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We study Cooper pairing in the Dirac composite fermion (CF) system. The presence of the mass term in the
Dirac CF description (which may simulate Landau level mixing), i.e., breaking of particle-hole (PH) symmetry
in this system, is a necessary condition for the existence of a PH Pfaffian-like topological state. In the scope
of the random-phase approximation (RPA) and hydrodynamic approach, we find some signatures of pairing at
finite frequencies. Motivated by this insight, we extend our analysis to the case of a different but still Dirac
quasiparticle (CF) representation, appropriate in the presence of a mass term, and discuss the likelihood of PH
Pfaffian and Pfaffian pairings in general. On the basis of gauge field effects, we find for a small Dirac mass, an
anti-Pfaffian or Pfaffian instability depending on the sign of mass, while for large mass (Landau level mixing),
irrespective of its sign, we find a PH Pfaffian-like instability.
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I. INTRODUCTION

The fractional quantum Hall effect (FQHE) [1] is a
remarkable effect of electrons confined to two dimensions. In
the presence of a strong, perpendicular to the plane magnetic
field, the phase space of the strongly correlated system is
further confined into Landau levels (LLs) and quantized.
At special fillings of LLs, when the system is described by
special ratios of the number of electrons per number of flux
quanta, highly entangled states of FQHE are established. In
experiments, the effect is seen by measuring the fractionally
quantized Hall conductance, which stays constant, at the
particular value of fractional filling factor, as the magnetic
field or density is varied.

The Laughlin state [2] with its generalizations describes
the effect at odd denominator filling factors. A surprise came
with the experimental detection of FQHE at filling factor
5/2, i.e., half-filling of the second LL (SLL) [3]. The Cooper
pairing was invoked to explain the effect. Assuming spinless
(frozen spin) electrons, at half-filling of active (second) LL,
in the regime of experiments, the most natural BCS pairing
function in the real space, which can be associated with an
antisymmetric matrix, is a Pfaffian wave function [4]. Thus we
expect Cooper pairing due to phase-space constraints—gauge
field effects in a field theory description, in the presence of the
repulsive Coulomb interaction.

However, the realization of the pairing correlations even
for spinless fermions is not unique. We may envision a the-
oretical construct, an isolated half-filled LL with the exact
particle-hole symmetry that can be explored in numerical
experiments. The early pairing proposal—Pfaffian or Moore-
Read state [4]—does not possess the particle-hole symmetry,
and, under particle-hole exchange the Pfaffian transforms into
an anti-Pfaffian state [5,6]. The Pfaffian and anti-Pfaffian
equally participate in the ground state of the half-filled SLL
with Coulomb interaction [7]. The system with the particle-
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hole symmetry requires for its field-theoretical description
a special Dirac composite fermion (DCF) representation of
constitutive classical electrons and their strong correlations
[8]. On the basis of this representation a proposal was made
for a special Pfaffian that respects the particle-hole symmetry,
the so-called PH Pfaffian [8].

Arguments were given in Refs. [9—13] that the PH Pfaffian
in the particle-hole symmetric setting, i.e., half-filled LL is
an unstable, critical state. Arguments based on numerics were
first given in Ref. [12]. Nevertheless, the PH Pfaffian type of
pairing seems relevant from the experimental point of view,
as argued in Ref. [14], despite LL mixing (absence of the
particle-hole symmetry) and disorder effects.

Inspired by the recent experiment described in Ref. [15]
that measured the thermal Hall conductance of the paired
state at filling 5/2, and found that the measured value is
consistent with the conductance of PH Pfaffian, we would
like to check if a PH Pfaffian-like state may be realized in
the absence of the PH symmetry, i.e., in the presence of LL
mixing, but without disorder. The possibility for PH Pfaffian
physics due to disorder effects is considered in Refs. [14,16—
18], see also Ref. [19], while in Ref. [20], a proposal is
made that the result of the experiment may be still consistent
with the anti-Pfaffian state, due to an insufficient equilibration
of edge modes. Very recently, this proposal is criticized in
Ref. [21].

In this work we discuss the effective Cooper pairing chan-
nel of the system at half-filling in the scope of the DCF theory
with a mass term. The mass term of the DCF theory represents
a term that breaks the particle-hole symmetry of electrons
confined in an LL and represents an LL mixing.

The paper is organized as follows. In Sec. II, we review
arguments for the criticality of the PH Pfaffian in a particle-
hole symmetric setting, and argue why a symmetry-breaking
mass in the DCF theory is necessary to stabilize the PH
Pfaffian. In Sec. III, we discuss the effective Cooper pairing
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channel in the DCF theory in the presence of a mass term, and
recover only some finite frequency pairing correlations. This
is followed by a discussion in Sec. IV, which uses a different
form of the DCF theory to analyze the Cooper pairing of
modified CFs, in which a usual BCS problem emerges from
a gauge field description of constraints. The Pfaffian family
solutions of the problem are described and conclusions can be
found in Sec. V.

II. PH PFAFFIAN AS A CRITICAL STATE IN A
HALF-FILLED LANDAU LEVEL

A. PH Pfaffian as a critical state in a (particle-hole symmetric)
half-filled Landau level

In this section, we will review arguments given in Ref. [11]
for the critical nature of the PH Pfaffian state, and, in addition,
relate the PH Pfaffian physics in a half-filled Landau level to
the critical behavior and transition between Pfaffian and anti-
Pfaffian [5], and discuss how general the arguments for the
critical nature of PH Pfaffian are.

In the following, we will denote by a PH Pfaffian state,
a FQHE state, at filling factor 1/2 (half-filled Landau level)
with Pfaffian (p-wave pairing) correlations that is invariant
under particle-hole (PH) transformation. The correlations are
expected to be in the opposite sense of rotation with respect
to the one set by external magnetic field. [This is corroborated
by available constructions based (a) on the Laughlin-Jastrow
ansatz, Eqs. (1) and (2) below, at the PH symmetric filling
factor on sphere, and (b) on the DCF theory.] On the other
hand, we will denote by PH Pfaffian, a state with Pfaffian
correlations in the opposite sense of rotation with respect to
the one set by an external magnetic field that may or may not
have the PH symmetry. The PH Pfaffian is a generalization
of PH Pfaffian. A Pfaffian state with the PH symmetry was
mathematically defined as an s-wave pairing instability of
an effective description by Dirac composite fermions at half-
filling. That is known in the literature as the Son’s proposal
for the PH (symmetric) Pfaffian [8].

Based on a mean-field analysis, we will argue that the
PH Pfaffian and its PH Pfaffian extensions, in the presence
of the PH symmetry (i.e., in a system with PH symmetric
Hamiltonian), describe critical states and thus they can not
describe gapped topological phase(s) in half-filled LLs.

First, we will examine the underlying physics behind the
states with the so-called negative flux insertion, either macro-
scopically (the number of the inserted negative flux quanta
is of the order of the size of the system) as in Ref. [22],
or microscopically (the number of the inserted negative flux
quanta is of the order of one) as in Ref. [14], that induces
p-wave pairing in the opposite sense of the rotation with
respect to the one set by the external field. These states can
be described as PH Pfaffian states. As long as we are not
sure of the fate of the PH symmetry in these constructions
we will consider them as PH Pfaffians. Here we should
note that for the states in Egs. (1) and (2) below, which we
classify as the PH Pfaffian constructions, recent numerical
investigations demonstrate high degrees of the PH symmetry
[12,13].

A negative flux Pfaffian (a PH Pfaffian), which is also a
lowest LL (LLL) wave function, was introduced in Ref. [22]
as

Y, = PLLL[S{H(Z?] - 271)2 X H(Z?Z - 2;2)2}

< [T -7 (1)

where {z; = x; +iy;,i = 1,..., N,} are the electron coordi-
nates, we omitted the Gaussian factors, Py projects to the
lowest LL, and the symmetrizer S symmetrizes between two
groups, 1 and 2, in which the particles are equally distributed.
This is a state with the number of flux quanta equal to Ny =
3N, —3—-2(N,/2—1)=2N, — 1, i.e., with a PH symmet-
ric shift. An algebraic procedure introduced in Ref. [23] may
be followed to generate possible edge states, i.e., a sector, if
the system is incompressible. Namely, the proposition applied
in the procedure is that if we consider bulk quasihole coherent
state constructions, we can use them to generate edge states
of an incompressible state. The method proved successful in
the Pfaffian case especially so because, in that case, the edge
states can be defined as those that make energy zero subspace
of a model interaction for which the ground state—Pfaffian
model wave function—is also a zero-energy state. In the case
of the state in (1), we are not aware of the existence of a model
interaction, and, furthermore, we do not know if the state is
incompressible. Nevertheless, we may examine which states
well-known, well-motivated quasiparticle bulk constructions
can generate as low-momentum states. If the state is incom-
pressible, these states we expect will make the edge sector.
The analysis was done in Ref. [24], and the states recovered
in this way, under the assumption of the incompressibility,
would make a counterpropagating Majorana edge branch,
together with the charged boson edge branch. The analysis
missed a neutral copropagating neutral boson, whose states
can be described as insertions in the antiholomorphic part of
the wave function, of holomorphic differences of symmetric
polynomials belonging to two groups of particles under a sym-
metrizer. (The antiholomorphic differences, i.e., their linearly
independent combinations under symmetrization, make the
states of the counterpropagating Majorana edge branch.)

