic (bosonic) description of the intermediate phase may
be useful along with the fermionic description presented in
Ref. [5].

IV. EXACT DIAGONALIZATION RESULTS ON
THE TORUS

In this section we present results of exact diagonalization
calculations performed on the torus geometry. We model a
finite system of N electrons moving on a surface spanned by
vectors L1 and L2. We fix the filling fraction to be one, which
leads to the condition |L1 × L2| = 2π�2

BN . The focus of our
investigation is on the liquid phases, hence we consider an
isotropic torus geometry, i.e., the length of the two vectors is
the same (aspect ratio equal to one). Additionally, we can also
vary the angle θ between the two vectors L1 and L2. Unless
otherwise specified, we fix θ = π

2 , corresponding to centered
rectangular symmetry.

The interaction between electrons consists of an intralayer
Coulomb potential, given by the Fourier transform,

Vintra(q) = 2π

q
, (11)

and the interlayer Coulomb repulsion which is screened by the
bilayer distance,

Vinter(q) = 2π

q
e−qd . (12)

The interaction potentials are made appropriately periodic
(i.e., q assumes values 2π/L1,2 times an integer) to satisfy
the periodic boundary conditions.

After specifying the geometry and the interaction potential,
the basic procedure of exact diagonalization is to represent the
Hamiltonian of the system as a large finite matrix and diago-
nalize it on a computer. In order to extract physical information
about the energy spectrum and the system’s eigenstates, it is
essential to label them with good quantum numbers. In this
case, the complete symmetry classification was first achieved
by Haldane [19]; the primary quantum number that emerges
from such an analysis is the two-dimensional momentum that
characterizes the invariance under magnetic translations. This
momentum is generically conserved for any translationally
invariant interaction, and we will use it below to label the
eigenstates of the system (see Ref. [20] for a recent overview
of the many-body translation symmetry classification in the
magnetic field).

In Figs. 1 and 2 we present ED results on the torus of the
bilayer system with odd numbers of particles. In Fig. 1 we
show the energy spectrum versus conserved momentum k�B

in the systems with N = 13 (a) and N = 15 electrons (b). In
this figure, the bilayer distance is fixed at d = 1.5�B , i.e., in
the middle of the transition region. Because the total number
of particles N is odd, we restrict to the largest sector of the
Hilbert space with N↑ = (N + 1)/2 and N↓ = (N − 1)/2.

More generally, the evolution of the entire spectrum as
the bilayer distance is varied as presented in Fig. 2(a). In
Figs. 2(b)–2(d) we show several snapshots of the energy
spectrum in Fig. 2(a) plotted as a function of momentum. We
choose three values of d = 0.5�B,1.5�B,2.5�B that tentatively
correspond to three different regimes: the 111 state, intermedi-
ate region, and the onset of decoupled composite Fermi liquids.
The unit cell in Figs. 2(b)–2(d) is approximately the square,
and insets show the same results for the hexagonal geometry.
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FIG. 1. Energy spectrum versus momentum k�B in the odd sector
on the torus. (a) Shows the spectrum for N = 13 electrons, while
(b) is for N = 15. In both cases the aspect ratio r = 1, cos θ = 0,
and bilayer distance d = 1.5�B . Levels are plotted relative to the
corresponding ground state.

What we can see in both geometries [Figs. 2(b)–2(d)] as
well as Fig. 1, is that at distance d = 1.5�B two distinct states
“fall” from the excited (continuum) part of the spectrum: for
example, the state around k ∼ 4�−1

B and another one at k ∼
6�−1

B in Fig. 2(c). The state with the momentum k ∼ 4�−1
B

was first pointed out in the study of Park [6]. Our results
suggest that this state evolves hand in hand with another one
at momentum k ∼ 6�−1

B in Fig. 2(c). The presence of these
two states is robust and does not depend on system size, for
example, a larger N = 15 system shown in Fig. 1 contains the
same doublet of states. We notice that these “special” states
compete with the ground state at k = 0 as d becomes larger.

The two special states in fact each comprise a family of four
states connected by symmetry operations (simple translations
and inversion). Thus, in Fig. 1 we find a set of four states that
correspond to the lower energy excitation (with k ∼ 4�−1

B ):

(N↑,0), (N↓,0), (0,N↑), and (0,N↓), (13)

in units of 2π/L where L =
√

2π�2
BN . This set of states is

followed by the excitation at

(N↑,N↑), (N↓,N↑), (N↑,N↓), and (N↓,N↓), (14)

with a slightly higher energy (with momentum k ∼ 6�−1
B ). We

note that we have identified such states in all odd systems we
studied, e.g., N = 9,11,13, and 15.

Thus we may conclude that at distances where we may
expect the intermediate phase, by examining the torus results
we find competing ground states at momenta that diverge in the
thermodynamic limit. This may be indicative of the presence
of Bose condensation and spin textures, but requires additional
analysis.

