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The Hilbert spaces of the edge excitations of several “paired” fractional quantum Hall states, namely, the
Pfaffian, Haldane-Rezayi, and 331 states, are constructed and the states at each angular momentum level are
enumerated. The method is based on finditighe zero-energy states for those Hamiltonians for which each
of these known ground states is the exact, unique, zero-energy eigenstate of lowest angular momentum in the
disk geometry. For each state, we find that, in addition to the usual bosonic charge-fluctuation excitations, there
are fermionic edge excitations. The wave functions for each case have a similar form, related to Slater
determinants, and the edge states satisfy a “projection rule,” that the parity of the number of fermions added
to the edge equals the parity of the charge added. The edge states can be built out of quantum fields that
describe the fermions, in addition to the usual scalar bogon&uttinger liquids that describe the charge
fluctuations. The fermionic fields in the Pfaffian and 331 cases are a noninteracting Mdjararraal Dirag
and Dirac field, respectively. For the Haldane-Rezayi state, the field is an anticommuting scalar. For this
system, we exhibit a chiral Lagrangian that has manifes2s6ymmetry, but breaks Lorentz invariance,
because of the breakdown of the spin-statistics connection implied by the scalar nature of the field and the
positive-definite norm on the Hilbert space. Finally, we consider systems on a cylinder, where the fluid has two
edges, and construct the sectors of zero-energy states, discuss the projection rules for combining states at the
two edges, and calculate the partition function for each edge excitation system at finite temperature in the
thermodynamic limit. The corresponding theory for the hierarchy and its generalizations is also given. It is
pointed out that the conformal field theories for the edge states are examples of orbifold constructions. Two
appendixes contain technical details.

I. INTRODUCTION bulk wave functions, and which describes such universal
properties of the bulk states as the statistics of their fraction-
The theory of the excitations at the edge of an incom-ally charged excitations, as it does for the hierarchy states.
pressible fractional quantum Hall stateas undergone exten- This deep connection implies that the properties of the edge
sive development since its beginnings a few years?agmn states are not only of interest in their own right, but they can
the integer quantum Hall effect, that is, when the bulk fluidalso be used to probe the properties of the underlying bulk
fills an integer number of Landau levels, the edge excitationstate. Effects in tunneling into or between edge states have
are essentially single electrons occupying single-particlédeen the subject of various works.
edge statésthat propagate in one direction along the edge In this paper, we wish to extend the theory of edge states
and correspond to the classical skipping orbits. There is on® cover some other interesting states that have been pro-
“channel” of such edge states for each filled Landau level;posed and which do not fit into the hierarchy scheme. In
each channel can be considered as a more or less nonintgrarticular, there ar¢i) the Haldane-RezayiHR) (Ref. 10
acting, one-dimensional, unidirectional Fermi sea. In thestate, proposed to explain the plateau observed=d8/2 in
fractional effect, the edge excitations, like the bulk states, arégerms of a half filling of the first excited Landau level, in
highly correlated and cannot be described by single-electrowhich the electrons have no net polarizatién; the Moore-
states. The basic variables are density fluctuations, whicRead (Pfaffian state’ again for a half-filled Landau level,
propagate in one direction along the edge. The quantum fieldut this time with spin-polarized or spinless electrons. They
theory, which describes these, is a chiral Luttinger litid. are ground states of electron systems with special short-range
In the simplest case, that of the Laughlin states at fillinginteractions, described later in this paper. The nature of the
factors 14, q odd, this density mode is the only low-energy observed 5/2 state remains controverg@her suggestions
excitation at the edge. In the special case of the integer effedtclude an alternative spin-singlet statewhich we believe
at filling factor 1, this is equivalent, via bosonization, to theto be a spin-singlet generalized hierarchy gtatehile the
single-electron, Fermi-sea descriptibfihe theory was soon Pfaffian has been proposed as an explanation for-d/2
extended” to the edge excitations of the hierarchy thebry, plateau in double layer systertfsthough theoretical calcu-
which yields an incompressible ground state in the bulk forations do not support this suggestion. Instead, they sutjgest
all rational filling factorsp/q with g odd. In general, some that the ground state there {8i) the so-called 331 state.
chiral conformal field theory, which generalizes the chiralSince this is constructed as a two-component generalization
Luttinger liquid, is expected to describe the low-energy,of the Laughlin states, it is part of the generalized
long-wavelength excitations. It was predicted, in Ref. 7, thathierarchy! but since it can also be interpreted, like the HR
this theory would, in general, be the same as the conformaind Pfaffian states, as a “paired” state, it will be natural to
field theory, the correlation functions of which reproduce theinclude it here.
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The terminology “paired” state must be interpreted care-dent, and it remains to check that we have obtained all the
fully. It is an old idea that Laughlin's states might be gener-edge(or zero energystates. This is proved in Appendix A.
alized if the electrons are first grouped into clustersnof Linear independence is confirmed, up to the eighth level of
particles(such as pairsm=2) and the resulting objects of €xcited states for the Pfaffian, and the sixth level for HR, by
chargem then form a Laughlin state. While this may be direct construction in Appendix B. For the Pfaffian, this re-

possible, and was apparently part of the idea of(RBf. 10, produces and extends WetPsiumerical results, and analo—_
it is not quite what we have in mind. In terms of the now- 90US results for the HR state by Wen, Wu, and Hatstigai.

popular composite fermions, which consist of an electron@U’ Method has the advantage over the computer calcula-

plus an even numbey of attached vortices, and which at tions of beinganalyticand valid for any number of electrons.
filing factor 1/q behave as particles in zero net figkthe " Secl. i, W? Eresent atl ;eLm'%an'eld thehory Igr the
paired states are obtained by forming a BCS-type paire§eutral part of the spectrum of the HR state; theBdym-

ground-state wave function, rather than a Fermi(feareal- metry of .the sys.tem IS .epr|C|t in this constructlon. The ex-
space wave functions are given in Sed. This was first ponents in the singularity in the electron occupation number

pointed out in Ref. 7, and has been discussed more recentfi} tNe €dge are predicted. We also present a CFT, the corr-

in Refs. 16 and 17. We note that it is not clear that these tw lators of which rep_roduce_ theulk wave functlc_)ns in the
procedures lead to equivalent states. In particular, the firdfranner _Of Ref. 7 Finally, in Sec._ v, we con5|der_systems
idea seems to lead to a prediction of abelian statistics fopn @ cylinder, with two edges, which gives furfcher mfo_rma—
fractionally charged quasiparticléswhile the second has tion about the structure of the systems. This mformatlon,. a
been connected with nonabelian statisfiGhe comparison cpmplete Qescr|pt|on of the numb(_ar .Of states at gach excita-
of the two procedures hinges on the question of whether thiion level in the thermodynamic limit, is conveniently ex-

two operations, of grouping particles into pairs, and of at_presse_d as a partition functio_n similar to the usual grgnd
taching an appropriate number of vortices, commute. In an anonical one. The resul_ts are mterpreted_usmg the CFT |d_ea
' \;g an orbifold construction. We emphasize that our basic

case, they do both lead to the result that quasiparticles ha . . o
; ; 7 ; results are derived without the use of CFT, which is needed
charges in multiples of Lfprather than 1, and, in the only in Sec. lll and at the end of Sec. IV, where the results

latter procedure, to the existence of BCS-tygemposite X .
fermionic excitations obtained by breaking pairs; these aré'® compared with CFT's.
expected to have a gap in their spectrum. In this paper, we
will see that the gap for the latter excitations goes to zero at Il. EDGE STATES OF A DISK
the edge, and the fermions appear as gapless edge excita-
tions, in addition to the usual bosonic charge fluctuations. ) . o ) .
The fermions can be described by quantum field theories, N this section, we will first review what is known about
which are related to relativistic conformal field theoriesthe edge states of the Laughlin states, emphasizing points
(CFT's); in the cases of the Pfaffian and 331 states, these atfat Will help us in studying other FQHE systems. We then
the chiral versions of familiar Majorana and Dirac fermions, turn to results for the Pfaffian, HR, and 331 states.
respectively. Considering first the interior of a system, i.e., in the ther-
The goal of this paper is to understand the structure of th&"odynamic limit where the edge disappears to infinity, or in
Hilbert spaces, and the field theories, of the edge excitationd System filling a finite but closed geometry such as the
of these paired states. Only closed systems are consideretPhere, a FQH system at a given rational filling fraction pos-
with the fluid in the form of either a droplet with one edge, S€sses, by definition, a unique ground statecept for some
or an annulus with two oppositely moving edges. KnOW|edg£|Oba| phenomena in the case of surfaces of nontrivial tppol-
of these field theories provides the necessary background f&9Y) and a gap for all excited states of the same or higher
the study of the tunneling and other properties of these state§€nsity than this ground state. In a number of interesting
which might be useful as a diagnostic for the nature of thecases(with the particles confined to a fixed Landau level,
bulk ground state. usually the lowesgt a model short-range repulsive interaction
There is some previous work on the edge states consid@n be found for which this ground state has a wave function
ered here. Welf has provided numerical evidence for de- thatis known exactly, and is a zero-energy eigenstate. There-
coupled Majorana fermions at the edge of the Pfaffian statdOre, turning to a QH droplet in a plane, with these interac-
Wen, Wu, and HatsugHistudied the edge excitations of the tions there is always a possibility of excitations of zero en-
HR and other states, using techniques developed by Wen ar®igy. which are “inflations” of the densest zero-energy state
wWu . for applying operator product expansions in CFT toOf the system. _Hence a zero-energy state a_lways involves
FQHE wave functions along the lines of Ref. 7. They ob-S0me deformation of the edge compared with the ground
tained analytical results for the edge states, but were not abfate. )
to show either the completeness or the linear independence The simplest examples of these systems are modeled in
of their states, though the dimensions of the spaces wer&Mms of Haldane's pseudopotentfaldy the Hamiltonian

A. Edge states of the Laughlin state

confirmed numerically for the lowest excitations. (we work in the lowest Landau level throughput

In the remainder of this paper, we will first writer Sec. -1
), for the Pfaffian, HR, and 331 states, wave functions for H=S 7S i 2.1)
edge excitations that are zero-energy eigenstates of the ap- = 'i<j L '

propriate Hamiltonian and manifestly allow an interpretation -
as decoupled systems of fermion and the usual boson excitadhere 7| are positive constant@seudopotentialsand 7}’
states at the edge. These states appear to be linearly indepénthe projection operator onto the relative angular momen-
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tum state of angular momentumfor particlesi andj. The limit, becomes trivial. The leading corrections to this limit
densest zero-energy eigenstatetbf(2.1), that is the one are then the terms,,e,, ... , so thak, with larger angular
with the lowest total angular momentufs total degree of momentum represent larger distortions of the edge. This is
the polynomial pait is the Laughlin statéhere in the sym- borne out by the energetics, if we introduce a terM into
metric gaugg? the Hamiltonian, wheré/ is the operator representing total
angular momentum about the origin. Since rotations are a
symmetry of the unperturbed problem, this term merely
splits the degeneracy of the different angular momentum
eigenstates. Then it is clear that stagg®'| have energy
(2.2 increasing linearly witm and since gapless excitations can
occur only near the edge of an incompressible QH state, we
can again conclude that these states are edge excitations.
This can be verified in detail for thg=1 case, which is a
filled Landau leveP? The same expansion for these coherent
states with more than one quasihole gives for each linearly
independent bosonic state a corresponding edge state. By the
N arguments above, these must span the full space of edge
I z-w), 2.3 excitations. _
=1 One may count the number of states at each increased
angular momentum, as follows. Note that to descelge
states, we consider the limil—o, with AM=M-M,

Wi(zg, - :ZN)ZL[]_ (Zi_zj)leF{_%E |zi|?