Next to the construction in (1) we can consider a PH
Pfaffian state:

1
Wyzp=PuL| Pf{—+ -y |, @
ZF LLL|: f{(z?‘—z?)}n(z" Zl):| @)

which was introduced in Ref. [14]. Here,

N/2

1
Pf!(zf—zj)} N;Sgnpn

il (173(21'71) - Z}F)(zz’))

1

3)

In this case, an analysis of the edge states can include only
antiholomorphic Majorana (neutral fermion) constructions
described in the Moore-Read (holomorphic Pfaffian) case in
Ref. [23]. Thus next to the charged boson we have only a
single counterpropagating Majorana.

At this stage, it is interesting to note that in one of the
papers that introduced the anti-Pfaffian physics, in Ref. [5],
two out of three states that may appear at the transition

115107-2



PAIRED STATES AT 5/2: PARTICLE-HOLE PFAFFIAN ...

PHYSICAL REVIEW B 98, 115107 (2018)

between Pfaffian and anti-Pfaffian, have the same edge
physics as described here for the states in (1) and (2).

In the following, we will demonstrate that the states in (1)
and (2), which may describe electrons in half-filled LLs, are
in fact critical states, i.e., gapless and unstable states. For that
we will consider a simplified (mean field) version of the Son’s
theory—the DCF theory [8]—that describes the Fermi-liquid-
like state of Dirac CFs, in a half-filled, i.e., PH symmetric,
Landau level. Thus we consider a massless Dirac fermion, at
finite density, with s-wave pairing among spinor components,
and neglect the presence of the gauge field, i.e., its fluctuations
around zero value. In the chirality basis, i.e., in the basis of
Dirac eigenstates without pairing, see Ref. [11] for details, we
can express the pairing term. which pairs spinor components
a and b as

Y, (k)W (—k)

1 ks
:_57[%(1()%( k) + v (VY (-k)], @)

where k = |k| and ky = k, + ik,. The fermion fields W, and

W_ represent definite chirality (eigenstates of %) particle
(positive energy) and hole (negative energy) states. As the
relevant low-energy physics is around a finite chemical po-
tential, for the description of the pairing physics we may use
the following low-energy, decoupled from higher modes, BCS
Hamiltonian,

Hpcs =

> k= W, (k)
k

+) {%%Asm(k)%(—k) + Hc} Q)
k

We arrived to the usual form of the p-wave spinless fermion

pairing Hamiltonian as can be found in Ref. [25] except that

here we have linearly dispersing fermions, and not a fully

specified A function in the pairing part. With respect to the

notation of Ref. [25], the pairing function can be identified as

ky

Ap = ——A,. 6

K X (6)

The algebra of the Bogoliubov problem (Ref. [25]) leads to
the following expression for the Cooper pair wave function:

- _ / dk exp(lkr)(k—ék) %
Ay

where & = k — u, and Eﬁ = Elf + |Ax|?. We are interested
in the long-distance behavior, and thus the behavior of Ak
for small momenta around k = 0. For . > 0, finite chemical
potential and density of the system that we consider here, the
long distance behavior is determined by the behavior of Ay,
i.e., Ay [see Eq. (6)] for small k. In the small k limit, we are
motivated to consider two cases:

1
(a)lim Ay — const., when g, ~ — (8)
k—0 z|z|
and
. 1
(b)lim A; ~ k = |k|, when g, ~ —. ©)
k—0 Z

For the usual choice of the direction of the magnetic field
B =B é,, B <0 (instead of B > 0 as is implicit in the DCF
theory because the density of Dirac CFs is proportional to B)
we would have in (49) and (9), instead of z, in fact z*. Thus,
in the long-distance limit, when we can neglect the projection
to a definite LL, the case (9) corresponds to wave functions in
(1) and (2), because [26]

S{l—[(z;"l - z;‘-l)2 X l_[(z,’»‘z — zj‘-z)z}
1

and thus the pairing with the Cooper pair wave function, g, ~
1*, is present in both wave functions. Thus we can conclude
that in order to reproduce the pairing encoded in the wave
functions (1) and (2) we need nonanalytic behavior in the
small k limit, lim;_, o A; ~ k = |K]|.

Thus, for the states in Eqgs. (1) and (2), we cannot have
a Landau-Ginzburg type of description (together with the
fermionic part, see below), as we would expect to have for a
well-defined, stable pairing phase. A question may be raised,
whether in this argument for the critical nature of these states,
we are allowed to use the region around |k| = 0 to describe
the pairing instabilities of Dirac CFs, with the understanding
that the Dirac description is only well-defined near k| =
kr. However, a complete theory (description) of a pairing
instability involves both regions; the one around |k| = kr and
the one around [k| = 0, associated with the long-wavelength,
low-energy description with a bosonic variable (an order
parameter Ay in the mean-field description) associated with
the pairing.

On the other hand, the introduction of an analytical s-
wave pairing in the DCF theory would lead to the following
Lagrangian density:

L=igy" @, +ia)x + (igAr)xoyx +Hc.)
~ ~ vV -~
+|<au—2iaH)As|2—u|As|2—5|As|“. an

The theory is invariant under C P (charge conjugation +
parity) transformation

CPX()(CP) " = o x(), 12)

where r = (x, y) and v’ = (x, —y), though the pairing term
up to a gauge transformation. This invariance corresponds
to the invariance under the PH transformation of real elec-
trons [8]; the introduced s-wave pairing constitutes the Son’s
proposal for the PH Pfaffian. With the usual s-wave pairing
behavior, lim;_.o Ay — Const., and neglecting the influence
of gauge field, as before, we can arrive to the following
characteristic long-distance behavior:

1 ; 1
g~ —|1e,— ), (13)
z|z| Z*|z|

which should enter the Pfaffian part of the PH Pfaffian,

Wpy = PLLL[Pf{m} [ @ - :|

(14)
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We will list two reasons why this state can be considered only
as a gapless (critical) state. (a) If we attempt to generate an
edge Majorana sector using Wpy, and the method of Ref. [23],
we will not be able to separate (bulk) charge modes from
the usual Majorana counterpropagating edge modes, because
this is possible only for the peculiar form of the Cooper

pair wave function with g, ~ i* (b) The universal, long-
| ,

distance behavior g, ~ e is also a characteristic behavior
of the critical system of classical (nonrelativistic) fermions at
the transition from weak to strong coupling as described in
Ref. [25].

Though we commented in the beginning that we are apply-
ing the mean-field approach and neglect gauge field fluctua-
tions, our approach is in fact quite general, and can reach con-
clusions that are not biased. Namely, once we assume PH Pfaf-
fian pairing instabilities, by the very assumption of the pairing
order parameters of the underlying Dirac composite fermions,
we expect, due to the Anderson-Higgs mechanism, that the
gauge field (that couples to the fermions) will be expelled
from the low-energy physics, and therefore our assumption
and approach concerning the nature of PH Pfaffian is justified.
The arguments, in this section, are given in the long-distance
limit, when the magnetic length can be neglected with respect
to distances considered and thus the projection to the LLL
in Egs. (1), (2), and (14) can be omitted. The limit charac-
terizes the universal, low-energy physics, which we argue is
gapless, and this should be valid even when the projection is
included and the system is characterized as a whole in a half-
filled LL.

Thus the state with a manifest PH symmetry, the PH
Pfaffian in the half-filled LL, can be only a critical state. This
state may correspond to the (third) state that characterizes
the transition between Pfaffian and anti-Pfaffian state in Ref.
[5]. According to the analysis of Ref. [5] we may expect that
this state is the lowest energy state at the transition between
Pfaffian and anti-Pfaffian state, i.e., a “real” critical state,
while other two states, in (1) and (2), may represent excited
states at the point of the transition with an exact particle-hole
symmetry. [The two states in (1) and (2), correspond to the
other two states of the same reference, due to their edge
spectrum.]