Studies of the gapless Goldstone mode, e.g., the numerical
one on the sphere [15] and the experimental detection in
Ref. [4], suggest that even though the numerical work,
as summarized in Sec. IV, points to the formation of the
disordered state around d ∼ �B , a linear gapless mode persists
to exist in this phase. Thus although we may notice “a small
gap structure” in Fig. 2(d) after d ∼ �B , it is likely that it does
not represent a paramagnetic phase. Because of the finite-size
effects and geometry, this “weak Goldstone” mode of, as we
will argue, critical bosons, is distorted. Despite the distortions,
in the hexagonal geometry at d = 2.5�B , we can see clearly,
as we explain in the following section, consequences of the
physics of critical bosons in the intermediate state: we find
three (almost) degenerate ground states (families with mem-
bers connected with symmetry operations) and discernible
gapless modes that have beginnings in these states.

In order to examine in more detail the question of the
existence and description of gapless modes by EDs, energy
spectrum was obtained by varying the torus angle θ . In this
way, as we sweep θ continuously between π/2 and π/3,
we obtain many different resolutions of momenta k, which
produces a quasicontinuous energy spectrum. In Fig. 3 we
perform such a calculation in the ordered phase (d = 0.5�B ),
where we find clear evidence for a linear gapless mode. In
Fig. 4 we perform a similar calculation for d = 1.5�B , i.e.,
in the intermediate region. Here it is strongly suggestive that
the two families of states in Eqs. (13) and (14) indeed evolve
together as the system is adiabatically deformed, and likely
belong to the same gapless excitation branch. The distortions
of a finite system do not give us a rigorous proof of the gapless
mode, but we can expect that if such a mode exists it will appear
in the manner produced by the probe. Thus with the distortion
we can just produce a state at the “distorted momentum,” or we
can access the energy of the state belonging to the excitation
branch in the 2D momentum space, at missing (undistorted)
momentum in the finite-size system.

In the even sector (N even) of the EDs on torus, Fig. 5,
we can similarly recognize the competing ground states with
momenta that diverge in the thermodynamic limit. We will
postpone the discussion of these results to Sec. V B and
Sec. V C. Before that, in the same section, it will be explained
how ground states at k 
= 0 emerge from the physics of critical
bosons.

V. A STATE OF CRITICAL BOSONS AT
INTERMEDIATE DISTANCES

A. The intermediate state and critical bosons

Though from the torus results (Figs. 1 and 5) we cannot
claim the ideal degeneracy of the competing states, their
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FIG. 2. (Color online) (a) Evolution of the energy spectrum in the odd sector on the torus as a function of bilayer distance d/�B . Levels
are plotted relative to the ground state at each d and quoted in units of e2/ε�B . Levels belonging to the three high-symmetry sectors
have been designated by colors indicated in the legend. (b)–(d) Energy spectrum versus momentum k�B in the odd sector on the torus for
d = 0.5�B,1.5�B,2.5�B . In all cases N = 13, cos θ = π/2, and aspect ratio is set to r = 0.99 to slightly break the discrete rotation symmetry.
Levels are plotted relative to the corresponding ground state for each value of d . (Insets) Hexagonal geometry (θ = π/3 and r = 1).

configuration is robust and characterizes the intermediate
region. (We have verified this in systems of size up to 15
electrons in the odd sector, and up to 14 electrons in the
even sector.) Therefore, the systems analyzed are likely near
a critical point, line, or perhaps even a region [5] in the
parameter space where there is ideal degeneracy, implied by
the topological structure of the model function [Eq. (8) or (9)].

In the following we explain how the “extra” competing
ground states at nonzero momenta can be interpreted as pairs
of merons (charged vortices of the superfluid state at small d),
whose spiraling period is commensurate with the length(s) of
the system. These spiraling configurations were considered in
the work of Park [6], but here we would like to point out that
on the torus they can be viewed as a consequence of the physics
of critical bosons. In this way we will relate the physics of long

0
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0.2

0.25

0.3

0.35

0.4

0 0.5 1 1.5 2 2.5 3

E
-E

0

klB

FIG. 3. (Color online) Goldstone mode for the bilayer distance
d = 0.5�B . Quasicontinuous E(k) energy spectrum is obtained by
varying the torus angle θ for a fixed aspect ratio r = 1. Data are
shown for all system sizes between N = 8 and N = 17 electrons in
total. Levels are plotted relative to the corresponding ground state for
each θ and N .

spiraling on the torus and critical (composite) bosons to the
existing description in terms of p-paired states of composite
fermions (see Introduction and Ref. [5]).

To capture the critical correlations of bosons, in the
following we will consider bosons with the critical BCS pair-
ing function g(r) ∼ 1/r2, i.e., g(k) ∼ − ln |k| in momentum
space. Thus we assume that the dominant contribution in
Eq. (9) are pairwise correlations and that the state can be
considered as a BCS correlated state of bosons (where the
correlations are expressed in terms of a permanent and not the
more usual determinant).