If the Laughlin state is multiplied by any symmetric polyno-
mial in thez’s, it will still be a zero-energy staté.We will
elaborate a little on this point.

The Laughlin quasihole operator

multiplied into ¥, produces a quasihole locatedvat and
mfany-quasihole states can be obtained by repeated use ed[Mg is the angular momentum in the ground state, and
this operator. All such states are clearly zero-energy excitag, —gN(N—1)/2 in the Laughlin stafe Bulk states are o,b

. . . . o_ =
tions foqr (2.1, because the wave fungtlon stllldvanlshes 8Si5ined either by fixingv's in quasihole states or by applying
(z—2)" asz—z;. The operator can be viewed as a gener-en,s with n of orderN, and therN— in either case. Since
ating function, through the expansion

AM in an edge stateHaena\PL is AM=% ,n,, the total
number of states aAM is p(AM), the number of ways

N AM can be divided(“partitioned”) into positive integer
I @-wy=ey+---+(—w)N"2e,+(—w)N"te, parts, the sum of which iAM. However, their meaning is
=1 clearest if we use a different basis for the algebra of sym-

+(—w)N, (2.4 metric polynomials, namely, the sums of powers

for the elementary symmetric polynomials,

Si=> 2 (2.6)

i
&= X 7
1<i)<ip<---<ips=N

. zin' (25)

(these are not all independent for finitkg but must all be
The symmetric polynomials in thg form a closed set under used asN—«), which are one body operators, and, up to
the operations of taking sums, differences, and products, sconstant factors, can be viewed as the positive angular mo-
they form a ring with unit element 1; allowing linear combi- mentum components of the change in density at the edge
nations with arbitrary complex coefficients, they form an al-from the ground state, projected into the space of zero-
gebra. All such polynomials, and therefore all zero-energyenergy states. Thus, the edge states are built up out of re-
states, are obtained as linear combinations of products of theeated applications of density operators, which do behave as
e,, i.e,, thee,’s form a basis for the algebra of symmetric boson creation operato(ise., they commutefor n positive.
polynomials. Thee,'s can be obtained by integrating the The components of the projected density withegative act
quasihole operator, times a suitable factor, ovemalthus  as destruction operators and with a suitable normalization,
all zero-energy states can also be obtained as linear comitihe algebra of independent simple harmonic oscillators is
nations of products of integrals of quasihole operators actingbtained, or equivalently, the abeliéid(1)) analog of a Kac-
on¥, . Single Laughlin quasihole states reconstructed fromMoody algebra. This point of view is extensively discussed
the e,’s via (2.4) are not orthogonal and may be consideredin Refs. 2, 3 and 5.
as coherent states, similar to those of a single electron in the The patrtition function can be obtained from Euler’s gen-
lowest Landau level, which can be expanded in angular moerating function, which is an infinite series in an indetermi-
mentum eigenstates. Likewise here, theare operators that natex:
increase the angular momentum of the electrons.bglso,
as operators, they clearly commute.

As long asw lies well inside the disk of radius o %

v2q(N—1) formed by the electrons, say more than one Z(x)=1+ >, p(AMXM=]] (1-x""1, (2.7
magnetic length from the edge, it represents the position of AM=1 n=1
the quasihole. Asv—co, the disturbance in density, due to
the quasihole, approaches the edge and eventually, in thwhere we used the binomial expansion
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1
\I,pf(zl, . ,ZN): Pf(—)H (ZI_ZJ)q

Zi—Zj)i<j

(1—x")"1=1+x"+x>"+ ... . (2.9

We recognizeZ(x) as the statistical-mechanical partition
function of a chiral Bose field, that is a collection of simple

harmonic oscillators of frequenciess, n=1, 2, .. ., if we Xex;{— > 1zl2
setx=exp(—w/kgT) (and%=1). For the convenience of the

reader, at later points in this paper, we include a table of the

: (2.9

partition functionp(AM) for smallAM: where the Pfaffian is defined by
AM 1 2 3 4 5 6 7 8
dim=p(AM) 1 2 3 5 7 11 15 22 1 N/2
. i i PfM ij= 2N 2( N/Z)' E ngH M o(2k—1)0(2k)
In addition to these states, we can obtain states with a net foeSy k=1

charge added to the edge, either by changing the electron

number, which of course can only give integral charges, Ofgr an NXxN antisymmetric matrix, the elements of which

by adding quasiholes at the center of the disk, which aHOW%reMij . It is the lowest angular momentum ground state of
the charge effectively added to the edge to be a multiple oo Hamiltonian'2

1/g. The wave functions of such a state, with a positive

chargem/q added at the edge, are the same as the above,

except that a factoll;z" is included. The partition function

for the states in each such sector is the same amfe0;

these again represent density fluctuations on top of the state, H :V%}
which now has chargem/q added. The states with different

electron number will, in the following, generally be found to . o . .
play a role in the structure of the theory. Whether the statefwhere the sum is over distinct triples of partlo_léer the
with quasiholes added at the center should be viewed as pdfeS€d=1 and of similar three-body short-range interactions
of the edge theory is somewhat a matter of taste; they coulfPr a> 1. The filling factor is 1¢. The Pfaffian state is totally

alternatively be viewed as a part of the more general theorntisymmetric fog even, so could describe electrons, while
of bulk and edge excitations together. or g odd, it describes charged bosons in a high magnetic

field. Zero-energy quasihole excitations correspond to in-
creasing the flux inside the area spanned by the fluid, as
usual, but, in this case, the basic objects contain a half flux
The Pfaffian staté for even particle numbeN, is defined quantum each and must be created in pairs. A wave function

84(zi—2) 64z~ 2y, (2.10
)

B. Edge states of the Pfaffian state

by the wave function for two quasiholes was proposed in Ref. 7; it is
W(z 20 Wy W) = 1 S ngnlljfl[(za(Zk—l)_Wl)(za(2k)_W2)+(W1‘_>W2)]
b e TN (N/2)! 55, (Zo(1) = Zo(2) * * * (Zo(N—1)~ Zo(N))

. (2.11

XH_ (Zi_Zj)leF{—}Tz |zi|?
i<j

It is clear that forg=1, the quasihole states are zero-energy eigenstatds &.10); this also holds for the appropriate three
body H for g>1. It will be seen that it is the pairing structure built into the ground state, which allows insertion of
Laughlin-like factors, which act on only one member of each pair and hence effectively contain a half flux quantum each,
unlike the usual Laughlin quasihole that corresponds to a full flux quantum. The same structure requires that quasiholes are
made in pairs, since the wave function must be homogeneous. When quasiholes coincide, that g, salven a Laughlin
guasihole is recovered.

The multiquasihole states can be used to generate the edge spectrum of the Pfaffian state. We initially used such an
approach, but now find it simpler to write down an ansatz which, we believe, in fact describes all the zero-energy states. We
construct wave functions fdd electrons N odd or evei which we will interpret as havin§ fermions created at the edge:

E n
1 Im,_,z*

Cone(Z1, 2N = (N=F)72 2 sgnor o)
1reTF 2 (N=F)/2! 55, (Zo(F+1) ™ ZoF+2) " (Zg(N=1)~ Zo(N))

x]1 (z—z)9 exr{—%E |z|?|. (2.12

i<j
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Here 0<n;<n,<.--<ng, are a set of distinct non- pled. This is analogous to the spin-charge separation at the
negative integers, and—F clearly must be even. The sum edge of the Halperin states, where although the spin and
over permutations can be divided into a sum of terms in eackharge form separate excitations that can be moved along the
of which the unpaired electrorfghose with indiceso(1) ~ €dge independently, there are global selection rules that re-
througho(F) in the above expressidare antisymmetrized e the total spin and charge added at the edge, in a similar
among themselves. Then each term contains a Slater deté¥2y to heré? This is closely related to the absence of any

minant in these coordinates, representing fermions in wavePin-charge separation in the quasiparticles in the bulk,
functionsz™, hence the stated conditions on thgs. The  Which can carry spin 1/2, only if they also carry nonzero
angular momentum of the states is charge. These “projection rules” will be discussed more ex-

tensively later, including the hierarchy states, to one of
F 1 which the Halperin state is isomorphic.
M= E N+ =[qN(N—=1)—(N—F)]. (2.13 In addition to these states, we can also take any one of
k=1 2 them multiplied by a symmetric polynomial in all thgs,
Hence, the angular momentum relative to the ground statavhich is again a zero-energy eigenstate. These polynomials
AM=M—M,, is represent the ubiquitous chiral bosons associated with charge
excitations and need not be considered further at the mo-
ment. To ensure that all these states represent linearly inde-
AM:; (Nt 32). (2149  pendent edge excitations, we must certainly take the limit
-t N—oo when studying each space of angular momentum
Note that the angular momentum of the ground state is caleigenstates atM fixed and finite. As we will see below, the
culated at the same number of electronsand is states without symmetric polynomial factors appear to be
Mo=N[g(N—1)—1]/2. Such a ground state only exists for linearly independent, but a full proof of this, and of indepen-
N even, but we use the formula as an interpolationNayxdd  dence of the symmetric polynomials, appears difficult. In
also, to yield(2.14). We interpret the states as having fermi- Appendix A, we prove that all zero-energy states can be
ons created in orbitals of angular moment&il =n+1/2,  written as linear combinations of the forrts12) times sym-
n=0,1, ...,which is exactly the description of the ground metric polynomials. In Appendix B, we indicate how we
state(antiperiodig sector for Majorana-Weyl fermions on a showed, forAM up to 8, that all these states are linearly
circle. We should note, however, that if we choose a certaiindependent. This provides rather convincing evidence for
even numbeN, of electrons and use the ground state forour simple form(2.12).
N=N, as a reference ground state, then the odd-fermion- For completeness, we also give expressions for the edge
number sectors occur only when some charge has been eithgfates in the other, “twisted,” sector, where the Majorana-
added or removed from the ground state. More preciselyyWeyl field obeys periodic boundary conditions. These states
odd-fermion numbers can occur whaéhis odd, so an odd occur when an odd number of quasiparticles are present far
amount of charge has been added to the edge, and similardgside the edge. For simplicity, we consider a single quasi-
for even numbers. Thus, the parity of the fermion number ihole at the center of the disk. The ground state in this sector
equal to the parity of théintegra) charge added. This seem- can be produced by taking the two-quasihole state above,
ingly trivial observation indicates that the fermion and dividing by w’z\"2 and lettingw;—0, wy,—o. On including
charge edge degrees of freedom are not completely decounpaired electrons as above, we obtain