B. Particle-hole symmetry breaking and the
criticality of PH Pfaffian

It is interesting to introduce a mass, i.e., a particle-hole
symmetry breaking term in the previously discussed descrip-
tion of the pairing instabilities in a fixed Landau level. We
will assume the analytic (limg_.o Ay ~ const) description,
discussed in the previous section. At the particle-hole sym-
metric point, m(mass) = 0. Away from this point, for A; = 0,
we have a simple Dirac description of the Hamiltonian with
the following 2 x 2 matrix,

m  k_
H= [k+ _m], (15)
for the following choice for gamma matrices y° = 03, ! =
io,, and yz = —io, and we set the Dirac velocity, vy = 1. In

this case,
1
v, (k) = m[(lﬂ + E)W, (k) +k_¥,(k)] (16)
and
1
V_(k) = m[(’" — EYW, (k) + k_W,(k)], (17)

where E = /|k|? + m?2. We find that

k
o)Wy (k) = — WL ()W (k)

m k+
-z H‘h(k)‘lf—(—k)

ke
+ 7E v_(k)W_(—K). (18)
We immediately see that in this case, with respect to the
Eq. (4), we do not have nonanaliticity for k =0 (if Ay is a
constant in that limit). Thus, for m # 0, we have a description
similar to the ordinary p wave in Ref. [25], that reproduces
Pfaffian pairing in the opposite direction with respect to the
one set by the external magnetic field, as discussed in the
previous section, but with a mixing term ~W (K)¥_(—k).
A straightforward solution of the Bogoliubov (BCS) prob-
lem gives a BCS ground state, where W, degrees of freedom
pair as g ~ %, while interband correlations are described with

&r ™~ ﬁ Thus the implied ground-state wave function in the
effective long-wavelength description is

1
Wppr = Pf{m} H(Zk — )% (19)
i T

This leads to the conclusion that the particle-hole symmetry
breaking mass term may stabilize the PH Pfaffian -like state
in (19). This is a very interesting, counterintuitive conclusion,
which was originally suggested in Ref. [11], in the context
of singlet and triplet pairings of spinor components, in the
presence of a mass term. Here we showed that the same
conclusion can be reached by considering only the s-wave
(singlet) pairing [Eq. (18)] in the presence of a mass term.
Although this simple scenario seems quite plausible, the
numerical investigations of the second Landau level (SLL)
(for which we expect that is dominated by the Pfaffian
physics) imply that the physics around the particle-hole sym-
metric point is dominated by a nonuniversal influence of the
short-range part of the Coulomb interaction, which is hard to
capture by field theoretical means. Namely, the investigation
in Ref. [7] clearly shows the (Schroedinger cat) mixing of
Pfaffian and anti-Pfaffian at the particle-hole symmetric point,
and their relevance for the nearby physics. The most recent
investigations in Refs. [12,13] point out that the state in Eq. (2)
is likely an excited state in the half-filled SLL (compare with
our identification above), and has very high overlap with the
composite Fermi liquid (CFL) wave function [27,28]. Thus,
although the DCF theory seems a very good description of the
half-filled LLL, it has to be modified to capture the nonuni-
versal physics in the SLL. But, by modifying the Coulomb
interaction in the SLL, one may increase the overlap of the
exact ground state with the state in (2) or stabilize the CFL
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state [13]. Thus a relevant question may be whether a mass
term in the DCF theory may induce pairing irrespective of
the details of the projected to an LL Coulomb interaction.
Therefore we are motivated to study the DCF theory in the
presence of a mass term in order to see if this may induce
pairing correlations and a pairing instability of the PH Pfaffian
kind [Eq. (19)].

III. THE DIRAC COMPOSITE FERMION THEORY WITH
A PARTICLE-HOLE SYMMETRY BREAKING TERM

In this section, we will consider the usual formulation of
the DCF theory, with a mass term, in the RPA approximation
in order to find the effective Cooper channel and examine pair-
ing correlations. A different formulation of the same theory
we will discuss in the next section.

A. The Dirac composite fermion theory with a particle-hole
symmetry breaking term: an introduction

We start by examining the DCF theory in the presence
of PH symmetry breaking mass term. The generalized La-
grangian can be found in Ref. [29] and is given by the
following expression,

- 1 1 -
L=iyy" @, +ia)y + —adA+ —AdA —myy,
4 8
(20)

where x is the Dirac CF field, a, is an emergent U(1)
gauge field, the Chern-Simons terms are abbreviated as
" A,0,A; = AJA, n=0,x,y, and we have omitted the
Coulomb interaction and higher order terms. As a conse-
quence, we have the following equations, by differentiating
with resect to A,

dA  da
T 4n o 4n
where J, is the electron density current, and, by differentiating
with resect to a,,

Je 2y

dA
VT 4
where Jy, is the Dirac composite fermion density current.

As discussed in Ref. [29], transport coefficients like the Hall
conductance can be found from the implied form of currents,

(22)

Je = Lé(E —e) (23)
4
and
. L,
Jy = EGE, (24)

where € is the unit antisymmetric tensor with components
€' =0,eY = —e’ =1, together with the relationship that
we have to extract from the theory,

1
Jy = Eﬁoe, (25)

where 6p represents the Dirac composite fermion conduc-
tance tensor. To find 6p, we need to find the polarization

tensor I1,,,
jY =Ty a", (26)

which may be identified in the RPA treatment of the theory:
the expansion of the effective action to second order in a”,
after the integration of fermion fields in the functional formal-
ism, or directly calculating

" = —itr[y"Se(x, y)y"Sr(y, x)1, 27)

where

iSp(x, y) = Ty )P M), (28)

i.e., the composite fermion propagator (7 is the time ordering
and the expectation value is with respect to the ground state
of noninteracting fermions). In calculating (27), we encounter
(ultraviolet) divergences, which come from the presence of the
infinite sea of negative energy solutions. There are two ways
to regularize the theory: (a) dimensional and (b) Pauli-Villars
regularization. The physical meaning of these two possibil-
ities, when considering Berry curvature contributions of the
positive and negative energy band to the Hall conductance,
is that in the dimensional regularization we combine (add)
the contributions, while in the Pauli-Villars regularization
we consider the contribution only from the positive band.
(For the Berry curvature contributions of the two bands see
Ref. [29].) The dimensional regularization at the neutrality
point [p(chemical potential) = 0], and in the presence of
a mass gives an unphysical prediction for the Hall conduc-
tance (=%eh—z), i.e., a half integral quantum Hall effect of
noninteracting fermions. But at a finite chemical potential,
and in the absence of mass the Hall conductance is zero.
This result or consequence is at the basis of the DCF theory
(that is defined at a finite chemical potential), which results
in the precise value of the Hall conductance of electrons

= %eh—z, dictated by the particle-hole symmetry, even in the
presence of disorder. Thus the dimensional regularization is
the assumed regularization in the DCF theory. On the other
hand, the Pauli-Villars regularization gives a so-called parity
anomaly, a half of the unit of the Hall conductance even in
the absence of a mass. Later, we will explore the role of
the Pauli-Villars regularization, when we consider a smooth
connection between the DCF theory and the HLR theory
[30]. Thus this type of regularization is important when we
switch the quasiparticle representation from the one based
on the Read’s construction [31] (the DCF theory) to the one
based on the usual Chern-Simons construction [32] (the HLR
theory [33]).

We obtained the polarization tensor IT*V(Kk, w), in the
hydrodynamic approximation, i.e., when |k| < kg, in the
presence of the mass term. The results can be found in
Appendix A.

B. The Cooper channel in the Dirac composite fermion theory
with a particle-hole symmetry breaking term

In this section, we will extend the approach applied in
Refs. [9,10] to the case with the particle-hole symmetry
breaking mass term. Namely, in Ref. [9], in order to study the
possibilities for pairing within the DCF theory, the Coulomb
interaction was considered as an additional term in the theory

115107-5



ANTONIC, VUCICEVIC, AND MILOVANOVIC

PHYSICAL REVIEW B 98, 115107 (2018)

described by Eq. (20) with m = 0. An effective Coulomb
interaction was found by a projection of fermion operators
to the low-energy sector around |k| = kg of positive en-
ergy solutions. The BCS interaction or Cooper channel of
the effective interaction for the p-wave (PH Pfaffian) pair-
ing was found to be repulsive and in no way conducive
for the pairing. The investigations in Refs. [9,10] included,
at the RPA level, modifications of the effective interaction due
to the fluctuations of the gauge field (a, ), but the conclusion
was the same. In this section, we would like to find out the
effective Cooper channel, within the RPA approach, in the
presence of a mass term.

To investigate the possibility for a stable pairing phase, we
will look for the expression of the effective interaction in the
imaginary time formalism, but fix 7 (temperature) = 0. In the
Euclidean space-time, we have

Lr=Pey®(d: +al) Ve + Ve(—iy)(V +iap)yg
— ey e + mypye, (29)

where we consider the situation with a constant magnetic field
and, thus, the Fermi system at a finite chemical potential 1.
We can get (29) from (20) by a naive analytical continua-
tion T = it. We may introduce Euclidean gamma matrices
ye = ¥ and yr = (—i)y, but to make an easier contact with
previous calculations and literature, we will keep a Minkowski
set: Yo = 03 and y = io. We introduce the gauge field propa-
gator by the functional integration over fermionic degrees of
freedom,

/DlZ/EDI//E exp{—fdrdx[EE]}

@;j
= exp —/dxfdyT(x—y)a“ma”(y) . (30)
Therefore

Do(x —y) =ty Ge(x, YGp(y. 0, (1)

where

Ge(x,y) = —(Te[Ye) (), (32)

and x and y are points in the Euclidean space-time. We
present explicit expressions for D, in the hydrodynamic
approximation, in Appendix B.