The assumption of only pairwise correlations is by no
means self-evident, and there are two reasons why it is justified:
(a) In our system there is no real charge-pseudospin separation
or, at least we have to allow for such a possibility, and thus

FIG. 4. (Color online) Quasicontinuous E(k) energy spectrum
obtained by varying the torus angle θ for a fixed aspect ratio
r = 1. Total number of electrons is N = 13 and bilayer distance
is d = 1.5�B . Levels are plotted relative to the corresponding ground
state for each θ . Levels (N↑,0) and (N↑,N↑) belong to the same
excitation branch.
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FIG. 5. (Color online) (a) Energy spectrum versus momentum
k�B in the even sector on the torus for N = 12 electrons in total.
Aspect ratio r = 1, cos θ = 0, and bilayer distance d = 1.5�B . Levels
are plotted relative to the corresponding ground state at (N/2,N/2).
Ellipses denote groups of levels in momentum sectors (0,0) and
(N/2,0). Total degeneracy inside each ellipse is denoted by D.
(b) The Brillouin zone for N = 12 corresponding to the square unit
cell.

“halves” of the (fused) quasiparticles [in Appendix A, the
quasiparticle in Eq. (A3) is a product of two fused “halves”]
in the pseudospin sector are also allowed and should be
captured in the critical boson description, and (b) the second
reason is heuristic; by allowing the reduction to pairwise
correlations we can describe the ground states on the torus. The
pairing allows the constructions of “halves,” e.g., “halving” the
Laughlin quasihole into two non-Abelions in the Moore-Read
state [21], and by keeping only pairing correlations the degrees
of freedom that would be forgotten (suppressed) otherwise will
be released.

Thus we assume that the low-energy states of the inter-
mediate phase are in one-to-one correspondence to the states
of g(r) ∼ 1/r2 BCS paired critical bosons. Now we proceed
similarly to the case of permanent pairing g(r) ∼ 1/z in
Ref. [16]. In the effective BCS description the occupation

number of bosons at momentum k is

〈nk〉 = 2
|g(k)|2

1 − |g(k)|2 , (15)

where we note the minus sign with respect to the fermionic
case. To maintain the positivity of the expression with g(k) =
−λ ln k, where λ is a constant with respect to k, we must have
k 
= 0. This means we must be in the antiperiodic sector on
the torus along at least one direction (x or y). Furthermore,
we also must have λ ∼ 1/ ln kmin because kmin ∼ π/L ∼ 1/N .
Finally, because λ → 0 as N → ∞, i.e., no pairing in the
thermodynamic limit, we can only have Bose condensation (at
kmin).

Let us assume (as in Ref. [16]) that we are in the (−,+)
sector, i.e., antiperiodic in the x direction and periodic in the y

direction. We assume an even number of particles (i.e., that we
are in the even sector), and occupy (+π/L,0) and (−π/L,0)
with equal probability, i.e.,

bk↑ =
√

N/2 δk,kmin and bk↓ =
√

N/2 δk,−kmin , (16)

where kmin = π/L, and bkσ ,σ = ↑,↓ denote second-quantized
bosonic operators.

Thus in the neutral sector each particle would have a
description in the form of a two-component spinor:[

eiQx

e−iQx

]
, (17)

where Q = π/L. On the other hand, in Park’s states, Eq. (9)
in Ref. [6], we have the effective description:[

ei2Qx

1

]
, (18)

that successfully reproduces the momenta that we see in
EDs on the torus. We may notice that the difference comes
from the necessity of multiplying the neutral part in Eq. (17)
by exp(iQx) in order to “glue” the charge (periodic) and
neutral (antiperiodic) sector, and stay in the periodic sector.
This “gluing” effectively brings nonzero momentum to the
state: Kx = NQ = Nπ/L. In Park’s picture the momentum
count results from excitons turning into dipoles (not locally
neutral particles), and each exciton acquiring the momentum
k̃ = 2π/L. Thus, at small length scales, charge and spin are
not separated, and this corresponds to the requirement of
gluing, i.e., staying in the charge-periodic sector by an extra
connection between charge and spin sectors. At the end, we
have a spiral winding with q = 2Q = 2π/L, i.e., the spins
wind exactly once over the length of the system L in the x̂

direction. Thus, due to the intertwined spin and charge degrees
of freedom at small length scales, we obtain ground states at
large nonzero momenta.

But there is another important relation of the “gluing”
procedure with what we can infer from EDs on torus. The
description of the intermediate phase that is based only on
the neutral sector is incomplete. As usual in FQH systems,
the degeneracy of the ground states on the torus can be
connected with “large gauge transformations,” which are flux
insertions of gauge (internal) fields through the two holes of
the torus [11]. This is equivalent to changing the boundary
conditions, but also to the creation of particle—antiparticle
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pairs. These transformations can create large momenta that
characterize the degenerate ground states, or alternatively
different sectors of the theory (see, for example, a recent
discussion in Ref. [22]). Thus we also have to take into account
the charge part of the theory in order to describe the ground
state.

Since the work of Moon et al. [3], we know that vortex
excitations in the exciton superfluid phase are charged—they
are merons of unit vorticity (±1) and charge ±(1/2)e. We may
then question the CFT approach for constructing excitations
restricted to the neutral sector (see Appendix A), or in other
words whether the excitations obtained by Eq. (A3) comprise
all possible vortex excitations in the intermediate critical
phase.