F

@ ( ) 1 E HE=1zzlzk)H|(EIF)/2(Za(F+2|—1)+ZU(F+2|))
Zi, 2N S sgror
SR N 2INTPR(N—F) /21 54, g (Zo(F+1) ™ ZoF1+2) " (Zg(N—1)~ Zo(N))
XL[J_ (Zi—Zj)leF{—%E |z[?|. (2.195
|
These states have angular momentum Similar remarks to those above about thedd cases apply
F L here. These quantum numbers are exactly those expected for
_ Majorana-Weyl fermions obeying periodic boundary condi-
M= N+ sqN(N—-1). 2.1 ) i ) ) . ; .
IZl kT2 ( ) (2.19 tions, in which fermions can be added in orbitals with angu-
lar momentumn=0,1,... . In particular, note that for

Hence the ground state, in whiéh=0, has angular momen-
tum My=qN(N—1)/2 and the angular momentum relative
to the ground stateAM=M — My, is

F=1, we can taken;=0 and obtain a state with zero in-
creased angular momentum. This state is entirely meaning-
ful; since it has an odd number of electrons, it is not the same
as the ground stat@vith the added quasihodlewhich has an
AM=S N 217 even number oflelectrons. Thgt all state; in this sectqr have
eI ' the form shown is also proved in Appendix A; proof of linear
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independence along the lines of Appendix B has been done For completeness, we include a table of the dimensions of
at low AM. the spaces of fermion states for laWM in the untwisted
Other numbers of quasiholes, either even or odd, are olsector:
tained by taking states in the untwisted or twisted sectors,
respectively, and multiplying in Laughlin quasihole factors AM 1 2 3 4 5 6 7 8
I1;z". These states are similar to those in the two sectors aim o 1 1 5 5 3 3 5
above, but with additional charge at the edge, to which it has
been pushed by the quasiholes at the center.
All these states with quasiholes at the center of the disk . )
obey projection rules similar to those for the states without 1€ €ntries in the table are the ones that have been veri-
the quasiholes. In this case, Bsvaries, the charge at the fied in Appendix B. The dimensions of the full space of edge

edge runs over values which are integers plus a fixed fractiof*Citations in the untwisted, even particle number sector are
(defined mod 1, and equal to a multiple of 4)2 If the found by convoluting these numbers with those for tH&)U

charge added at the edge is defined relative to a referen@firal boson system given earlier. Thus, all states in this
ground state at eveN=N,, for each number of quasiholes sector have been yern‘led to pe I|_nearly independent up to
at the center, then the projection rules are unchanged. ThAM =8. In a numerical calculation in Ref. 18, only the states
avoids problems of definition in the case wheréaughlin ~ 1oF AM<5, which, in fact, contain a maximum of two ex-
quasiholes have been added at the center. A more satisfagited fermions, were found. The first state with four fermions
tory approach will be given for the case of two edges, as off*cited appears &M =8 (and is included in the table

the cylinder, in Sec. IV. The states with quasiholes added at
the center of the disk can be viewed as a special case of this.
One could argue that for the disk, it is more natural to ex-
clude any bulk excitations, in which case there are no twisted The HR stat&’ can be written in terms of the coordinates

C. Edge states of the Haldane-Rezayi state

or quasihole sectors. The other sectors arise only when bo®f N/2 up-spin electrons &, . . ., andN/2 down-spin elec-
edges are present, or in the presence of bulk quasiparticlesrons atzi, ... as
|
ViR(Z - 2y - 2= D sg T_o1 2 : T T 5 |1 (Zi—Z‘)le[{—%Z |[?|. (2.19
&Sy (23 Z51) " (Zne™ Zonip) 1<) .

Hereq is even to describe fermionic electrons, and the filling factords The first factor is of course just a determinant. The
product overz;’s with no spin labels attached is over all particles. The fact that this describes a singlet is discussed carefully
in Ref. 10. Strictly speaking, the form given is an abuse of notation. The correct way to write the functions is as a function of
N electron coordinates, numbered from 1Ng half of which have up spin and half down, and the permutations are over the
subset of electrons of each spin. On including the proper sign factors, the spatial wave functions can be combined with the
spinor wave functions of thH electrons, and then summed over all ways of choosing which electrons have which spin. In this
way, wave functions that are totally antisymmetric under exchange of both the space and spin labels of particles are con-
structed. This procedure is standard and has been described in the lité¥&ftffét can be used to produce states of definite
total spin. Since the construction of such states from the functions given below is straightforward, if tedious, it will be omitted,
and we will continue to use the abused notation ait8. In Ref. 7 it was pointed out that this state can be regarded as a
BCS-type condensate of spin-singlet pairs of spin-1/2 neutral fermions that consist of an electepaaatices, from which
the spin-singlet property can be more easily understood. The HR state is the unique zero-energh gtatg(bit— 1) — 2 flux
of a “hollow-core” pseudopotential Hamiltonian that gives any two particles a nonzero energy when their relative angular
momentum is exactly— 1.2°

As for the Pfaffian state, excitations lo€/2e flux are expected and by flux quantization they should occur in pairs. In exact
analogy with the Pfaffian state, the wave function for two quasiholes is

AL (2k = W) (Zh 4 = Wa) + (Wi W) ]

. = (k) W2 1 2 . )

VR(ZL, - .- ZhpiWe Wo)= 2, Sgnr R 3 I1 (Zi_Z‘)leF{_ZE |zi]
o€ SN2 (Zl_zi(l)) (2 Z(LT(N/Z)) i<j ]

. (2.19

Due to the spin independence of the newly inserted factorbeq— 1. To see this fact, expand the inserted factors for each
acting on each pair inside the sum over permutations, thgair in terms of powers ofiiz}r(k)_ Due to the symmetry
state is still a spin singlet a_nd this suggests_that the quasbetweenzl and z. o in each factor, it is easy to see that
holes carry no spin. We will see further evidence of this_; ot Thus. in th

later. The two quasihole state is again a zero-energy eiger%k Zo(x) MUSt oceur to an even povTver.L us_,lln the com-
state of the “hollow-core” Hamiltonian, where all pseudo- Pléte wave function, the absence & ¢ z,())" ~ for any
potentials(including V) are zero, excep,_;, i.e., fortwo K, I, and hence the zero-energy property of the ground state,

particles to interact, their relative angular momentum shoulds preserved in the quasihole states.
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It is possible to write down directly the forms of all the  AM 1 2 3 4 5 6
zero-energy states of the hollow core Hamiltonian, in anal-

ogy with those for the Pfaffian. In the untwisted sector, in dim 0 ! 4 5 8 10
terms of the coordinates &, up electronsN, down elec-
trons, the wave functions are linear combinationgait- Again, though the count of states based on the wave func-
ting symmetric polynomial prefactors tions given could of course be continued, the table has been
terminated at the largea&tM, where we were able to verify
1 S g s linear independence directlisee Appendix B Note that
(N;—F)! 9 grp spins larger than 1 do not occur at these M. Our num-
7SN, bers for spin 0 and 1 excitations agree, when convoluted
ey, with the U1) numbers, with those calculated in Wen, Wu,

9
ot (2! )nknpl (zb ym a_nd Hatsugat® though our re_sul_ts foN large extend_ to
k=1%o (k) 1=12%p() higher AM than they can attain in a small system without
T 2 2 o E A
(ZL(FT+1)—ZP(FL+1)) y -(zL(NT)—zi(Ni)) encountering finite size effects. . _ _
The twisted sector is again obtained by including
xI1 (zi—zj)leF{—%E |zi|?
i<j

X

a spin-independent quasihole factor, this time
HNT;FT(ZL(FT-H)_‘_Z,l;(FL-%—I))’ in the sum on permutations.

) . The angular momentum of the excited states relative to the
Here, N,—F,;=N,—F is the number of unbroken pairs, ground state in this sector is

and we may assume thg's, m,’s are strictly increasing as

. (2.20

for those in the Pfaffian edge states. These functions have a Fr F
structure similar to the real space wave functions for a BCS AM=D, (N +1/2)+ > (m+1/2). (2.23
state with some broken pairs, that is with BCS quasiparticles k=1 k=1

added; the latter would have a similar form for the sum over

permutations, but the factoz%;”k would be replaced by plane Finally, it is once again possible to multiply in factors
waves. Here, of course, they represent edge states, in whi¢hz" that add charge to the edge, which are spin independent
the fermions do behave as if they occupied plane waves rurand identical to those for the Laughlin states.

ning along the one-dimensional edge. As written, these states
do not have definite spin, but eigenstateSoand ofS, can

be constructed as indicated above. Since the paired electrons
form singlets, the spin is determined by the spin-1/2 unpaired The 331 state is just one of a family of two-component
fermions in the sums over andp, which behave identically states, the so-callednm’'n states, first introduced by

to ordinary spin-1/2 fermions. Hence, the possible spin statedalperin?® Using the notatiorf, | for the two components,
are determined by adding the spins of electrons in differenéven though they need not represent spin, and bearing in
orbitals (labeled byn, or m,), with the only constraint that mind that similar remarks to those at the beginning of Sec.
an orbital occupied with both an up and a down fermionll C about constructing totally antisymmetric wave functions
must form a singlet. apply here also, these states can be written

The angular momentum of the wave functions given is

D. Edge states of the 331 state

Womn(ZLs -+ - Zi)