With the addition of the Coulomb interaction to Lg
[Eq. (29)], its contribution to the propagator of the vector
potential a;, i = x, y can be found by considering

fdq [dw1 (q X a(—q)) 2me? (q X a(q))
SLEg = - .
@) 2 4 €q 47

(33)

To get the effective interaction among fermions, at the RPA
level, we integrate out gauge fields in the transverse gauge
(V - a = 0). If we define the fermion density-current as

_ = j/’«, (34)

Salg
for the effective four-fermion interaction, we get

Vin(x = y) = =3 Dy (x = NTH)T"(y),  (35)

where by D,,, we denoted the gauge-field propagator with the
Coulomb interaction contribution. The propagator D,,, can be
found in Appendix B.

To find the second quantized expressions for the currents
and the interaction, we use the following expansion for the
fermionic operator,

ik_ 1 .
‘IJE(X)— ; I:E_m]mexp{lkx} ck+ -,

(36)

where we did not write the negative energy contribution.
To describe the Cooper channel we project all momenta to
the Fermi circle, i.e., k4 = k, =ik, = kr exp{£i6}. Starting
from the defining expression

Jo(x) = Bp()yWp(x) = WE(x)WE(x), (37
we find an effective expression for the density operator,

O e I e

m . [(G—0)]] 4
+1i ; sin {T Ck, Cky - (38)
Defining the transverse part of the current operator by

Jr(ki —ky) = ig x Vp(k))y¥e(ky), (39

where q = k; — k; § = %, we find the effective expression
to be

k 6, —0 sin | ©=0)
jT(kl—kz)zi—Fexp{i(zz l)}x {5}
"

Note the presence of the sine function which ensures the
hermiticity of the operator [\7; (q) = Jr(—q)]. This part is
missing in Ref. [9].

If we denote the components of D~! by

-1 _ 1QIOO ﬁOT
D (qv (l)) - I:ﬁOT ﬁTT} ) (41)

the effective interaction potential is
Vim (qﬂ CL))

1 A
= — = — - H j _ j
[MgoIlrr — (I'IOT)2][ 7 Jo(=a)Jo(q)

+ oo Jr (=) Tr (@) — 2Flor To(—@)Tr ()], (42)

We can find the effective Cooper channel, by taking expres-
sions for the components of the gauge field propagator (B3)—
(B5) with ky = iw, where w is real, inserting the components
in the expression for the effective interaction in (42), and
choosing momenta to describe a Cooper pair scattering.
Before a closer look at the effective Cooper channel, we
may note that always ﬁoo(iw, k) <0 and fITT(iw, k) >

0. In the static limit (w = 0), we have go(0,k) = —£,
ﬁTT(O, k) :0‘(4‘5‘)2’ and fIOT(O, k) = 0. In this case, the
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Cooper channel is

Cooper(q p— k = 0)

1nt

1 O — 6, O — 0,) 77
i |:COS(k p)—l—iﬁsin(k p):|
ITgo(0, q) 2 7 2

1 ("F)z , Pt
+ — | — exp{i(6k — Op)}crcpcl i C—p-
7700, @) \ 1 PATKTPE KR

(43)

In the scope of the hydrodynamic approximation, i.e., 6 ~
Op, we find repulsive behavior and no cause for a Cooper
instability even in the massive case.

The second limit we want to consider is a finite frequency
limit o 3> arlk|]. We have ITg(w, k)~ —4& “’Fa')"') ~ 0,
77 (w, k) ~ = +a(4ﬂ)2, and o7 (w, k) & —‘G%lkL The
effective Cooper channel can be described with two terms: (a)
density-current part,

VSt (q = p -k, 0)
47 sin Bt O—0p) , .m . (O —0p)
= e Gt 2 o sin
s BB 12 T
x expf{i (6 — GP)}clicpcikc,p; (44)
(b) density-density part,
C r _
Vo, P @ =p -k o)

k2 (B —6p)
_ <47T/~'L)2 4 (471)2 (2kF)|SIH k 5 ’
- 2

m (2kp)2|sm —(9"20") ’
2
X | cos M + lﬂ Sin M
2 I 2
x expli (B — Bp)}etcpc e p. (45)

In the density-density part, we have extremely singular re-
pulsive interaction present at finite frequencies, i.e., a repul-
sive singular interaction that describes the physics of excited
states. We do not see any cause for a real Cooper instability,
except that in the density-current part we can recognize some
pairing correlations. This motivates a search for a different
quasiparticle representation in which the pairing correlations
may be better captured and exposed.

IV. PAIRING CORRELATIONS WITHIN A DIFFERENT
QUASIPARTICLE REPRESENTATION

In this section, we will consider a different formulation
of the DCF theory with a mass term. This will enable us,
on the level of equations of motion, to deduce the effective
Cooper channel of different Dirac quasiparticles from the ones
discussed in the preceding section. The channel, derived from
purely gauge field effects, supports the Pfaffian family of
instabilities, and we will examine the ensuing phase diagram
as a function of the Dirac mass.

We may also consider the addition of the mass term to
the Dirac composite fermion theory by adopting the following

form of the Lagrangian [30]:

1
L=ixy" (0, —Haﬂ)x—i- dA—i—S—AdA
m 1
———ada —mj¥x. 46)
|m| 87

Note the presence of the Chern-Simons term for gauge field
a™. In this case (to recover the identical results for the re-
sponse with respect to the previous formulation), we have to
adopt the Pauli-Villars way of regularizing the theory. Why we
discuss this, to say, a redundant formulation? It is important
to notice that with a simple redefinition of the gauge field in
(46), and in the large mass limit, we can recover the HLR or
anti-HLR [35] theory depending on the sign of mass [30]. See
Appendix D for details.

By differentiating with resect to A,, the Lagrangian density
in (46), we get

7 dA  da A7
=i tar @7

where J, is the electron density-current, and, by differentiat-
ing with resect to q,,,

= |m| 47’ (48)
where J, is the Dirac composite fermion density-current.
Thus the Dirac composite fermion density-current in this
case is determined, on the classical level, by the fluctuations
of the gauge field, just as in usual Chern-Simons theories
[32,33]. These theories are based on the quasiparticle (com-
posite fermion) constructions via “flux tube”—unitary trans-
formations of the original electrons, and not with “vortex”—
Laughlin quasihole constructions [31] of quasiparticles. The
usual Chern-Simons theories (at the RPA level) can recover
the Jastrow-Laughlin correlations [32] as a part of magneto-
plasmon (cyclotron energy) dynamics, while in the “vortex”
constructions they are, in a way, frozen and built in quasi-
particles. This distinction may be important when discussing
the presence of pairing correlations. In the DCF limit, at the
RPA level, both formulations give the same response, because
they describe the response of “vortex” construction, using
different regularization schemes. However, at the classical
level [Eqs. (22) and (48)], their predictions may differ, be-
cause the distinction between the quasiparticle perspectives
is preserved. Thus, although, at the RPA level, we find the
absence of pairing correlations for “vortex” constructions
(Sec. III), the fact that some pairing correlations are present in
the high-energy, i.e., the high-frequency sector in the density-
current part of the interaction, gives us an expectation that
by adopting different quasiparticle representation, we may
recover the pairing correlations in the low-frequency or static
limit.

The problem, as described by Eq. (48), is formally identical
to the problem discussed in Ref. [34] in the context of the
graphene Dirac electrons in FQHE regime. Following the
analysis of Ref. [34], for a fixed valley, definite spin, Dirac
electrons, of the gauge field a” induced interaction between
current and density of Dirac particles in the presence of a mass
term, we can arrive at the effective form of the pairing channel,
Eq. (25) in Ref. [34].
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Let us discuss the details that lead to the p-wave pairing
channel or attractive interaction for a definite, negative sign
of the mass, m < 0. The equality in Eq. (48) will lead to
the following integral expression for the gauge field a”,
a =ay +iay,

/
a(r) =2 / dr'i—~—=_5p,(r'), (49)
Ir —r|?

where 8p, (r') represents the fermion density with respect to
the constant value given by the fixed strength of the external
magnetic field that we assume. In the following, we will
analyze the statistical interaction defined as the one between
the current of Dirac fermions and the field a;;i = x, y:

Ve = Xy aix. (50)
We work in the following representation of y matrices:
YV=o03, y'=io, y*=—io. (51

In this representation, we have the following expression for
the statistical interaction:
-7

o 0 =
Vy = —i2 / dr'sp, (x| (r)[_ o T }x(r), (52)
[r—r'|2

and §p, (r') = xT(@)x (@) — 5, where 5 is a constant (ex-
ternal flux density). The constant part gives no contribution
to Vy;.