In answering this question we may start from the model
function for Park’s states [Eq. (8) in Ref. [6] or Eq. (D3)
here]. This construction represents two merons with opposite
charge and located at two opposite boundaries [compare
with Eq. (135) in Ref. [3]]. On the disk, this wave function
represents one meron at the center of the disk and the other at
the infinity. (This is somewhat similar to the construction of
the non-Abelian quasiparticles in the case of the Moore-Read
state which also come in pairs [23]). In this way, because
the meron boundary constructions define the ground states,
we may expect that merons form the quasiparticle content of
the critical theory. Charge and spin are not separated in these
constructions that describe the ground states of the critical
phase. Thus it was necessary to include the “gluing” when
discussing the ground state from the point of view that treated
the charge and spin sector separately.

More simply, on the disk with a fixed number of up and
down particles we model a meron as

∏
i

(
zσ
i − w

)
�gs(z

↑,z↓), σ = ↑,↓, (19)

where �gs and w denote the ground state and the position of
the meron, respectively. Now we see the need for the square

root factors,
∏

i

√
(zi − w) = ∏

i

√
(z↑

i − w)
∏

i

√
(z↓

i − w),
in the charge part (“a charge boost”) to relate to the expression
in Eq. (A3), which represents a neutral combination of two
merons.

B. Competing ground states on the torus and critical bosons

To understand better the competing (ground) states present
in EDs of the QHB on the torus in the intermediate region,
we will consider in more detail the odd and even sectors.
As in the previous subsection, we will relate the description
of states in terms of Bose condensates at nonzero momenta
with meron-antimeron constructions. For further discussion
concerning the validity of the description by these states, see
Appendix D.

In the odd sector, for the periodic boundary conditions in
both directions, i.e., in the (+,+) sector, we have simply
Bose condensation in K = (0,0) momentum. The relevant
construction in the odd (−,+) sector, i.e., antiperiodic in the

x direction and periodic in the y direction, is

N−1∏
i=1

[
ei π

L
xi

e−i π
L

xi

]
i

[
1
0

]
N

, (20)

where we fixed N↑ − N↓ = 1 in the ground state. Again, we
need the gluing procedure with the boost K = (N−1

2 ,0). The
translation by −N in the x direction followed by inversion
lead to the new relevant state K = (N+1

2 ,0). Taking also the
possibility of the construction along the y axis, we get a
fourfold degeneracy. In the even sector a similar procedure
will lead to only the twofold degeneracy for the constructions
along any one of two directions.

Similarly we can consider the following constructions in
the odd (−,−) sector, i.e., antiperiodic in both directions,

N−1∏
i=1

[
ei π

L
(xi+yi )

e−i π
L

(xi+yi )

]
i

[
1
0

]
N

, (21)

N−1∏
i=1

[
ei π

L
(xi−yi )

e−i π
L

(xi−yi )

]
i

[
1
0

]
N

, (22)

and boosts are K = (N−1
2 ,N−1

2 ) and K = (N−1
2 ,−N+1

2 ), re-
spectively. By applying the translations by ±N and inversion,
we may conclude that in the odd sector we have a fourfold
degeneracy with K = (N±1

2 ,N±1
2 ). On the other hand, a similar

construction in the even sector leads to a unique state with
K = (N

2 ,N
2 ).

Thus we can conclude that the prediction for the number of
competing ground states in the odd sector, based on the critical
boson condensates, is in agreement with EDs in Sec. IV,
in particular Figs. 1 and 2 and Eqs. (13) and (14), for the
description of the k 
= 0 states.

On the other hand, Fig. 5 shows the low-lying excitation
spectrum in the even sector with N = 12 electrons at distance
d = 1.5lB between the layers. We may notice that with respect
to our expectations in the previous considerations (based on
meron-antimeron constructions of ground states) there are
extra low-lying states. This will be discussed in more detail in
the next subsection.

C. Discussion: Topological characterization

In the previous subsection we could notice that although
the composite boson view is convenient for the description of
the low-lying states, it is not complete and sufficient for their
description. In connection with this, we may comment that
the meron construction in Eq. (19) seems more natural if �gs

is given by Eq. (8) (fermionic representation) than by Eq. (9)
(bosonic representation). In the fermionic case the meron, with
the deficit of σ (layer) polarization, may be interpreted as a
Laughlin quasihole excitation of the condensate of σ particles.