FT Fl 1
Mzk; ”k+k21 M+ 5[ANN=1) = 2(N=F;~F ).
220 :iE[i (ZJ_Z‘T)muL[u (Z‘ﬁ_zli)mllr_s[ (z}-zy)"

Hence, the angular momentum relative to the ground state,
AM=M-—M,, is

xex;{—%z |zi|?]. (2.24

F

Ft
AM :,Z‘l (nk+1)+k241 (M +1). (2.22 The generaimm’n state is the unique lowest total-angular-
momentum ground state of a spin-dependent pseudopotential
Conformal invariance ideas suggest that this implies that thélamiltonian, that generalize@.1) to the two-component
edge excitations are fermions of conformal weight 1, notcase, which gives positive energy to any state in which two
conformal weight 1/2, as for the Pfaffian st48ec. 11 B and T or | particles have relative angular momentum less than
the 331 statdSec. Il D). This will be discussed further in morm’, respectively, or in which af and a| particle have
Sec. Ill. We note that the projection rule arising from our relative angular momentum less than
states is the same as for the Pfaffian, i.e., the parities of the For the case when the exponents in these states are of the
fermion and charge numbers are the same. formm=m’'=q+1,n=q—1, g=1 (which give filling fac-
From these wave functions, we can obtain the total numtor v=1/q, and the partial filling factors fof, | are both

bers of the low-lying edge excitatioriexcluding symmetric  1/2q; for brevity, we will continue to refer to this class of
polynomialg of the HR state in the untwisted sector at fixed states with generalj as the 331 staje then use of the
evenN: Cauchy determinant identity
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at the center of the drop. For a single such factor, this leads
. ) to a formula forAM like (2.28), but in which the 1/2’s in the
: (12 25 expression are dropped.

' In the bosonic form, it is easy to see that all these states,
allows the ground states to be written in a paired form, simiPoth twisted and untwisted, are zero-energy eigenstates for
lar to the Pfaffian and HR Staté :}7 This |dent|ty can bhe the above-mentioned pseUdOpOtential Hamiltonian, as an ex-
understood physically, in terms of the description of bulktension of the arguments for the one-component Laughlin
fractional quantum Hall effect wave functions as conformalstates, and that they span the space of such states. The
field theory correlatoré, as expressing bosonization of €quivalence of the bosonic and fermionic forms of edge state
correlators of a chiral Diracor Weyl field (on the right ~Wave functions involves generalizations of the Cauchy deter-
hand S|d¢, in terms of correlators in a Coulomb gaﬂr minant |dent|ty(225) We will return to the bosonized de-
exponentials of a chiral scalar Bose fielén the left hand  scription in Sec. IV D.
side. In terms of BCS-type pairing, this function describes

i<j

Il @ -2z)]l @-2zH]Il (zl—zé>1=de<

p-type spin-triplet pairing, with each pair in tf§=0 state lIl. FIELD THEORY OF THE HR STATE
of a spin triplet!®1’ _
We will extend the fermionized description immediately A. Field theory of the edge states of the HR state
to include the edge excitations in the untwisted sector, omit- We have seen in the previous section that, apart from the
ting symmetric polynomial prefactors: charge-fluctuation excitations, the edge excitations in the
states that we have studied are free fermidosmost of this
1 2 section, we ignore the projection rules exhibited in Sec. I,

(N, —F)! Sgnr Sgrp they will be reincorporated in Sec. }VFor the Pfaffian and
Tesy, 331 states, these can clearly be described by relativistic
peSy, Fermi fields in 1+1 dimensions(i.e., distance along the

edge and timeof scaling dimension 1/2, which we will de-
note ¢ for the Majorana field in the Pfaffian case, aitd,
(zL(FTH)—z})(FlH))- - -(ZL(NT)—z})(Nl)) ¢, for the Dirac field and its adjoint in the 331 case. These
standard field theories need not be described here. For the
q 0 9 HR state, a natural candidate might have been the Dirac
XL[J, (zi—2zj)%ex _ZE |zi] ], (2.26 theory, with up and down excitations described by particle
and antiparticle. However, in the Dirac field theory, there is
which is particularly similar to the HR case. For the angularno SU2) symmetry that can be generated by local expres-

F F
Ty Ly () 40) ™y (2 )™

X

momentum, we obtain sions for the spin density and current, and, in fact, it cor-
rectly describes the edge of the 331 state. Moreover the an-

) Fy 1 gular momentum quantum numbers show that the field for
M :kEl N+ kZl Myt SLAN(N=1) = (N=F;=F)]. the HR state does not have scaling dimension 1/2, but instead

dimension 1. This puzzle will be addressed in this section.
(2.27) Another attempt at its resolution has been made by Wen and
é/\/u,zo which described the bulk wave functions, but did not
exhibit the simple Lagrangian description shown here.
First, we write a Hamiltonian that reproduces the angular
F F momefnturr? eigenvalues alreacrzl]y found. Introducing a \r/]eloc-
_ ity v for the spin excitations when a tereM is present, the
AM _k§=:1 (it 1/2)+k§=:1 (M +1/2). (2.28 Hamiltonian for an edge of circumferentewould be

Hence, the angular momentum relative to the ground stat
AM=M—-My, is

This is the correct behavior for the states of a chiral Diac ®
Weyl) field, where the two type$ and | denote particles H=vs2>, k(aj aq+af ay). (3.1
and antiparticles. This is as expected from the general argu- n=1
ments based on the form of the bulk ground-state wave T )
function which, as we have mentioned above, includes d1€re: the operatoms,, a,, with k:TZTm/L' obey the ca-
correlator of this same type of fields. The projection rule ishonical anticommutation relationfay, & o} = Sk oo
once again the same as for the Pfaffian. {ak,,,ak,,,,}z{all,,al,a,}zo. Comparing with the result for
The edge states can be reexpressed in bosonic form asthe Pfaffian state, where there is a réilajorang, right-
moving (Weyl) fermion (see, for example, Ref.)2we see
TV 1 gi1g-1s (2.29  that apart from the extr& quantum number, the boundary
condition is periodic in the ground-statantwisted sector
in which .71 (#1) are symmetric polynomials in the (]) here, while it was antiperiodic in the Majorana-Weyl system.
coordinates only, and the numbexs, N, of 1 and | par- Therefore, we propose a newt1l-dimensional fermion
ticles need not be equal. theory for the neutral part of the HR edge, with a doublet of
This system also has a twisted sector obtained in a similacomplex Fermi fields¥V .(x,t), o=1 or |, and a chiral La-
way as in the other examples, by multiplying by factorsgrangian densitfinspired by that for chiral scalar bosdhs
HziT or Hzil that represent the elementary quasiholes locatedf the explicitly SU2) invariant form:
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=167 (9= 00 )V 0¥, +H.C. (3.2)

Here,e?” = -7, ¢!'=1. The canonical procedure leads

to the following, simpler looking Hamiltonian:

1
H:EJ dx v W19, ¥ + ¥ o, ¥]), (3.3

together with canonical momentall, =4,V , II,

=—09,¥;. Using periodic boundary conditions, and going
to Fourier modes, we see that, for the zero wave vector
modes, we obtain the first-class constraints that the corred—

sponding momenta vanisiI (k=0)=0. The constraints

can be included by simply omitting the zero modes hence*
forth in this chiral theory. Quantization using canonical an-

ticommutation relations then leads to quantized fields:

+
a
\IfT=Z —exp—ik(x+vst)+2 iexp’k(x+vst),
k>0 kL

akT
>0 kL JkL 0a

2 oo ik(x+vet) — a—lTexp'k(Xva )
=0 kL 7 &0 JkL s
(3.9

and their adjoints where {a],,aw ,/}= Sk Ouors
{ak(,,ak,(,,}z{alo,al,o,}zo, and k=2#n/L, with n=
1,2,...

\Ifl:

sion of (3.3) then yields(3.1).

Because of the Fermi statistics chosen for the field, an
the positive-definite norm imposed, as usual, on the Hilbe
space, this field theory is not Lorentz invariant, in spite of th
gapless linear spectrum. Consequently, it is not conformall
invariant either. This may be surprising, since we have be-
come used to the edge theories being some chiral conformg
system, but in fact, since we started with a nonrelativisticb e
system of electrons in a high magnetic field, nothing guaran-
tees that the edge must be Lorentz invariant, even when there
is a linear dispersion relation for the excitations. Nonethe-
less, we will see that there is a closely related conformal fiel

theory.
Returning to the chiral theory, the $2) currents can be
found using the standard Noether procedure:

9.

) 1 . a
/8—50’20, mIT”U,‘I’UﬂFH.C., (3.6

where we specify the Grassmann derivatdi&’ 5(4,V;) to

for asystem of circumferenck. It is assumed that
the vacuum|0) obeysay,|0)=0. The normal ordered ver-

13 567

S*=§k‘, CHERS (3.9
which are easily seen to satisfy the @Jcommutation rela-
tions. However, unlike other FQHE systems, such as the
Halperin state, where the edge theory is not only conformally
invariant, but also has a Kac-Moody current algebra as a
spectrum-generating algebra, here the currents do not form a
Kac-Moody algebra, and their correlation functions contain
logarithmic factors.

We are ready to identify the operators describing the ad-
ition or removal of electrons at the edge in our conjectured
edge field theory. The operatos®’ e~ "9¢ and oW e 'V4¢
represent the electron annihilation field operatdrs, and
W . In these expressiong(x,t) is the usual chiral boson
field representing the density fluctuations at the edge, with
propagator

(e(x,1)¢(0,0) = = In(x—vt); (3.10
it is related to the electronic charge density by
p=—id¢/\/q.%>" The exponential of the boson operator cre-

ates a bosonic object whenewgis even, so the scalar ferm-
ion, like the Majorana fermion in the Pfaffian case, field
makes the whole thing into a fermion, as the electron should
be. Note that the gradient of the scalar fermion field appears
here, not the field itself; this reproduces the spin 1 field
found earlier. Taking the charge excitations to propagate
with velocity v, we find that the electron propagator is

(0] W] (X, 1) W (0,00

(3.11

(X+vg)?(X+vet)d”’

(Jvhere the space-time separation of the two fields should be

gsmall compared with the circumference of the disk. The total

exponent is thug+ 2, in contrast to that for the Pfaffian and

%31 state av= 1/q, which giveq+ 1, whereas the Laughlin

sLates givey. Consequently, the expectatioifk) of the oc-
pation number of th&th singleelectronstate, which can

obtained by Fourier transformin@n one dimension,
along the edgethe equal-time electron Green’s function, has
a power-law singularityn(k) ~|k—kmna™ for the HR

étate, while the exponent ¢gfor the Pfaffian and 331 states,

g—1 for the Laughlin stategfor the full Landau level,
g=1, and there is a discontinuity im(k) ]. Numerical simu-
lations have been performed for both the Haldane-Rezayi
and Pfaffian state¥, but no conclusion about the exponents
in occupation numben(k) versusk relevant to the edge
field theory is drawn in the published work.