On the other hand, the presence of the mass term in the
Dirac system leads to the following eigenproblem,

m—e€ k_
ki —m — €

]X(k) =0, (53)

where a positive eigenvalue € = /|k|> + m? = E, corre-
sponds to the following eigenstate:

xe = [’" ’ E“}; (54)
L ks JV2ERGEGEm)

As we consider relevant only (positive energy) states around
kr, we will keep only these states in the expansion over k
eigenstates of field x (r), and, further, only consider the BCS
pairing channel in Vy,. Thus

x(r) = \/%_v ¥exp{ikr}xb~<k>ak +ee, (59)

and

2 . 1
BCS 2 : T T
. = — a, dpd_, d_
st 8V — KPP By Ep(m + Ex)(m + Ep)

ﬁ [m + Ep:|
0 D+
x [(m + Ex)m + Ep) +k_pi]. (56)

We used fdr% exp{ikr} = ii—f. The terms with the coeffi-
cient k_p, give a p-wave channel contribution (for spinless
fermions),

0
x[m+ E; k_] )
Tk —p_

k_p
m{em + Ex + E,)(m + Ex)(m + E,)
—|pI*(m + Ey) — |kI*(m + E,)}. (57)

These terms give the following contribution:
2
BCS Tt
Vp = mﬁ Zakapafka,p
k.p

kI pl

_— 58
Ek'Eplk_p|2 ( )

x exp{—i (6 — 0,)}
where we see that because of the assumed sign of the mass,
m < 0, we have an attractive pairing channel. We will discuss
in more detail the effective interaction and possible pairing
solutions below, but in the following we will make a few
general comments. We see from Eq. (58) that only for nonzero
mass we can have pairing. Also the chirality of the induced
p-wave pairing can be identified. Notice the different phase
factors in VBCS with respect to Ref. [34]. That comes from
a different overall phase in eigenstates that we used in the
fermion field expansion in Eq. (55) and the one used in
Ref. [34]. Both representations lead to a special chirality
pairing function g(r):

|r1|iinoog(r) ~ f(ll‘l)i—'- (59)

The function f(|r|) depends on the details of the small k
behavior of the order parameter. The self-consistent equa-
tion for the pairing function, A} = 2& (a;iaT_k), where Elf =
(Ex — )* + | Axl?, implied by Eq. (58), with the assumption
that |Ag| is the largest around |k| = kp, gives us the small
k behavior, Af ~ k,, and thus g(r) ~ f However, again
we have to take into account that the assumed direction of
the external magnetic field in the Son’s formalism is B =
Bé., B>0, becﬁause }he uniform Dirac composite fermion
density is p, =V x A = B > 0. For the usual setup, with
B < 0, the analysis implies g(r) ~ %, i.e., Pfaffian pairing
of the opposite chirality with respect“to the one given by the
external field. The same conclusions, i.e., an attractive pairing
channel with special PH Pfaffian chirality pairing hold true
for m > 0 as can be easily checked. Thus, for large enough
mass, we may expect that the interaction term due to the
gauge field [Eq. (58)] can lead to the PH Pfaffian-like pairing
instability, but for very large m, the pairing interaction is
suppressed. [For large m, in the scope of the HLR theories as
shown in Appendix D, any pairing (Pfaffian and anti-Pfaffian)
correlations that come from the current-density interaction are
obstructed by a three-body interaction, and do not give a clear
scenario that comes from the constrained dynamics of the
system.]

A more careful examination of the Cooper channel interac-
tion in Eq. (58), which we may begin by angular integration in
a BCS self-consistent equation, shows that the pairing interac-
tion is extremely singular and would overcome any repulsive,
short-range or Coulomb, interaction. Also the interaction in
Eq. (58) does not correspond exactly to the statistical interac-
tion that is usually connected with the Pfaffian physics as de-
scribed in Ref. [36]. Thus we need to examine more carefully
all the terms that follow from Eq. (56). A complete discussion
can be found in Appendix C. The picture that emerges from
the detailed analysis in Appendix C is very simple: for large
|m|, irrespective of the sign of mass, we may expect a PH
Pfaffian-like state, but for small |m|, depending on its sign,
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we have anti-Pfaffian, for m > 0, and Pfaffian state form < 0.
Due to considerable numerical support for anti-Pfaffian under
LL mixing in the SLL [37], we may identify the case with
the positive mass to the one of the SLL. Furthermore, the
identification of Pfaffian and anti-Pfaffian for opposite sign
of m, i.e., particle-hole symmetry breaking that is not large is
consistent with the numerics (in the SLL) [7].

However, we should be aware of the absence of pairing
in the LLL, and that our analysis based on the gauge field
description only, is not sufficient for the explanation of the
physics in the LLL. We need to include Coulomb repulsive
interactions among electrons. This inclusion in the Chern-
Simons theories, especially the DCF theory is not an easy task,
because a part of the influence of the interactions is built in
the gauge dynamics. We may try to include a bare Coulomb
interaction with densities that correspond to those of the Dirac
quasiparticles [of the theory in the Eq. (46)] as a consequence
of Egs. (47) and (48). The singular behavior of the Coulomb
law can suppress any pairing correlations that follow from
the gauge field description and constraints. Thus we need to
include the interactions in a way that reflects the physics of
a fixed LL to explain the dichotomy of the physics in the
LLL and SLL, i.e., a Fermi-liquid-like state, and topological
paired state, respectively, i.e., to include more intra-Landau
level physics in the DCF theory. The way to achieve that is to
include a term that represents the interaction of the effective
dipoles of the Read’s construction with an electric field as
discussed in Refs. [38,39]. As explained in Ref. [39], the
inclusion of this physics amounts to a change in the expression
of the Coulomb interaction of the form

o o

—_—— (60)
lal gl + F5alql?

where we assumed a static case, i.e., no external fields except
for the uniform, constant magnetic field B, and m* represents
an effective parameter (mass) in the long distance limit. In
the following, we briefly recapitulate how we can reach the
modified interaction in (60). First, we note that in a functional
formulation we can introduce a scalar field ¢ that decouples
the Coulomb term in the inverse space as

2na
8L, = —|q—|5,0(—q)5,0(Q)

S p(—q)do(Q) + 2'i'¢>(—q)¢><q). 61)
T

The scalar represents a potential that a particle experiences
due to other particles. On the other hand, Galilean invariance
allows an extra term in the kinetic part of the DCF theory [38],

8L, = iuix 3 x, (62)

where u; is the local drift velocity, u; = €;; %, i =x,y. This

term represents an interaction between the (local) electric field
and dipoles of the composite fermion quasiparticles, which are
propotional to quasiparticle momenta [38]. If we introduce a
mass parameter, m*, to relate the momenta of quasiparticles to
their (local) velocity u, we may represent (62), in the inverse
space, as

mul’p _ . P
2 2B?

8L, = lql*¢(—q)p(q),  (63)

where p = ﬁ with Ip = 1/kp, the magnetic length, is the
density of the system. Integrating field ¢ in the functional
representation of the theory, with £, and 8L, included, we
reach (60). Thus the BCS channel in Eq. (C3) with a modified
Coulomb interaction in Eq. (60) may represent a good starting
point for the investigation of the pairing instabilities at half-
filling in the presence of the PH symmetry breaking mass m.

The role of the modified Coulomb interaction is crucial
for the existence of paired states. For m* finite, we have
to deal with a singular repulsive interaction at this level of
approximation, which will preclude any pairing as is the case
in the LLL. For m™ infinite, the effects of the interaction will
be obliterated, and we will have the pairing scenario as is the
case in the SLL. Moreover, in this case, for |m| (LL mixing)
large, we may expect the PH Pfaffian-like state, which is
stabilized with |m| in a uniform system and a consequence
of the constrained gauge field description. Nevertheless, we
should note that the PH Pfaffian effective (attractive) interac-
tion scales as N‘%‘ (with respect to those of Pfaffian and anti-
Pfaffian for small |m|), and thus it is suppressed in magnitude
with large |m|.

We may ask ourselves what is the physical meaning of the
m* infinite limit in the SLL. In this case, the local drift velocity
should go to zero and thus the potential that other particles
make for a given one is flat, i.e., the correlation hole does
not exist and particles are free to pair. That this indeed may
be the case in the SLL, we have indications from numerical
experiments that find larger size of hole excitations in the SLL
than in the LLL in the FQHE regime at filling factors 1/3 and
7/3 [40,41].