In the absence of pairing, represented by the determinant
in the composite fermion wave function Eq. (8), we could
consider a bosonic system described by Halperin’s 220
state [14] with two components, and merons as half-flux
quantum, spinful quasiparticles. For that system we know
the number of the degenerate ground states on the torus;
we can consider all possible configurations (including meron
ones) between the two edges of a cylinder [23], and come
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to the conclusion that there are four sectors (four degenerate
states on a torus). They can be classified as members of the
chiral algebra, in which we have the basic sector that we
can associate with the identity operation, two sectors due to
two kinds of meron—(antimeron) excitations, and a sector
that is associated with the one-flux-quantum excitation, i.e.,
Laughlin quasihole, which can be viewed as a fusion of the
two (↑ and ↓) different merons. In this way the four sectors
can be viewed as a direct product of two subsystems, each
at filling 1/2 and having two sectors, due to the identity and
Laughlin excitation in each system. Symbolically, if we denote
the identity by 1, and ↑ meron by m, and ↓ meron by m̄, we have
a direct product (1,m) × (1,m̄) = {(1,1),(m,1),(1,m̄),(m,m̄)},
i.e., four sectors. Having the extra determinant as in Eq. (8),
beside the (220) factor, will not change the type of charged
excitations that exist in the intermediate phase, i.e., we expect
merons. Thus we obtain a total fourfold degeneracy of the
ground states on the torus.

But we have to be aware that our system is far from
being a simple bosonic (220) state. There we could consider
excitations of a single boson, ↑ or ↓, but this does not create an
extra sector in the (220) system because the two subsystems, ↑
and ↓, are uncorrelated, and everything boils down to the direct
product of the ↑ and ↓ (sub)system. In the case of the state in
Eq. (8), because of the interlayer correlations, we may assume
that a single fermion excitation, which we will denote by f

for the ↑ subsystem and f̄ for the ↓ subsystem, is a nontrivial
excitation, and may define a sector. Thus we may consider
(1,m,f ) × (1,m̄,f̄ ) as a way to generate all sectors [24]. But
we notice that (f,f̄ ) is equivalent to two (m,m̄) excitations,
and should not represent an extra sector. Thus, in this way we
expect an eightfold degeneracy in the even sector, and this is
corroborated by the results in Fig. 5.

This is by no means a usual characterization of a topological
phase. The topological characterization is made difficult by
the absence of a simple model Hamiltonian for the model
wave function [Eq. (8) or Eq. (9)]. Due to (topologically)
highly intertwined (pseudo)spin and charge, we might expect
a further reduction of the number of relevant states. Namely, an
operation of equivalence may be introduced for two states that
are connected by a gapless branch, like in Fig. 4. Nevertheless,
we find that the low-lying spectrum, in both the even and odd
sectors is robust and independent of system size, up to N = 14
particles in the even sector, and up to N = 15 in the odd
sector, and it is not in accordance with the naive expectation
of four degenerate ground states in the even sector that can
be found in the previous literature, or as follows from the
charge-pseudospin separated picture of the intermediate state.

By comparing the tentative degeneracies on the torus (eight
states in the even sector and nine states in the odd sector) with
the predictions in the even and odd sector in Sec. V B on the ba-
sis of g(r) ∼ 1/r2 BCS paired critical bosons, we can conclude
that this view is partially successful. We may expect Abelian
merons and composite fermions in the quasiparticle spectrum.

D. Discussion: Meron deconfinement

In this subsection we summarize the reasons why meron
deconfinement is expected in the intermediate state in the
QHB. By “meron deconfinement” we mean the phenomenon
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FIG. 6. (Color online) The evolution of the energy spectrum in
the odd sector on the sphere as a function of bilayer distance. Data
are for N = 9,11,13 electrons in total (left to right), for fixed shift
S = −1 corresponding to the 111 state.

that a meron can exist as a single, gapped excitation of the
half-flux quantum and charge (1/2)e in the intermediate phase
(as opposed to being in a bound pair).

When we compare the evolution of the QHB with respect
to distance, on the sphere (Fig. 6) and on torus (Figs. 1 and 2),
we see that on the sphere the lowest Goldstone-branch state
evolves without level crossing with distance. The calculations
on the sphere in Fig. 6 are performed at the fixed shift S = −1,
which is the same as that of the 111 state. Note, however, that
the decoupled Fermi liquids have a shift of S = −2, therefore
the sphere geometry cannot directly capture the transition
without introducing some bias towards one of the phases. In
Fig. 6 the ground state smoothly changes around d ∼ �B due
to the change in the correlations, and also there is a drastic
change in the calculated slope (velocity) of Goldstone mode
according to Ref. [15], but the first excited state is smoothly
connected to the Goldstone branch for any d.

In contrast, on the torus [see, e.g., Fig. 2(a)] there are
level crossings in the low-lying excited spectrum around
d ∼ �B . New states appear with lower energies than the
first excited Goldstone-branch state. These states constitute
candidate ground states of the intermediate phase. They are
defined by merons, as explained previously in Sec. V B. Thus
merons belong to the quasiparticle content of the new state.

The intermediate state has the interpretation in terms of
BCS pairing of composite fermions (Ref. [5]), and thus simi-
larly to the Moore-Read case we expect half-flux quantum (one
flux quantum in the language of superconductivity) excitations.