One might also expect that, just as the bulk system has
pairing of the composite fermiorissimilar algebraic BCS-
type expectations should appear at the edge. Indeed, because

normal ordering is assumed. Then the total spin operators for

the edge ar&?= [ dx Z§(x), and

1
Szzik‘, E(aLakT—aLakl), (3.7

s+:2k aliay . (3.9

(O|&‘PT(x,t)a\Ifl(0,O)|O)0<( (3.12

X+vgt)?’
which can be viewed as a pairing function. However, this
correlator omits the exponentials ¢f needed to represent
the electron operators; if these were included, the correlator
would decay rapidly, since the fields carry the same, not
opposite, charge. This could be taken to illustrate, for the
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edge theory, how pairing occurs for the composite fermionsrents are of the form¥ ¥ ., — (o« 0c'), which are not
not for electrons. Similar phenomena can be found in thé'good” conformal fields, since their correlators contain
Pfaffian and 331 states. However, while the correlator showtogarithms, so there is no Kac-Moody symmetry. We note
is legitimate as it stands for the scalar fermion field theory, ithat Wen and WP arrived at an equivalent description of
is not a legitimate correlator for the HR edge theory, becausehis c=—2 CFT system in terms of OPE’s, but did not give
the required intermediate states, where only a single fermiothe simple lagrangian description above.

has been added or removed from the ground statexcited It is possible to construct “twist” field® for the field
states, in the finite temperature cas#go not obey the pro- W¥_, which play a role similar to the spin field of the Ising
jection rule found in Sec. Il C. Since fermions can be createdor Majorana field theory in the construction of the bulk
from the ground state only by breaking pairs, states with amuasihole wave function'sThese fields obey identical rela-
odd number of fermions occur only when an odd number otions, as those defined in the next subsection, so we postpone
charges have also been added at the édgguming there are discussion until then.

no changes in the interior of the syster®nly operators that

respect this rule can be constructed in the edge field theory.

Thus, in the theory of the HR edge, this correlator can be C. Relation of bulk and edge field theories
constructed only for equal times, and must then be viewed as Next we will explain briefly how the relation of the bulk

the expectation of a single, nonlocal, operator. and edge field theories can be used in order to define quasi-
hole operators at the edge. The field theories as defined in
B. Conformal field theory of the bulk HR state Sec. Il A, 11l B appear very similar. The difference is that, in

In Ref. 7, a mathematical connection between FQH waveo€C- Il A the fields were not required to satisfy a reality
functions and correlators in CFT was presented, namely, theendition, they and their adjoints both appeared in the action,
elegant wave functions of some important FQHE states argnd the Hilbert space was found to have positive nofioos
actually correlatorgor conformal blocksin a chiral two- ~NO Lorentz invariance while in Sec. IIl B fields were real,
dimensional conformal field theory. However, the question-Orentz invariance was maintained and the self-overlaps of
of what theory this would be for the HR state was left unre-SOMe stateés were negative. Here we will consider the

solved. The difficulty was to understand the @Usymmetry positive-definite theory of Sec. lll A, and exhibit a conformal
(in fact, the singlet nature of the staie terms of CFT. We structure in this system. This does not contradict the earlier
will présent a solution to this problem here. The natura/Statements, because the stress-energy tensor involved is not

choice for the CFT in the HR case is a nonunitary theorySeli-adjoint(with respect to this inner prodyct

with the Euclidean actiotcontaining at this stage both right- 1€ correlators of thégradients of thefields in this sys-
and left-moving degrees of freedom for conveniénce tem, as already exhibited (8.1, are clearly conformally
invariant. If we work in imaginary time, and use the space-

d2x time coordinate=x+iv¢7, then the fields obey the operator
S= J Gs"" 3,V 50,V 5 (3.13 product expansiofope),

and the Grassman fieM . is regarded as real. Thug,, is a , )
relativistic scalar fermion and this model is conformally in- IV (2)0V ;(0)~ &40 127, (3.15
variant, but its states do not all have positive self-overlaps,

because of the violation of the spin-statistics connection, SO to the usual less singular terisese have the same form
we say that the Virasoro representations are nonunitary; th s those for the real fields in the theory in Sec. Il Bhen

central charge ix=—2. [We note that the spin-statistics . . Y
theorem relates the statistics of the fields in a positive-If we can|der only correlatqrs Oﬂ"” not of ¥, these
definite, Lorentz-invariant field theory to the “spin” defined correlations are conformally invariant. The stress-energy ten-

by rotations of the Euclidean two-dimensional space-time:Sor that generates these transformations T2)

which in a conformal theory is the difference of the right- —_ _,'SW’:‘NIU‘NIU’:/Z’ which can be verified to obey the
ope’s of a stress-energy tensor, using only the (h&5.

and left-moving conformal weights, and not to what we have*" X - . .
been calling spin, which describes the transformation pros:rhIS operator is not self-adjoint, so its Fourier components

. "‘_ .
erties under S(®) rotations that leave the spatial coordinatestn - in general, do not obel, =L _,. However, the Hamil-
unchanged.This system is an anticommuting counterpart totonian Ly derived fromT coincides with that found above

N ) i A X . . . T .
the system of a pair of scalar boson fields, which is unitaryt3-1. Naturally, if we consider instead¥ ,, there will be

correlators transformations of those correlators. The vacuum is annihi-
lated by the modek,,, n=—1 of either of these stress ten-
<0WT(ZD' . .O’Jqfl(zhlz)> (3.14  sors, as required in a conformal field theory.

We may now consider twist operators in this theory,
of which reproduce the determinant in the HR state. Thavhich quite generally are operators that twist the boundary
actionS is manifestly invariant under the group of real sym- conditions on the fields, in the manner already described in
plectic transformations $p,R) [which preserves the reality Sec. Il. We will require these to be also Virasoro primary
property of the fields, and has the same complexified Lieconformal fields for the stress tensbrabove, as they are in
algebra as S(2)] and thus the correlator produces a singletthe nonpositive-definite theory. They are introduced by the
(since the vacuum is invarigntHowever, the Noether cur- operator product expansion,
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1 . ing on the ratiov./vg, the net energy of these states in the
IV (2).AW) ~ —=7"_ (W), (3.16 HR case will be positive in most cases, except for the lowest

VZ—W added charge sectors. In particular, for 1/2, the orginal
case of interest for HR, there will be a sector with ground-
state energy—2mv/16L, if vg=v.. These sectors corre-
spond to operators of the fornre'#2d, which are also the
operators used in the bulk conformal field theory to generate
quasihole states that are single valued, with respect to the
electron operators.

where.”” is a twist field and¥, is an excited twist field of
spin o. In the presence of the¢” fields, the correlator for
¥, andd¥ | which, in the untwisted sector, is given by the
leading term in the op€3.15

<&‘I’T(Z)0\I’l(W)>=(Z_—W)2, (3.19
IV. EDGE STATES AND THEIR FIELD THEORIES
becomes ON A CYLINDER
1( m \F) A. General results and the Laughlin states
= —+ — . . . .
_ o z In this section, we consider zero-energy states on a cylin-
()W (2)W | (W).7(0)) = (z—w)Z der. For the Laughlin states, considered in the present sub-

(3.19  section, the structure of the edge states is well kn¢see
30 ) especially Ref. 2 but will be reviewed here to ensure that
and by a standard calculationye come to the equation  he jdeas are clear, and so as to introduce the partition func-
11 tion for two oppositely moving edges.
(A=) T(2).710))=— = =, (3.19 On a right cylinder of circumferenck, we work in the
8z Landau gauge. In terms of a complex coordinatethe

which means that the conformal weight for the primary fielgsingle- partlcle wave functions in the lowest Landau level are
7"is —1/8, and that the correlator e2inZle= (12" wheren is an integer and/=Imz; it has

been assumed that the boundary condition is that wave func-
(A2).7(0))y=2 (3.20 tions are periodic under—z+L. A more general boundary
ith tion. Negai ing di condition is that the wave function changes &y under
increases with separation. Negative scaling dimensions caiy, .y, 5 transformation; in that case, the wave functions be-
not appear in a conformal field theory described by unitary olemtfalg-(12y2 R h i6—q
representations of the Virasoro algebra. Since, in theorie ome € € ; eturning to the case™=1
om here on, we can write many-particle wave functions in

obeying the BPZ axioms, operators correspond one-to-on T iz IL . .
with states, they indicate the existence of states with energ&ﬁrms ofZ;=e"™4 ™, for example, the Laughlin stafé:

below that of the ground state. Since our Virasoro generators
L, generate a nonuni_tary repre_sentation, this is not a prqblem ¥, = H (Z-Z)) exp{ E y|
here. Moreoverl y coincides with the physical Hamiltonian
in both the untwisted and twisted sectors, at least up to an
overall constant in the twisted cag@/e note that, in order to As anyz; approaches ang; , this function clearly retains the
calculate this fromAM of the zero-energy states, a term properties of the Laughlin state in the plane, namely, it van-
related to the contribution of the bulk to the angular momenishes as theth power.
tum must be subtracted; see the next sectidfe now pro- The Landau gauge has explicit symmetry under transla-
pose that this constant is 27v4/8L, as predicted by the tion around the cylinder, and the corresponding conserved
conformal considerations above, since this appears to contrguantum numberM, is the sum of the powers!;’s of the
dict no principles. There is no real inconsistency in assertingi’s in the many-particle wave functions is the angular
that the energy of the supposedly “excited” twisted groundmomentum; alternatively, we could use the linear momen-
state lies below that of the untwisted “true” one. We could tum equal to ZM/L. For €'*=1, M is integral. In the
take the twisted sectdqwhereW , obeys antiperiodic bound- Laughlin state aboveVl =gN(N—1)/2, and theM;’s of in-
ary condition$ as the ground-state sector. We do not do sodividual particles are in the range, O .q(N—l). The
because(i) the theory for the diski.e., the chiral theory single-particle wave function withM;=n is peaked at
clearly identifies the periodic sector as the ground statey=—2wn/L, so the Laughlin state occupies a corresponding
which has no quasiholes in the bulfi) the ground state in range in they direction. Due to translational symmetry in the
the antiperiodic sector is not invariant under SIGRgener- y direction, there are, however, also an infinite number of
ated byL,, L., as required in a conformal theory, whereasother Laughlin states obtained by shifts, which are produced
that in the periodic sector is. by acting repeatedly on the wave function wiihZ; (or its