The numerical solutions of the BCS self-consistent
equation:

Ak
Ap=-— ij Yo (64)

for channels I = 1, 3, —1, with A} = | Ag|e'!%, are described
in Fig. 1. Details concerning Eq. (64) and its solutions can be
found in Appendix E. The parameter m in Fig. 1 is measured
in units of energy, (Avr)kr, and this dimensionless quantity
along x axis on the right-hand side of Fig. 1, can be described
in the following way. First, we rewrite the quantity with the
Fermi velocity and explicit physical constants:

mDv%
hvpkr  h

mpvr C mp

B = EvFﬁs

where mp is the mass of DCFs, Ig =,/ f—g is the magnetic

length, and kp = i On the other hand, the coefficient of the
LL mixing is the ratio of the characteristic Coulomb energy
and cyclotron energy:

(65)

V. e moec  esJec m,

- = , 66
how. lp eB iR VB (66)

where m, is the mass of electron. Thus the plotted (dimension-
less) parameter m may be identified with LL mixing if mp =

%mg, i.e., the mass of DCF is the electron mass multiplied

. , 2 .
with a “fine-structure constant” of DCFs, ;TF characteriz-

ing the relative strength of the Coulomb interaction. The
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FIG. 1. The solutions of the self-consistent BCS problem. (Left column) Radial direction k-dependent pairing amplitude for various values
of m. Channel [/ = 1 solution only depends on |m|, while / = 3 and [ = —1 channel solutions are symmetric with the sign flip of m (see
Appendix E 3). (Upper right) Dependence of the maximum of the pairing amplitude on m (always found at the Fermi level kr). (Lower right)
Total energy of the different pairing solutions compared to the normal state energy. Gray vertical lines denote the transition between different /
channels. Color in the background corresponds to the energetically favorable channel at the given m. We identify [ = 3 and —1 channels with
an anti-Pfaffian and Pfaffian state, respectively, and / = 1 channel with a PH Pfaffian-like state.

identification seems plausible, although we do not have an
explicit proof; we expect that the prediction of the phase
diagram that follows from the theory, up to physical constants,
depends solely on the unique parameter of the system, Iz =
77> and thus the dimensionless parameter in Fig. 1 should
represent LL mixing.

The LL mixing in experiments is of order 1, although it
can be large as 4-8 [42,43], and with the above identification
we may expect the anti-Pfaffian (/ = 3) to be the dominant
instability in the SLL from the phase diagram in Fig. 1, though
the critical m [for the transition into the PH Pfaffian-like state
(I = 1)], may be estimated to be m, = 1.2, and thus the role
and possibility for the development of a PH Pfaffian-like state,
at sufficiently large LL mixing in a uniform system should not
be underestimated or excluded.

We have confidence in our predictions, because the global
features of the phase diagram in Fig. 1 are in agreement
with numerical experiments in the SLL. (a) At m =0, a
Schrodinger cat superposition of Pfaffian and anti-Pfaffian
is present as in Ref. [7], and depending on the sign of the
mass for m # 0 we have Pfaffian or anti-Pfaffian. (b) The

PH Pfaffian-like state is continuously connected to the excited
composite FL state at m = 0 in an agreement with Ref. [13].
However, this does not mean that with an absolute certainty
we can expect a PH Pfaffian-like state at large enough LL
mixing in the SLL. This is because we do not possess the
precise knowledge of the phenomenological parameter m™* as
a function of the Dirac mass, m. The parameter m* enters
Eq. (60) and controls the effectiveness of the pair breaking
due to the repulsive Coulomb interaction. We expect that for
smaller values of Dirac mass, the parameter m™ is infinite and
pairing is present, but, for some large m, the parameter m™ will
become finite and an HLR-type of CFL will be established. As
we do not know the precise value of m for which this drastic
change will occur, we can not say beyond which large enough
m the pairing scenario of Fig. 1 will not be realized.

V. DISCUSSION AND CONCLUSIONS

We showed that a complete DCF theory (introduced in
Refs. [38,39]) may describe both the paired and FL state
of the SLL and LLL, respectively, if we treat the parameter
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m* in (60) as a phenomenological long-distance parameter,

which (in the scope of our treatment) is necessarily infinite
in the paired states. The m™* is necessarily finite in the limit
of large Dirac mass, m, (HLR theory) and in that region
we should expect known results (no pairing). For small m,
in the SLL, m* must be infinite to allow for pairing of the
(anti-)Pfaffian type consistent with numerics (see Fig. 1). But
interestingly enough, we reveal (Fig. 1) a strong competition
between an anti-Pfaffian and a PH Pfaffian-like state for
intermediate Dirac mass m although we can not claim the
absolute relevance of the PH Pfaffian-like state because we
do not know the behavior of m* in that region. However,
it seems likely and the results of Fig. 1 are suggestive
that a PH Pfaffian-like state [Eq. (19)] may play a role in
experiments.

In this work, we discussed the effective Cooper pairing
channel of the system at half-filling in the scope of the DCF
theory with a mass term. The mass term of the DCF theory
represents a term that breaks the particle-hole symmetry of
electrons confined in an LL and represents an LL mixing.
Solely on the basis of a gauge field description, we find
for small Dirac mass an anti-Pfaffian or Pfaffian instability

J

. d*p
iSr(x,y) = 0(x" - yO)/ @2 2p0

d2
(vp +mB(P° — wyexp(—ip(x — y)} — 60 — x°) / P

depending on the sign of the mass, consistent with numerical
investigations of the SLL [7], while for large mass (LL mix-
ing), irrespective of the mass sign, we find a PH Pfaffian-like
instability.
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APPENDIX A: THE POLARIZATION TENSOR

The derivation of the polarization tensor (K, ko) in the
massive case, in the hydrodynamic approximation, can be
done following and generalizing the procedure described in
the massless case in Ref. [44]. We start from the fermion
propagator in Eq. (28) as described in Ref. [45],

1
(27)? 2py

. d’p .
X (yp +m)f(n — po)exp{—ip(x — y)} —6(° —x°) / s>—(yp —m)explip(x — y)}, (Al
(27)* 2po
where py = /p? +m?2, px = pox® — px, and yp = y°py — yp. Using the theta function representation,
d _ 0_ ,0
0" — y0) = — _a).exp{ za)(x. yOl (A2)
2mi w—+in
we arrive at
iSp(x —y) = / / ——— exp{—io(x’ — y) +ip(x —y)}
(2m)
! 0 +}
X |iy p Hiv ———Q |, (A3)
[ w — po+in@(po—pn) — 6 — po)) “ w+po—in P
[
where statistics inside integrals for |k| < kp) is
Q=1<1+y_m m> (A4) G( | +k|2+ 2 )
P Po po ) q " ’
and ~ 0 \/|q|2+m2—u~|—|k|¢cos¢
lql* + m?
1 m
Q= 5(1 _yp_+ ypyp) (A5) ~ 0(/|q? + m? —
0 0

To get the form of the fermion operator in Ref. [44], we can
shift the frequency variable w as w — @ + . To find

" = —itr[y"Sp(x, y)y"Sr(y, x)l, (A6)
we need to generalize the trace calculations, frequency, and
momentum integrals. The main approximation in the momen-
tum integrals for the external momentum Kk, |k| <« kp, u, and
internal momentum q, |q| ~ kg (constrained by the Fermi

+ K| S(VIql* +m* — pycosd, (A7)

kr
JkE +m?

where kr = /u? — m?, and ¢ is the angle between vectors
k and q. Here an important difference with respect to the

massless case is the appearance of the factor k’;"' =.
Ftm

detailed analysis leads to a conclusion that to get I[T*" in the
massive case we have to rescale the external momenta k in the
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kr

massless case with a factor oy = ie., Kk — ark. In

particular,

% (ko, k) = 1% (ko, a k), (A8)

% (ko, k) = ap T (ko, rk)
k m

ikjm
TOi\T T T2

Hij (k07 k) = a%«“ lj (k()v Ole),

—I 1190k, aFk)) (A9)

(A10)

where by [, u,v=0,i, j we denoted the components of
the polarization tensor in the massless case, and, furthermore,
we can see the antisymmetric (Hall conductance) contribution
in 1%, due to the presence of the mass term.

The components of the polarization tensor in the massless
case, f[“"(ko, k), can be found in Ref. [44], and they are

l"’—[()()(ko’ k) = Hl(ko’ k)’

K
1% (ko, k) = ko—~— IT;(ko, k),

k|2
o kK kik/ k2
MY (kg, k) = [ 8" — — ko, —_— ko, K),
(ko, k) ( |k|2) IT; (ko, k) + K[ k2 I1;(ko, k)
(Al1)
where
k2 k2
ko, k) = —— | 02,22 — 1 — io(—k?), [ —2 |, (A12)
2 —k2
" 2
I, (ko, k) = —1I1;(ko, k Al3
1(ko, k) T 1(ko, k), (A13)
and k? = k} — |k|*.

The antisymmetric contribution in Eq. (A9) is expected
from the Berry curvature contributions in the scope of the
relativistic quantum mechanics [29], and here the Hall con-
ductance can be recovered to be gy = — - m

4m A/ k%--&-mz ’

It is important to comment that due to the infinite Dirac
sea, we have divergent contributions to the polarization tensor
(when doing the calculation according to the definition). As
discussed in the main text, the DCF theory as defined in
Eq. (20) requires dimensional regularization in order to re-
cover finite [T*". We used the version of the DCF theory given

J

m 2w 1

BCS T
a, dpa a_py—————————=
k9pd_kd-p

o Ex - Eplk —p|?

st T |m|w

X {—Iplz(m + Ey) — [k[*(m + E,) +4mk_p, +

in Eq. (46) and the associated Pauli-Villars regularization to
recover IT"".