VI. CONCLUSIONS AND DISCUSSION

We presented a description of the intermediate region
of the QHB in terms of critical bosons based on detailed
exact diagonalizations on the torus. Our study complements
earlier results on the sphere [5] and torus [6] geometry,
where an intermediate phase was identified at bilayer distances
d ≈ 1.5�B . These studies have pointed out that the phase
involves pairing of composite fermions, and has pseudospin
spiral order. Our work shows that this state can also be related
to critical bosons and is likely gapless. The critical condensates
at finite wave vectors of the intermediate phase on the torus
can be related to the existence of merons as the lowest lying
charged quasiparticles, i.e., to meron deconfinement. The
topological ordering in the intermediate region with meron
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fractionalization allows a smooth transition (ordering) in the
adjusted phases in which merons are confined in pairs; as
vortex excitations in the XY ferromagnet for small d, and, for
large d, as bound pairs they make neutral fermions.

We caution that the critical boson representation employed
here may be less powerful than similar descriptions of the
more conventional FQH states where charge and pseudospin
(neutral degrees) are not so intertwined. In our case, the
natural representations in terms of (composite) bosons (ex-
citon superfluid) and (composite) fermions (composite Fermi
liquids) hold in the limiting cases of small and large distances.
However, we showed that most of the low-energy features of
the intermediate state can be conveniently explained in the
picture of critical bosons.

Assuming the intermediate state develops into a critical
point in the thermodynamic limit, the QHB system may offer a
realistic application of the ideas of deconfined criticality [25].
Moreover, the presented QHB description may also explain
the phenomenon of “meron loosening” in experiments [26].
Before invoking any disorder effects, we may assume that
merons are liberated (not bound in pairs with opposite layer
indexes), and equally contribute to inter- and intradissipative
processes that lead to the breakdown of the quantum Hall
effect. As argued in Ref. [27], the quasiparticles with one-half
of the elementary charge are natural (confined in dipoles)
constituents of the underlying composite fermions in the
Fermi-liquid-like state (at filling one-half), due to the particle-
hole symmetry. In our case these are merons (of the same layer
index), which are brought to the existence in the intermediate
state, before the two separate Fermi-liquid-like states (each at
filling one-half) set in.
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APPENDIX A: THE BOSONIC INTERPRETATION

We can rewrite the neutral part in Eq. (9) as

∏
i<j

(zi − zj ) ×
∏

i<j |z↑
i − z

↑
j |2 × ∏

p<q |z↓
p − z

↓
q |2∏

k,l |z↑
k − z

↓
l |2

.

Thus, the neutral part in Eq. (9) in the CFT language is the
correlator of equal numbers of two vertex operators: eiφ(z)+iφ(z̄)

and e−iφ(z)−iφ(z̄) where φ(z) and φ(z̄) denote the holomorphic
and antiholomorphic part of the (nonchiral) bosonic field,
φ(z,z̄) = φ(z) + φ(z̄). The basic correlator is

〈eiβφ(z1,z̄1)e−iβφ(z2,z̄2)〉 = 1

|z1 − z2|2β2 . (A1)

We expect that the excitations are also represented by vertex
operators. For their construction we have two possibilities:

eiδ1(φ(z)+φ(z̄)) and eiδ2(φ(z)−φ(z̄)) and the corresponding conju-
gates, which in charge-neutral combinations in the correlators
with basic particles (eiφ(z)+iφ(z̄) and e−iφ(z)−iφ(z̄)) i.e., up and
down (neutral) excitons, contribute factors,

eiδ1φ(w,w̄) →
∏

i |z↑
i − w|2δ1∏

i |z↓
i − w|2δ1

, (A2)

and, with the field, θ (z,z̄) = φ(z) − iφ(z̄), we have

eiδ2θ(w,w̄) →
∏

i(z
↑
i − w)δ2∏

i(z
↓
i − w)δ2

×
∏

i(z̄
↓
i − w̄)δ2∏

i(z̄
↑
i − w̄)δ2

. (A3)

To ensure the single valuedness of the ensuing electronic wave
function we must have δ2 = 1/2. The same argument would
allow any rational δ1 including δ1 = 0. Therefore the excitation
spectrum contains a branch continuously connected with the
ground state and we expect that the state in (9) supports a
branch of gapless excitations. (If we allow only δ1 = 1/2 we
would have the quasiparticle content of the deconfined phase
of Z2 gauge theory). Thus the state (9) is a critical state with
the quasi-long-range order,

lim
|z1−z2|→∞

〈�ex
↑ (z1,z̄1)�ex

↓ (z2,z̄2)〉 = 〈eiφ(z1,z̄1)e−iφ(z2,z̄2)〉

= 1

|z1 − z2|2 , (A4)

among up and down excitons.