For the edge states of the HR quantum Hall statein all ~ inverse. This operator shifts th¥l; by 1, so since the filling
the paired theories considered in this paptte twisted sec- factor is 14, it corresponds to shifting a chargegffom one
tor of the fermions occurs only when the charge added at thedge to the other. Fractional shifts change the boundary con-
edge is 1/ (modulo 14). Making use of conformal argu- dition on the wave function, so they are not allowed in the
ments for the states with added charge, we expect the codilbert space at fixe@'?.
tribution to the energy from the charge sector to be The infinite set of Laughlin stateggground states’) are
(27v./L)Q%2q, where Q/q is the charge added to the the most dense or compact zero-energy states, in the sense
edge, as will be discussed in the next section. Thus, depenthat theM;’s lie in a range of minimum possible wid{imote

4.0
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that the pseudopotential Hamiltonian in arbitrary geometry idions of the two edges, which are almost independent. Each
defined in terms of the order of vanishing of the wave func-edge can be shifted by units without affecting the other.
tions as two-particles approach each other, which in theéShifts bym=1,...,q—1 must be performed on both edges
plane is equivalent to relative angular momentufihe total ~ together. A shift byq units at both edges is equivalent to
angular momentum of the Laughlin states M removing an electron from one edge and inserting it in the
=1gN(N—1)—pN, for the state where we have applied ground state at the other. If we extend the idea of a charge

[1Z P, p integral, to the Laughlin stat@.1). The range of Sector to include in a single sector all those that differ by
M-I values found in this state is  then integral charges, then there are onlysectors, of charge 0,
I

1/9, ...,1-1/q (modulo integers where the charge is
—p=<M;=q(N-1)—p. [Note that forg(N—1) even, we !
could choos@, such tha =0 and obtain a state symmetri- shifted by the stated amount from one edge to the other. For

the pseudopotential Hamiltonian without the confining po-

cal aboutM; =0.] All other zero-energy states have a broadertential, thesey sectors are on an equal footing and the choice

range ofMy’s, and are qbpamed as edge excnat_lons of theof zero is arbitrary. Above these ground states, bosonic ex-
two edges. In thiN—« limit, the different Laughlin states

citations can be created at either edge, and have the same

become infinitely far apart in angular momentum, and thesharacter in all sectors. Thus, the Hilbert space of the edge
assignment of edge excitations as belonging to a particulagycitations can be written in the form

ground statéfrom which their angular momentum differs by
a finite amount becomes una_mb_lguous. There are then two V= @?;éVr/q@’qu- 4.2)
sets of elementary edge excitations, out of which these ex-
cited states can be built, and as for the disk, these are linearlyach Hilbert spac¥,/q (V/q), r=0,1,...q—1, is the span
independent in thé&l— o= limit. The elementary bosons that of the full set of states in the extended charge sectors at the
create them are the operatosz=3>Z] and s,=3Z; " right- (left-) moving edge. The conformal field theory of the
(n>0). We refer to the excitations created by the action ofedge states that includes the operators of charge 1 in the
the s,’s, the contribution of which taAM,, the change in chiral algebra is known as the “rational torugsee, e.g.,
M relative to the corresponding Laughlin state, is positive, adfkef. 7). Loosely, the chiral algebra is the algebra of operators
right moving. The other operators,’s, create excitations at that affect only a single edge. There is such an algebra for
the other edge, havaM <0, and are viewed as left mov- both edges, the two algebras are isomorphic, and operators in
ing. (Here right and left refer to the two directions parallel to one commute or anticommute with those in the other. Each
the edge. Thus, if we can split M into AM —AM, where  Hilbert spaceV,q (V,q), r=0,1,...9—1, is an irreducible
the two terms are the contributions at the two edges, then wegpresentation of the fully extended rigkieft-) moving chi-
would like to view AM+AM as the “pseudoenergy” ral algebra.
(within a scale factor where both terms are defined as non-  To extend our definition of the pseudoenergy, which was
negative for the case in the present subsection. The directiggiven for the edge excitations of a single Laughlin state at
of motion then follows from the group velocity, the change fixed (but largg particle number, to the full set of sectors just
in pseudoenergy with momentum of an elementary excitadescribed, we introduce an arbitrary reference ground state
tion. with N=N, particles and shifp=p,, so that the angular
A more realistic, and well-defined, method would be tomomentum M,=3qNg(Ng—1)—poNy. We calculate
introduce a Hamiltonian that breaks the degeneracy of thd My, for Laughlin states, where an integral amount of
zero-energy ground states and edge excitations; for exampleharge has been added to a single edge, by chamgiagd
a parabolic confinement potentElMiz, would suffice, but  adjusting the shifp from pg, such that either the maximum
unfortunately the wave functions that can be easily writteror minimum occupiedM; is unchanged compared with the
down are not eigenstates of such a form, exceptifed. We  reference state in the case of charge added to the left- or
assume that as such a term is turned on and the eigenstatéght-moving edge, respectively. After subtracting a quantity
evolve, they stay in one-one correspondence with thoseglated to the bulk of the system, a step analogous to mea-
found here. We expect on physical grounds that excitationsuring momentum from the Fermi wave vector in a Fermi
that move electrons further from the minimum of this poten-gas, this gives a formula foAM or AM, valid in these
tial, as the edge excitations do, have higher energy, and sgpecial cases. This will then be used in all the sectors. The
for small [JAM| the bosons have a dispersion relationoccupied states, in general, lie in the interval
E~|AM| for either edge, and form the modes of(mon- —p<M;<gN(N—-1)/2—p. To add charge at the right-
chiral) scalar Bose field. The effect of the Hamiltonian on themoving edge, we leN=Ny+ AN, andp=p,. Then we cal-
low-lying states of the system can then be determinedulate
through a renormalization group analysis, as has been done
for the present case alreadlyin fact, the analysis of the AM =qAN2/2+ AN[q(Ng—1/2) — po]. 4.3
effective field theory of low-lying excitations, and its opera-
tor content, given here is the basis for such an analysis foFherefore, if we defineE=AM—[0q(Ng—1/2)—py]AN
the paired states. for the excitation pseudoenergy at the right edge, we obtain
If the electron number in the Laughlin ground state isE=qAN?/2, for the Laughlin states, and this is consistent
changed by 1, the width changes fyunits. We can view with result for the charge-fluctuation bosons, which do not
this as an operation that adds charge to a single edge, withoahange the charge at the edge. Similarly, for the left edge,
disturbing the bulk ground state. The full set of possiblewhere we must use the adjusted sipift po+gAN, so that
ground-state systems can then be parametrized by the pogiie right edge is unmoved, we obtain
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AM = —qAN?/2+ AN[ — q/2— po]. (4.4) produce the analogous energies that we expect to originate in
_ the fermion sectors, such as thel/8 discussed in the pre-
Then for the excitation pseudoenerfgyat this edge, we must ceding section, though we believe that they could, in prin-
use E=—-AM—[q/2+pg]AN. For each edge, the coeffi- ciple, be obtained in a refined calculation.
cient of N is the mean of the angular momenta of the highest
(respectively, lowegtoccupied single-particle states in the B. Pfaffian state

reference state withNy and with Ng+ 1 electrons, so it re- As for the Laughli h h
sembles the Fermi wave vector in a Fermi sea, on two sides s for the Laughlin states, the zero-energy states on the

of the Fermi sphere. We now use these formulas also for thgY!inder can be obtained from those in Sec.1IB by replacing
ground (and excitedl states in any charge sector, having a% PY Zi, the Gaussian fac,tor by exp32iy;], and recalling
combination of electrons added Iy, shifts of charge from ~ that the exponents of thi&’s run over all the integers, posi-
one edge to the other, and charge fluctuations; for such statd¥e and negative. The formula farM of the edge excita-
we can always calculate, for each edge separately, th&Pns in the untwisted sector containing fermions only still
amount of charge effectively added, which may now be frac2PPlies,

tional, but is always a multiple of &/ F
All information about the number and quantum numbers AM o= 2 (N +1/2) 4.9
of the edge excitations in the thermodynamic lirtthken = ’

with L?/N fixed) can be conveniently summarized in a par-
tition function analogous to that in Sec. Il A. The partition
function is a double series in a complex parametand its
complex conjugate, which contains information about right
and left movers, respectively. In fact,HF is the Hamiltonian
the eigenvalues of which aren2/L times the sum of aft
and ank found above, where is the speed of propagation
of the edge excitations, and takimg:x=e~27#"/L | then this
partition function is the Gibbs grand canonical partition
function of statistical mechanics, 8r#". (This is consistent
with the assignments in Sec. Il and Sec.)IlThe E’s of the
charge sectors that we have found agree with the conform

but nown,=0 describes right-moving fermiong, <0 left
moving. For the latter, we can defideM = — AM ;.

By inspection of the resulting states, we deduce that, in
the untwisted sector, il even is fixed atNy, then the total
number of fermions excited is even, and the parity of the
number at each eddee., whether it is even or odanust be
the same. But if we increasd by 1, we must create or
destroy a fermion at one edge, as well as increase the charge
by 1, which can be done at the same edge without affecting
the other. So the chiral algebra includes the operator

'@ which does thig. Then the parity of the fermion num-

. . X ers at the two edges can be opposite, provided the parity of
We|ght.s that are found in the conformal field thgaryhe .the integral amoungc of charge aF()jF()JIed relgtive to the reﬁ)‘ereillce
res_ult IS ('axpected t'o_be the same for a more realistic Ham'létate is also opposite. Applying the operation, or its adjoint,
tomgn with a.con'fmmg. potential, as discussed above. Th%nce more to the same edge, we find states where the charge
partition function is defined as has changed by 0 or 2 relative to the reference state, but the

_ — number of fermions has the same parity, still without affect-
LX) =Trx=x=. (4.9  ing the other edge. Thus, all these states lie in the same

The structure ol given above now allows us to express extended charge sector, and similar results hold in the other

2 in terms of the trace over each spatg,, and we define untwisted sectors, where a fractional chargéy has been

[using the Euler partition sum(n) for the bosons from Sec. shifted from one edge .to th? other. A total ofj Zectors
IA] results from these considerations.