APPENDIX B: THE PROPAGATOR OF THE GAUGE FIELD

To find @;& defined in Eq. (31), we need to switch from
Minkowski to Euclidean space-time. According to the defini-
tion of Dw}, we need only to take into account the change in
the fermion propagator, which amounts to taking i instead
of w at T (temperature) = O in the Fourier transform of the
fermion propagator described in Eqs. (A3)—(AS). Thus we
have to repeat the steps that we took to calculate IT*¥ taking
into account this change. The components of D! are formally
equal to the expressions in Eqgs. (A8)—(A11) and (A13), i.e.,
13;3 (ko, k) = I, (ko, k), with IT,; (ko, k) equal to

, 7 1
Hl(k()sk):g —1+W )
1— o5
ko

(BI)

where ky is purely imaginary.

In the transverse gauge, Va = 0, and if we denote by o =
27:—?2, the Coulomb coupling constant, the inverse of the gauge
field propagator is

_ lQIOO lAIOT
D (koK) = | ~ LT B2
(ko, k) |:1_[or HTTi| (B2)
where
Moo = I1;(ko, ark), (B3)
1 m N
for = —4——|k| > K1 ko, oK), (B4)
T 2u
. k2 k2 — o2 |K|? . 1
Mpr = —£ — 20 —F"" ,(ky, ark k| ——.
A v T 1(ko, ark) + | |(47t)2
(B5)

Here we defined the transverse component of the gauge field
to be ar = ik x a(k) and it is understood that k is purely
imaginary.

APPENDIX C: THE EFFECTIVE COOPER CHANNEL
AND POSSIBLE PAIRINGS

We can rewrite the Cooper channel interaction in Eq. (56),
taking into account both possibilities for the sign of mass,

(k_py )2

W(Ek +E, +2m)(Ey —m)(E, — m)}.

(CDH

We expect that in a self-consistent BCS equation the most important contribution will come from the region in which k ~ p, due
to the denominator in the equation above. To explore this limiting behavior, we can divide terms in curly brackets as follows:

[—lplz(m + E) — [k’ (m + Ep) + 2m(k_py + ki po) +

(Ex + E, + 2m)(Ey

(Ex + Ep +2m)(Ey

—m)(E, —m)

—m)(E, —m)

YT ((k—p1)* + (k+p_)2)}

2m(k_py —kop_
+[ mk_py —kip_)+ TEE

((k_p4)* — <k+p>2)}. (C2)
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The first part in the square brackets is an even function of (6, — ;) and as k — p the part is of the order of (6, — 6r)?. The
second part is leading and dominant because in the same limit it is of the order of (6, — 6;). The Cooper channel can be cast in
the following form:

2 1 i sin(0, — 6k) m isin2(6, — 6y)
VS = =D aapala- {— | = = (B o Ep o+ 2m)(Eg = m)(Ep = m)——
’ 8ka1;” P E Ep k—pP  m] ' ’ k —pl?
A—-1) cos(, —6r) — 1 m cos2(0, —6;) — 1
+ 4|m||Kk||p| — Alm||K||p| —————F—— = (Ex + Ep, + 2m)(Ex —m)(E, —m) )
lk —p? k —p|? |m| ! g lk —p|?
(€3)
where 5 = KCHPE The following analysis of the effective Cooper channel in Eq. (C3) is based on considerations similar to

2[K|[p|
those described in the case of classical composite fermions Pfaffian pairing in Ref. [36].

For m > 0 and m large, the Cooper channel can be approximated as

o i sin(0, — 6;)
BCS . T taoal - e o
VB ~ Zakapa_kafp 2m| { A —cos(8, — 6k) 1}.

(C4)

Thus, as previously discussed, the implied angular momentum pairing is Ay ~ (alaik) ~ ¢'% i.e., a PH Pfaffian-like pairing.

For m > 0 and m small, the Cooper channel can be approximated as
2 1 m expi2(0, —6;) — 1
BCS Tt P p — Yk
Vi~ v kE akapa_ka,pEk.Ep — | |(Ek+Ep+2m)(Ek —m)(E, —m) k—pP2

(C5)

By doing the angular integration first in the implied BCS self-consistent equation, we find that the pairing A} ~ e'% is
suppressed, and that Ay ~ ¢3% is the dominant pairing. The pairing in the same direction of PH Pfaffian, with angular
momentum equal to 3, can be identified as an anti-Pfaffian instability. For m < 0 and |m| small, the sign of the effective Cooper
channel in Eq. (C5) is switched. This changes the chirality of the implied pairing, and we find that now A} ~ e~ is the
dominant pairing, which we can identify with a Pfaffian instability. For m < 0 and |m| large, the effective channel is

2 . 1 i sin(6, — 6 expi2(6, —6r) — 1
VIS~ 25 Y alapalyay —2|m|{ fsinp 00, (expi20p — ) )}, (C6)
8V o Ex - Ep A —cos(8, — k) A —cos(6, — 6)
and we recover again a PH Pfaffian-like instability, A} ~ e/%:.
[
APPENDIX D: CLASSICAL HLR FERMIONS AT where ¢ represents the deviation from the uniform magnetic
HALF-FILLING AND PAIRING INSTABILITIES field configuration of the CS gauge field a,: ¢, = a, + A,
It is interesting to probe the large |m| limit of the La- such that
grangian glvenr: by Eq. (46). In th}S limit and after redefinitions Spy = —V xc. (D3)
a, = a, + WA > the Lagrangian becomes 4
m In this nonrelativistic case, the effective statistical density-
Lot = |—|8—ada + <l do + ap + ﬁAo>I/f current interaction is given by
2 - cj
m V. =——c[ iVy) — (Vv ]——. (D4
—Z W( +ai+mA,»)w = = g S AV = (VYT = S (D4
= Using Eq. (D3), in parallel to Egs. (48) and (8) in the relativis-
(1 - ‘Z—‘) 1 tic case, we can express the interaction as
+ —— —AdA. (D1)
2 4n x —x'
. /
If m > 0, we have the usual Lagrangian of HLR (up to a Va = 2m| / r’|2 TP Jy18p(r). (D3)

Coulomb interaction term that we omitted), which, based )
on the mean-field approximation, leads to the description  If e introduce momentum space states,
of composite fermion liquid (CFL). On the other hand, for
m < 0, we have exactly the Lagrangian of Ref. [35], which Y(r) = L Zexp{ikr} Ck, (D6)
in the same approximation describes anti-CFL, i.e., a Fermi Vv
liquid of composite holes. . 1 ) ;
The HLR theory (m > 0 case) is described by the follow- k) = is / dr exp{—ikr} j(r)
ing kinetic term of the Hamiltonian density:
— Z(Zq — k) ¢} ckiq. (D7)

Kzﬁ( iV 4OV + ey, (D2) UV ”
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Thus

%
ArVa(r) = ml 2= laP

qxp ;

Cp Cp—q clT Clyq- (D8)

We get the BCS channel by taking 1 = —p. If we let p — k
and q — k — p, we have

- —iV x k
Z Va(K) = Z II’) B ck Cp cT_k C_p. (DY)
k
Now we should note that
k_ — p_k
pxk="2% _2ip * (D10)

Direct comparison of Eq. (D9) with Eq. (58) shows that a
p wave of opposite chirality with respect to the one of PH
Pfaffian, i.e., a Pfaffian p wave, is the statistical interaction
implied BCS pairing instability of classical HLR CFs.

The diamagnetic term in Eq. (D2), i.e., the term ~c¢? ¢y
makes an interesting three-body interaction in the real space:

7 rp—ri3 rI;—r3
/dl’aVst(I‘s) ~ /drl/drzfdr3 > -
[ry — r3]* [ry —r3|

X 8p(r1)dp(r2)p(r3), (D11)

whose sign is fluctuating and this interaction represents a
disordering factor.

We can easily repeat the analysis in the anti-CFL case
and find that the current-density statistical interaction favors
opposite chirality pairing with respect to the Pfaffian but of
composite holes. This special pairing state of composite holes
can be identified with an anti-Pfaffian [35]. However, again
the additional, fluctuating sign three-body interaction, next to
the attractive channel exists.

APPENDIX E: BCS SELF-CONSISTENT PROBLEM AND
ITS SOLUTIONS

We start with the relevant parts of BCS mean-field the-
ory and follow the notation of Ref. [25]. The effective
Hamiltonian is

1
Keir = Z {&C;r(ck + §<A*C—k0k + AClCT_k)}, (E1)

k
VIK|? + m?2. The

and in our case & = E; — u, with E; =
Bogoliubov transformation is

Qg = UKCk — UkCT_k, (E2)
with
w_ =& —&)
Uk - Ai’; ’
il = (1 4 gk) (E3)
Ek
1 &k
2
=-(1-
|kl 2( 5k>
and & = VE + | Axl*.