APPENDIX B: PROJECTION TO THE LLL

In this Appendix we explain the projection to the LLL [28]
that defines the LLL projected wave function of p-wave paired
composite fermions in Eq. (7). First we expand and rewrite
Eq. (7) as

�̃PSF = PLLL

⎧⎨
⎩

∑
σ∈SN/2

1

(z̄↑
1 − z̄

↓
σ (1)) · · · (z̄↑

N/2 − z̄
↓
σ (N/2))

× �220(z↑
1 , . . . ,z

↑
N/2,z

↓
1 , . . . ,z

↓
N/2)

⎫⎬
⎭, (B1)

where by �220 we denoted the part with the Laughlin-Jastrow
correlations,

�220 =
N/2∏
i<j

(z↑
i − z

↑
j )2

N/2∏
i<j

(z↓
i − z

↓
j )2. (B2)

To understand the projection, we consider an arbitrary
permutation σ under the sum in Eq. (B1). For the fixed
permutation, we can express the product �220 as a polynomial
in {(z↑

i − z
↓
σ (i)),(z

↑
i + z

↓
σ (i)); i = 1, . . . ,N/2} variables. In this

way, when we combine �220 with the pairing part with fixed
σ , the projection reduces to the projection of each zm

z̄
(with

m = 0, . . . ,N − 2), to the LLL. If we choose the symmetric
gauge, the basis of the LLL is given by �k(z) = zk√

2πk!2k
,

with k = 0, . . . ,N − 1. Here we dropped the Gaussian factor,
exp{−|z|2/4}, which is included in the measure defining the
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scalar product [28]. Thus,〈
�k

∣∣∣∣zm

z̄

〉
= δm,k−1

2πm!2m

√
2πk!2k

. (B3)

It follows that

PLLL

(
zm

z̄

)
=

∑
k

〈
�k

∣∣∣∣zm

z̄

〉
�k = zm+1

2(m + 1)
. (B4)

In particular, for m = 0, PLLL( 1
z̄
) = z

2 , i.e., the leading term in
the short distance approximation reproduces the behavior of
the p-wave paired composite fermion wave function described
by Eq. (5).

APPENDIX C: RELATION TO PSEUDOSPIN
SPIRAL ORDER

The first exact diagonalization study on the torus that
pointed out the existence of the competing ground states with
diverging momenta in the thermodynamic limit was done by
Park in Ref. [6]. Our numerical results are in agreement with
Ref. [6], in particular for N = 13 electrons and bilayer distance
d = 1.5�B [Fig. 1(a)].

Reference [6] pointed out that one energy level (the
lowest excitation at nonzero momentum, which represents
four states due to inversion symmetry) is “ripped out” from
the quasicontinuum of high momentum states. The momenta
that correspond to these states are the ones in Eq. (13) in the
main text, or

(N↑,0), (N↓,0), (0,N↑), and (0,N↓), (C1)

in units of 2π/L where L =
√

2π�2
BN .

In order to motivate and explain the emergence of the
particular momenta above, Park discussed the “spiraling
states” in the Landau gauge,

|�spiral(n)〉 =
∏
n

1√
2

(c↓†
m + c

↑†
m+n)|0〉. (C2)

Here c
†
m denotes the electron creation operator, with integer

m = 0, . . . ,N − 1 labeling the linear momentum along the
cylinder, i.e., 2πm

L
. With respect to the ground state of the XY

ferromagnet [n = 0 in Eq. (C2), or Eq. (1) if we consider
the fixed number of particles representation], the acquired
momentum is k�B = ( 2πnN↑

L
,0).

In the first quantization, in terms of the usual Landau gauge
states,

exp

(
2πimzk

L

)
exp

(
− 1

2
y2

k

)
, (C3)

where zk = xk + iyk , k = 1, . . . ,N , we can express the spiral-
ing state as

∏
i

(
exp

(
i 2π

L
xi

)
1

) ∏
i<j

(Zi − Zj ) exp

{
−1

2

∑
i

y2
i

}
, (C4)

where we introduced Zj = exp ( 2πizj

L
). Thus the physics of the

neutral sector is essentially given by the factor,∏
i

(
exp

(
i 2π

L
xi

)
1

)
, (C5)

which describes long spiraling with period L in the pseudospin
space.

Park argued that by more elaborate inclusions of the
disordering effects in the ground state, similar constructions
to the ones in (C2) should be relevant for the description of
the new ground state(s). They will correspond to the new
intermediate phase with the “pseudospin spiral order.”

In this work we point out that there are extra states, as seen
in Fig. 1 falling down, which also belong to the set of candidate
ground states of the intermediate phase. Given the unusually
large momenta (and long periods) for spiral order, we argue in
Sec. V that they are very likely an expression of the topological
ordering in the intermediate phase. Furthermore, we connect
them with merons—the spin-texture fractional excitations of
the XY ordered phase—which are confined (bound in pairs).
The long spiraling in the ground states of the intermediate
phase on the torus is thus naturally explained by the spin-
texture description of merons.