The twisted sector is obtained from the untwisted by in-

o , serting a factor
Xiig0= 2 (1™ (1-x)"t (4.6 (N_F2
m=—o n=1
, - [1 (Zo(rr21-1)F ZoE+21))
and the complex conjugate faf,,,. The traces, such as the =1

+ : :
Xriq'S, OVer the right- and left-moving spaces are known asy, the states wittF unpaired fermiongin the notation of
characters, since they are essentially the characters, in thg. | B to produce the effective shift by a half unit that

algebraic sense, of the irreducible representatigngof the  yansfers charge 1dgfrom one edge to the other. The angular
chiral algebra(The greater generality afforded by the inser- omentum of the excited fermions is then

tion of £1, and by allowing to be an arbitrary real number,
will be useful later. The partition function can then be writ- F
ten as AMo= k21 Nk (4.9

_ where once agaim, can run over the integers. This time
@(x,x)=20 [ Xrig(O1% (4.7 n,>0 represents right movers, <0 left movers.n,=0 is

the zero mode, which cannot be assigned to the right- or
Similar structures to those found here for the Laughlin stateseft-moving sectors. On the other hand, the requirement that
on a cylinder will be found for the other states in the follow- the total number of fermions must be even whenever the
ing subsections; unfortunately, for the paired states, whil&harge added to the reference state is even, and odd when it
the method for calculating andE produces a similar con- is odd, still applies. Thus, we have the general projection rule
tribution for the different charge sectors, it is too crude tothat applies in all the sectors, twisted and untwisted, that the
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total number of fermions created in right moving, left mov- cal two-dimensional Ising model, as well as in other con-
ing, or zero modes together must be equal to the parity of theexts. The characters of the chiral algebra relevant to the
total charge added to the system at the two edges together. éulge states of the Pfaffian are

the twisted sectors, it can be satisfied by allowing either par-

ity of right- and _of left-moving f_ermions ir_1 all charge sec- Xf’/fq’even’unmste@(): %X?W(X)[Xﬁq(x)+xﬁq(x)]
tors, then choosing the occupation numbather 0 or 1) of
the zero mode to obey the condition. Consequently, the dis- + %X’f}‘z’"(x)[xrﬁq(x)—x,‘,q(x)],

tinction between “even” and “odd” sectors, that existed
among the untwisted sectors and was responsible for the fac- _ ps

tor 2 in the 2y sectors, no longer applies, and there are just ~ Xr/a.0dd.untwiste
g distinct sectorgor irreducible representations of the chiral

algebra. The total number of sectors is thereforg, 3vhich,

in line with the general connection between bulk and edge

states made in £geef. 7, is the same as the number of zegro- X(r+ 172/ wisted X) = XITEX) X1 +12/0(X)- (412
energy ground states found in the toroidal geom&tiyjote
that in this case the description of the chiral algebra as a

)= 3 XY OOl X7 7q(¥) + X174(X)]

+ 3 x0" X)) = Xrg(¥)],

It can easily be seen that these expressions are sums over

states with the necessary constraints on the combinations of

fgcting oqu a single edge i? not quite.correct, because thﬁsrmion and charge states included, apart from those that
right-moving operator, and its left-moving analog, each  enter on combining right and left movers and zero modes.
contain a term that changes the occupation number of th¢pe partition function is, finally

zero mode. Nonetheless, in the Majorana field theory, these
operators anticommute; similarly, the algebra of operators q-1
assigned to one edge doéanti-)commute with those as- ZPfi(x x)= 2 [|XrP/fq,even,untWiste X)|2+|X5fq,odd,untwisteéx)|2
signed to the other, even in the twisted sector. r=0
The calculation of the partition function, which formalizes

Pt 2

the above remarks, is conveniently performed in terms of X+ 1210 wisted ) 1]- (4.13
characters. The basic objects are characters for the states at

one edge that differ in charge only by integers, and, in the C. HR state

gntwisted sector, the parity_ of the charge diffgrence from that As for the Pfaffian state, the edge states of the HR state on
in the lowest energy state is equal to the parity of the changg cylinder can be deduced almost immediately from the re-
in fermion number. Characters for the fermions alone will be,

ful- th f wwistedntineriodia bound sults for the disk. In the HR case, the untwisted sector is
useful; these are, for untwistedntiperiodig boundary con- found now to contain zero modes, while the twisted sector

ditions, does not. The zero mode, like the nonzero, right- and left-
o o moving modes, can be occupied by a spin up or a spin down
MW () — } H (1+x+12) ¢ H (1—x"+172) fermion, or both. From these states we can deduce the pro-

Xo 2| n=0 n=0 ' jection rule. It has the same form as for the Pfaffian, in all

sectors. The projection rule requires even fermion number

1[ .= % when no charge has been added, and that a fermion is created
X (x)= > IT @+x2)— ] (1—x"*13) |, or destroyed whenever a unit of charge is added to a single
n=0 n=0 edge, so that the chiral algebra includes an operator

(4.10 oW ,e"4¢ very similarly to the Pfaffian. We can, therefore,
which are, respectively, for even and odd numbers o1Write down the characters without further ado. The charac-

Majorana-Weyl(MW) fermions. The subscripts are the con- (€S for the fermions are
formal weights of the corresponding primary fields, or the

energies of the ground state in each sector. In the twisted W 1 . 2 - om2
sector(periodic boundary conditionsthere is only a single Xo (X) 2 nﬂl (147 +nl;[1 (1=x07,
nonvanishing character:
1 o oo
*° v _ ny2 ny2
X)=5 1+x%)— 1-x)7],
XV ) =X ] (1+x"). (4.11) Xi(¥)=3 nﬂl( ) nﬂl( )

n=1
(The zero mode is omitted here, as it will be accounted for Yo (x)= = x L8 ﬁ (14x0+12)2
separately, as already explaine@ihe constant 1/16 ik for X8 2 A=0
the twisted ground state here is the analog of those in the .
different charge sectors as derived in Sec. IV A, where it was N1/ 2
mentioned that we cannot at present derive this one directly +nl;[O (1=x )%\

from our zero-energy wave functions. 1/16 is the conformal

weight of the corresponding operat®y the spin field, which 1 o o

twists the boundary condition on the Majorana fermion, like V)= —x— 18 14 xN+12)2_ 1—xN+12)2
the twist field.”” discussed in Sec. Ill. These three expres- XsiX) = 5 nl;[O ( ) nEIO ( At
sions are well known as the Virasoro characters of the criti- (4.19
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Note that the first two are the even- and odd-fermion-number
states in the untwisted sector, omitting the zero modes, while
the last two are the same for the twisted sector, and we have

13573

Xiigun) = LT (12000, (417

used the negative conformal weight of the twist fields inwrit-

which, however, appear twice i. The 4q sectors show

ing the latter. In this case, we have maintained the distinctiony, .; there are & primary fields of the chiral algebra in the

between even- and odd-fermion numbers in the sec-tor th
contains the zero modes, so as to exhibit its fate explicitly
(If desired, the following approach can also be taken for th
Pfaffian state, and the expressions already given for the p
tition function can be derived in this manner, verifying the
argument, given in words in the preceding text, that there ar&'

stem, which(in the notation of Sec. Ill, except that the
fields ¥, .”” are now the nonchiral fields that act on both
:Fight and left movergare 1 (the identity operator ¥, ¥ |,

sellet )20 o —ellet )20 (7 —is the twist field excited
both left and right sectors, ang,o=1,|), and these op-

only 3q sectors. The characters for the chiral algebra of the erators times additional factoe'**# ¥, which shift charge

HR state are

X”ﬁ,ev,unw\(x) =3 XE)I,(X)[X:}q(X) +Xr_/q(x)]

+ 5 X7 0L X () = Xrg(¥)],

XHR od.unsd ) = 3 X7 OO X176 + X17g(¥)]

+

3 X0 (O Xr7q(¥) = Xrg(¥)],

HR 1 + -
X(r+121g,ev, kX = 2 X = 180X (1 4+ 17219(X) T X (1 + 11216(X) ]

v
+3 X3/8(X)[X(+r+1/2)/q(x)

= X(r+1219(¥) ],

HR 1w + -
X(r+1/2)1g,0d,¥) = 2 X380 X (1 +17219(¥) T X (1 + 17219(X) ]

1w +
2 X~ ud XX (r+ 12/¢(X)

_X(7r+l/2)/q(x)]'

1/q from one edge to the other. All of these fields are spin
singlets, except/,;, which transforms as spia® 3=0

®1. The field¥, ¥, is not strictly a primary field, since it
has weight zero, but this is not an important distinction here.
All other fields are descendants of these, that is they can be
obtained by acting with operators in the chiral algebras; as a
particular example, the state created from the untwisted
ground state with unoccupied zero modes by the zero mode
of ¥, times a unit charge at the right-moving edge is ob-
tained fromW¥, ¥, by acting withé?\IfTei de - Acting again,
with a similar operator, leads us to the identity, so the rep-
resentations are not irreducible, which is a peculiarity of this
system.

D. 331 state and the hierarchy and its generalizations

The edge states and the patrtition function for the 331 state
are, by now, easily obtained. There are zero modes in the
twisted sector, as for the Pfaffian, but there are two types of
fermions (particles and antiparticlgsas in the HR state.
Similar selection rules governing even- and odd-fermion
numbers apply as in the other cases. Accordingly, the parti-
tion function can be written using the Weldr chiral Dirag

We may now form the partition function, by combining the -naracters:

sectors subject to the rules already mentioned. In particular,
in the untwisted sector where the zero mode occurs, we may
combine right- and left-moving sectors of the same parity, in

which case the zero mode may be either unoccupied or dou-
bly occupied, or we may combine sectors of opposite parity

if the zero mode is occupied once, which may be with either

spin. Thus, we find for the partition function:

q-1
‘;Z‘HR(XvX_): r§=:0 {2|X”§,ev,untv&x)|2+ 2|X”§,od,untv&x)|2

HR HR
+ 2I:)(r/q,ev,unIV\(X)Xr/q,od,unm(x)

HR HR
+ Xriq,od, untv&X)Xr/q,ev,unw\(X)]

1 o0 o0
X\éVeyl(X): _|: H (1+Xn+1/2)2+ H (1_Xn+1/2)2},
2 n=0 n=0

1 o0 o0
X\]/_\/ISYI(X):_|:H (1+Xn+1/2)2_1_[ (1_Xn+1/2)2:|,
2 n=0 n=0

©

IT a+xm2+J] (1-x")2
n=1

n=1

X1/8

Weyl(x) — %XI/B

©

IT (x+xm2-T] (1—x“)2]
n=1

Weyl(x) — %Xl/B

Xoig £
HR 2 HR 2
+|X(r+1/2)/q,ev,tmﬂx)| +|X(r+1/2)/q,od|tv\)(x)| } (4'18
q-1 The characters entering the partition function are