On the other hand, if we start with a Cooper channel
interaction and do the BCS mean-field decomposition with

bl = c;[(cT .

Y Vig b by =D Vip(bl)bp + Y Vighf(bp)
k,p k,p k.p
— > Vi (b)) (by). (E4)
K,
and specify u_x = ux = uy and v_y = —vy, then

*
P
7 Z Vkp CkC

= Z Vkp((ukak + v ) (—vgok + ukaT_k)% (ES)
k

ie.,
* A*
P _ * _ _ k
= ; ViU = ; Vo(D)ye  (EO)
and thus Eq. (64) in the main text.

1. BCS equation in polar coordinates k — (k, 6;)

We simplify the expression in Eq. (C3) to obtain

2 1

isin(0, — 6;)
8V E.-E,

p
[

— |:11—|(Ek + E, + 2m)(Ex — m)(E, — m)
expli2(8, — 60} — 1]
lk — pl?

kp —

(E7)

For a fixed angular momentum channel, A} = | Ak e, we
do first the integration over the angular variable, 6 —6,,
in Eq. (64) [or Eq (E6) and after the change from sum to
integral: Y-, — 75 [ dk]. We use

2 : :
0 sin 6
I, =/ d@slnmﬁ —2r(A— /A2 —1)", (ES)
0

—cos 6

m=1, 2, 3, with A = k;,:; to get
1 2w )
Vi, = 7 / d(O — 0,)e" Vi, (E9)
0
forl =1, 3, —

In particular, for [ = 1 in (E9), we use (E8) to express the
following integral:

2T . .
o —isin(6 — 6
/ (6 — 6,000 ~1SO 6
0

A —cos(By —6,) (E10)
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and

2 —i2(6:—6,) _ 27 —i(0—0,) _ ,i(6x—0,)
e ’ 1 e »—e »
/ d(Ox — 0,)e' % 910— / d(6 —6)) =0,
0 0

—cos(Ox — 6,) A —cos(B — 6,)
(E11)
for ! = 3 in (E9), we have
2 ) —isin(@, — 6
/ dO — gp)eﬁ(@r@p)M = I (E12)
0 A —cos(Gx —0),)
and
2 e i20c—0,) _ | 2 ) e~ iO—=0p) _ ,i(0:=0,)
/ d(6 — 6,)e %) = / d (6 — 6,)e! >0 =20, (E13)
0 A —cos(6y —6,) 0 A —cos(O —6,)
and similarly for / = —1. In this way, we can get the following expressions for Vk’p, =1, 3, —1:
2
I _
Vip = SE—E[—ZImI(?» — Va2 =1, (E14)
2 E,— E E,+E 2
Vi = g | 2l — Vi - - eSS BRI e )
P SEp Ek P k
and
2 E E,+E 2
o = 2ml( — /32— 1) 4 2 L I E I Ey £ Bt 2m) el (i)
F 8E, Ex |m pk
Note that we take

3

k
, P <

A — )\2—1={

2 2_ 2 2
2 —1= \/W% —1= \/k4+ﬁ2{pzzk2 2 NP A¢ this point, we choose /(k2 — p?)? = |k*> — p?|, which then

2kp
leads to Eq. (E17). Other choices lead to an unphysical V that does not decay to zero with large k and p and diverges at k = 0
or p = 0. The general expression for V in the three cases of interest/ = 1, 3, —1 is given by

=7 (E17)

e | =

2z 1l (Ep, —m)(Exy —m)(E, + Ey +2m)
= m[— 2sgn(l) [m| ry, — (1 = &.1)sgn(l)sgn(m)—L Yy Ter |- (E18)
[
where &, , is the Kronecker delta, equal 1 when x =y and and thus
otherwise 0. Finally, we need to solve
Eo = (QKef|€2) — ZVkp
|Ak|=—i/w dp p v, 20l (E19)
2 Jo t 51) ’ _ _Z & — (Ek ") _ Z (E22)
pz 5k 2 5,,’

with Vklp defined in Eq. (E18). Note that |Ak| only depends

on k. In the second term (after the infinite volume limit), we need to

integrate over 6; and 6. Because Af A, = |Ag||Aple! @60,
a change of variables, 6, =6+ 6, and 6_ =6 —6,, is
appropriate to apply. The function under integral f (6, 6,) ~
For the BCS ground state [€2) for which o [$2) = 0, aftera  »/1@=0,)y;  has a periodicity under translations for (multiples

2. Ground-state energy

simple algebra, we have of) 27 of 6 and of 0,,. After a short analysis of mappings, we
can conclude
(QUKr|Q) ==Y = g 5 | (E20) 2 2
: | an [ do,r00.0,
To make assessment of the implied ground-state energies we 4n 2
first note that / do. / do_f(6-)
i Ak
(by) = ——=. (E21) =2r d9 f-). (E23)
2 gk 0
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Therefore the ground-state energy density for a fixed angular

momentum / instability, A} = [ Ak e, is
1 E — — 1 0
El = — ak k= Em ) / dp p
2n) 2 @2m)? Jo
| Akl [Apl
dk k Vi, — 2 E24
. /0 w2628, (E29
3. Proof of symmetry between / = —1 and 3 channels
The two pairing channels corresponding to / = —1 and 3
satisfy a symmetry relation
Vi m) = Vi (—m) (E25)

and therefore the solutions for these two channels are equal up
to a sign-flip of m. Here we present the proof of Eq. (E25).

J

(a—m)b—m)a+b+2m)=

= a’b + b*a + 2mab — ma* — mab — 2m*a — mab — mb*

First, we note that Ey(m) = Ex(—m), as E, = ~/k% + m?.
Therefore E; is an implicit function of |m|. For the sake
of clarity, we introduce Ay,(m)= 8;—”51 and Ay,(m) =
Ayp(—m). We also introduce a = E; and b = E,,. We focus
here on the case k < p but an analogous proof can be easily

given for the case k > p,

k3
Vklp 2<p(m) = Akp(m)li_2|m|F

(a—m)b—m)a+b+2m) k2:|
— sgn(m) —

pk p2]l
(E26)

We now separate the second term into parts which are even
and odd with respect to m:

(ab — am — bm +m*)(a + b + 2m)

—2m?*b + m?a + m*b + 2m®

= a’b + b*a — m*(a + b) — m(a* + b*> — 2m>). (E27)
Now we perform a change of variables i1 = —m:
(a—m)(b—m)(a+b+2m)=a’b+b*a—im*(a+b)+ma®+b*—2n?)
= (a —m)(b —i)(a + b+ i) + 2m(a* + b* — 2im>). (E28)
We now use sgn(x) = —sgn(—x), and sgn(x)x = |x| to obtain
k3 (a —m)(b—m)a+b+2m) k> a’ + b> —2m?* k?
=A —2|m|— 7 — 2| ———|. (E29
Vi (—i) k,,<m>[ |5 -+ sgn(ii) i o+ 2 pz] (E29)
We rewrite the additional term using k, p, and 7:
a’ 4+ b* =2 = k* + m® 4 p? +m* — 2m* = k* + p? (E30)
and
K>+ p? k2 Bk
E =@+ )=+~ (E31)
kp p p P
The terms cancel and we finally obtain
- - _ k _ (a—m)(b—m)a+b+2m)k? —
Vi p(—ii) = Akp(m)l:2|m|; + sgn(i) ok } Vi s, (). (E32)

4. Numerical solution

We solve Eq. (E19) numerically, using the forward-
substitution algorithm. We start from an initial guess for |Ay|
(in practice |Ai| = 1073, Vk) and then recalculate it from the
RHS of Eq. (E19) iteratively until it converges. We take as the
criterion for convergence

maxy | AP — A21d|

1073k
maxk|A26W| <107k

(E33)

It takes 30—130 iterations to satisfy the convergence criterion.
We keep kr = 1 to set the unit.

We perform the integration on the RHS of Eq. (E19) using
the trapezoid rule. The integrand function on the RHS is very

(

sharply peaked around kp. To properly resolve the integrand
function, we discretize k using a logarithmic grid,
]Ej — eamin+NL.k(amux7amin)

Jj €10, Ni) (E34)

with N = 500, amin = —30, and amax = 4. The logarithmic
grid is placed on both sides of kp, to include all points
given by

1+k; > 0.

We add the k = 1 point by hand. Therefore our grid can
resolve peaks at kr that have a width >e~3, which is
near the limitation of double precision numeric type. The
logarithmic grid is particularly important for the [ = 1 case
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FIG. 2. Integrand function in the final iteration for / = 1, m = 0.4, and kr = 1. Examples are given for three different k. The sharp peak
at kx has a width ~10~° and is properly resolved using a logarithmic grid.

at low m, where the integrand is most sharply peaked. We
illustrate our grid and the integrand function in Fig. 2. We

have checked that the results do not depend on the numerical
parameters.
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