APPENDIX D: DESCRIPTION OF THE
LOW-LYING MODES

To find and understand the description of the low-lying
modes it is convenient to begin with the case d = 0 [SU (2)
symmetric case] in the presence of only V0 pseudopotential
for which we can identify the whole family of zero modes
(zero-energy states). As shown in Ref. [29] the basic states
(from which we can get all other zero-energy states) similarly
to edge states in the Laughlin case, can be described in the
disk geometry as⎛

⎝ ∑
〈i1...iL〉

z
↑
i1

. . . z
↑
iL

⎞
⎠ ∏

i<j

(zi − zj ), (D1)

where the sum is over various L-tuples of ↑ particles.
With the inclusion of higher angular momentum pseudopo-

tentials they will not be degenerate anymore, but will constitute
the candidate states for the states of the lowest energy at a given
momentum L (with respect to the ground-state momentum).
For example, the state at L = 1, (

∑N↑
i=1 z

↑
i )

∏
i<j (zi − zj ),

can be associated with the first excited state above ground
state in the Goldstone branch. This was demonstrated in
Ref. [15] when a boost of angular momentum L acting only
on one pseudospin projection (layer index) in the ground
state was identified with the Goldstone mode with momentum
L. This ansatz was very satisfactory for the whole range of
distances (from zero to infinity) in the bilayer for low momenta
(L = 1,2,3).

On the other hand the state in Eq. (D1) when L = N↑,

N↑∏
i=1

z
↑
i

∏
i<j

(zi − zj ), (D2)

is a meron-(antimeron at the infinity) state. This state is a
projection of the meron state introduced in Ref. [3],∏

n

(c↓†
n + c

↑†
n+1)|0〉, (D3)
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where c
σ†
n ,σ = ↑,↓ are electron creation operators in the

second-quantized notation, to the fixed relative number, N↑ −
N↓, of electrons. This state was also used by Park [6] to model
the state(s) that fall(s) from the higher-momentum region when
the distance (d) increases.

The best of overlap in Ref. [6] was reached around d �
�B—after that the overlap was rapidly decreasing. As the
author already pointed out, the reason for this is that the used
construction is based on the 111 state, i.e., the state in Eq. (1)
projected to the fixed number of electrons, and we need to
include the changes in the ground state that set in around
d ∼ �B. Thus we may imitate the approach of Ref. [15] and
model new state and correlations by

N↑∏
i=1

z↑i�0, (D4)

where �0 represents the exact ground state at distance d that
we find in the k = 0 sector.

Nevertheless, the quantum numbers of relevant states,
Eq. (D4), are the same as from the states they evolve from,
Eq. (D2), and we can use these states, i.e., their description

given by Eq. (17) to classify all possible low-lying states on
the torus.

APPENDIX E: CRITICAL REGION

Our analysis suggests that the bilayer intermediate state
appears as a critical region between a ferromagnetically
ordered state and a (completely) disordered state. It is tempting
to expect that by modifying the parameters in the critical region
we can reach the Z2D phase (the deconfined phase of the Z2

gauge theory, mentioned in Sec. V D). This is one of the
simplest topological phases that would be realized by strong
pairing of composite bosons. Also, it is important to understand
better the influence of the various Haldane pseudopotentials
on the competing ground states in the critical region.

In order to explore the phase diagram more broadly, we
consider modifications of the bare Coulomb potential by the
short-range Haldane pseudopotential terms [1]:

V → V + 2(2π )
∑
m

δVmLm(q2), (E1)

where m = 0,1,2, . . .. The purpose of these modifications is
to model the perturbations that occur in an actual experimental

FIG. 7. (Color online) Energy spectrum for the Coulomb interaction at bilayer distance d = 1.5�B modified by short-range Haldane
pseudopotentials δVm, m = 0, . . . 5 [(a)–(f)]. In all cases, total number of electrons is N = 11 and the unit cell is a square. The spectrum is
obtained by finding the 10 lowest eigenvalues in each momentum sector, and for clarity purposes the resulting energies are plotted relative to the
ground state for each value of the pseudopotential. Levels belonging to high-symmetry momentum sectors are denoted by special colors. For
odd pseudopotentials δV1,δV3,δV5, we modify the intralayer and interlayer Coulomb by equal amounts. The even pseudopotentials δV0,δV2,δV4

only affect the interlayer Coulomb because of Fermi statistics.
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system (for example, effects due to finite width of the sample in
the perpendicular direction, mixing with higher Landau levels,
etc.). Note that we are free to separately tune the intra- and
interlayer interactions. Adding even m pseudopotentials will
only have an effect on interlayer potential because the Fermi
statistics inside each layer precludes even values of m.

In Fig. 7 we can see the evolution of the spectrum
with small departures {δVm; m = 0, . . . ,5} of the Haldane
pseudopotentials from their Coulomb values. The influence of
the even pseudopotentials, δV0,δV2, and δV4 is qualitatively
the same; for stronger positive values the ferromagnetically
ordered state is stabilized, and for negative values we expect

a compressible behavior. The influence of δV1 is according to
our expectations; for stronger positive δV1 we see compressible
behavior, while for negative δV1 the ordered state is stabilized.

On the other hand the influence of positive δV3 and δV5 is
interesting as it stabilizes one of the set of states (competing
ground states) that have characteristic momenta that are
compatible with Z2D. Nevertheless, a closer inspection of
the influence of δV3 does not lead to a firm (topological)
characterization of the ground states for positive values of
δV3. Moreover, the behavior of the gap in this region is strongly
dependent on system size, which further suggests the phase is
compressible.
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