HR HR
= 20 [2|Xr/q,ev,untv&x) + Xr/q,od,untv&x) | 2

HR 2 HR 2
X0+ 1270, ev.d 21X 121,00 2],

(4.19

which shows that there are in fact|4éectors. The untwisted

characters have combined into simpler ones, similarly to the
twisted Pfaffian state characters:

Weyl

Xt evuned )= 3 X800 x1q(¥) + Xr7g(X)]

+ 5 X387 00X (0 = Xrig(¥)],

1 Weyl Weyl

r/q,od,untvx(x): 2 X112 (X)[Xrtq(x)—'—xr_/q(x)]"' %XO (x)

X[ X77q(¥) = Xrig(X¥)],
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1 _ Weyl

331 _ + - wherea, 8 run from 1 ton, and here, in the hierarchy, is
X(r+121g,ev, 0 ¥) = 2 X" X (r+17216(X) + X (1 1721(X) ] .3 ,

the number of levels. The=1 component could be taken to
L1 XWeyI(X)[X+ (x) be the density quctuation_fieId that we have used up to now.
2 Xois (r+1/2/q The others represent the internal, neutral degrees of freedom.
— X(r+ v2yg()]s In the composite fermi_on approaah,is the number_ of Lan-
dau levels for the fermion¥,and the density mode is usually
1 Weyl + - taken to be the sum of the,. The chiral operators that are
X<3r3+11/2>/q,od,mﬂx): iXg/sy(x)[)(<r+1/2)/q(x)+X(r+1/2>/q(x)] allowed to be used at tr?i edge without Fz?n‘fecting the other
(which generate the chiral algebrare of the forme'?«#«(?

1
+ > X[ X(t +121q(X) (we use the su.mm_ation con\_/ent)oﬂ'he vectorsy, the com-
ponents of which in the basis labeled byarev,, lie on a
~Xir+ vy (4.19  (Bravaig lattice A in n-dimensional Euclidean space, that is
N o they take the form of integral linear combinationsrofin-
The partition function is early independent vectoeg . Thus, the chiral algebra can be
-1 generated bye®'®a?«(? a=1 ... n. The scalar products
331y 7Y — 331 2 331 2 of thee, areG,,=¢e,- §,, which defines the Gram matrix of
(X, X) = X)|*+ X . _oab b .
) 2’0 [1Xtia,ev, un X1+ xv7g,00,umd )| A; G is positive definite here, because we assumed Euclid-

ean space. In th@eneralized hierarchy theoryG is a ma-
+ 20X+ 210,000 X) FX(r + 1210,00,00) 2] trix ofpintegers, aé%d sa\ is an integral lattice. Iv=v e,
(4.20  then we havey-v' =v,G,pvy. Since the basis labeled hy
. . . . (which is not an integral bagiss orthonormal, we find that
'g‘ﬁ;‘;&gf twisted terms have combined to form a Slmplerthe conformal weight of the chiral operators/i$2, and so is
' either integral or half integral.
331 (UMW 2+ The possible shifts of charge or the othefllJquantum
Xir 0, m(X) = (and X)) X+ a21g(X), - (423 numbers related to the componentsgof from one edge to
and there are two distinct sectors with this character. Thehe other are described by similar operators that act on both
equality of some characters of distinct sectors may also hagedges simultaneously, as in the states considered earlier. The
pen with the rational torus or Laughlin state characters, foright-moving part of such an operator is of the form
which the characters obey;q(X) = * x(g-ryq(X)- eW«?a(?) wherew is a vector in the dualor reciprocal
By bosonizatior?, the Dirac(or Weyl) characters can be lattice A* of A; the dual lattice is defined as the set of all
written, using the Jacobi triple product formula, in terms ofvectorsw, such thatw-v= an integer for alve A. Clearly
characters for a chiral boson witj= 1 (summed over charge A is a sublattice ofA*. The right-moving conformal weight

sectors: (or ground-state energy in the corresponding charge sector
Weyl Weyl o = of the operatore"«¢«(? is againw?/2, which is the same
Xo > (X)E X127 (X)= x012(X), (422 (modulo 1) as the statistical paramegé2 of the quasipar-

MW a4 ticles in the bulk of the same state, which are also labeled by
2(x1126(¥)) "= X (12/2(X), (423 vectors inA* (the “excitation lattice” in the terminology of

and so the 331 partition functions can be written in the formRef' ]:4)' The lattticeA l(the.“condensate latticelabels t.he
of sums for two boson fields, which is described in detailCoMPinations of quasiparticles that make up the possible or-
below. As mentioned in Sec. II, the bosonized description of € Parameters. The relation of these to changes in the
the field theories is closely related to the description of thetNarges at one edge was mentioned in Ref. 14, and forms the
bulk wave functions as two-component generalizations of th@2SiS for the results quoted here. If we view the*latuces as
Laughlin states. Thé&’s for the various sectors can be ob- additive groups, we fmf tha_t has_, |_ndex ded in A*, and
tained in that description by an argument similar to thatS° the guotient group\*/A is a finite group of det ele-
given in Sec. IV A for the Laughlin state. Since this includesMents. The extende_d chgrge sectors are labeled by the pos-
a contribution from the fermions, as well as from the charge’s'ble shifts deUIO fields in the chiral al_gebra, that is, by the
degrees of freedom, this holds out some hope that a derivg/ements ofA*/A. These_can*be described by a set of vec-
tion in the “pairing” representation of wave functions, ©OrSWa, A=1,...,deG, in A*, one in each coset of.
which might also be applicable to the Pfaffian and HR states! '€ Simplest case is the Laughlin states, wherel,
should exist. G=(q), A=Vaz, A*=2/\q, and A*/A=Z,, which is
Here we will give without proof the general results for the €quivalent to the description in Sec. IV A. Another simple
hierarchy and its generalizations, restricting ourselves, fofase is the integral quantum Hall effect, in which fot.an-
simplicity, to the case where the mati& below is positive ~ dau levels,G is (in a convenient basisthe nXn identity
definite, with the 331 state as a special case. Physically, thi®atrix, soA is then-dimensional simpléhyper; cubic lat- -
is the case where all modes at the same edge propagate in #é€, de6=1, andA* =A. Thus, in this case, all edge exci-
same direction. The other case has been discussed recentlyt@ions are just electrons in the various Landau levels.
Refs. 9 and 30. The bosonized field theory for the right- For the 331 states, the matiixin the basis natural for the
moving edgé can be formulated in terms of chiral boson ground-state wave function in the for(@.24) is
fields ¢, , which have correlatorén imaginary time

(0a(2)@5(0)) =~ 8,pln2, (4.24

q+1l, g-1

G331=
qg—-1, gq+1

. (4.29
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The resulting lattice\ embodies the projection rules by be- rule for combining left- and right-moving representations is
ing distinct from an orthogonal direct sum of one- that all fields must be invariant under the simultaneous action
dimensional lattices. We note that there areGletlq ex-  of < on left and right movers, and untwistéavisted fields
tended charge sectors, as found earlier. Moreover, unlike th@ust combine with untwiste@twisted.

lattices for the hierarchy states, for the generalized hierarchy The CFT’s of all the paired states described in this section

states, and the 331 state, in particular, the sublattc®){ are examples of orbifolds witty=Z,. The algebra # for
of operators that are neutral is not the same as the sublatti¢gge ptaffian is generated by the fields'@¢, 4, and con-

N ; o
A~ of A. The lowest-weight neutral operator that is in (5ing the W1) current algebra generated By and the Vi-

A*, but not inA, represents the Fermi field, of weight i ; :
: X ) o asoro algebra fory as subalgebras. The primary fields are
1/2. Since it does not appear it cannot be applied to one ereVi r=01,...q—1 (we suppress the left-moving op-

edge, but must be combined with a similar operator for the )
other edge, or with another Fermi field or a charged field a{arators for now Z, acts smultanequ;ly ong,yr by
the same edge. This is a consequence of the projection rulés~ ¢+ 7Vd andy— —y. The algebra, is generated by
that we saw using the fermionic form of wave functions; #€" %%, and the primary fields are'" "9, ye'"#\q, r=
states differing only by one fermion at one edge do not bottP.1, . . . =1, which result from the splitting of the repre-
exist in the Hilbert space. In contrast, for the hierarchy, thesentations of Z (the untwisted representationgogether
projection rules place no restriction on the neutral operatorwith the twisted representationse'" *¥2¢/\@ r=0,1, ...,
that can be applied to one edge, since all vectorsAifi)¢ g— 1, which include the spin field, which is the analog for
are also inA*. the Majorana fermion of the twist field discussed in Sec. .
We may now describe the partition function for tfigen-  The states(or descendant fieldlsin these representations
eralized hierarchy states, in the case wheeis positive obey the “projection rules” found earlier, and the full de-
definite. The sectors are labeled by theGlebsets ofA, and  scription of the combination of left and right movers, and the
in each sector the chiral characters are sums over vectors igsulting partition functions, can be done in agreement with
the coset, together with fluctuations in theg. That is, define  the rules obtained from the wave functions in this section.
Very similar descriptions work for the HR and 331 states.
P [For the 331 state, the orbifold that we find is that where
xa(¥)= 2 xWatVRTT (1-xm~". (4.2 ¢, transforms bye'™, ¢, transforms bye™'™. These factors
ven m=1 are both equal te- 1, but the point is that the factors written
The partition function is S|mp|y describe the Way the phase of either field winds on tak|ng it
round the twist field; there is also an adjoint twist field
deG around which they wind the reverse way. This behavior is
ZMNxX) = [xa0)|?. (4.27  required by the structure of the twisted states, which have
A=1 definite pseudospin as well as charge quantum numbers. It is

For the 331 states, this agrees with that derived by bosonizgxﬂgSt eaS|E/eig?d_er;sr':ood n thte t_boson!zeéj reR/reDse#]atlon
tion from 2331, It is interesting that, in the theory of the edge ¥~ 1’ Y1 =€72, In the same notation as in Sec. - hen

states, the relation of composite boson and compositd'® SYMMetry iSp;— @, + Tr\/a'. @2 ¢+ 7. This orbifold
fermion approaches maps exactly onto the usuaeads back to the lattice described in Sec. IV D. In particular,

1+ 1-dimensional bosonizatiofor its inverse, fermioniza- the spin(or tW.iSt) field.for.zpa is. bosonized ag'¢2"7, WhiCh.
tion). must appear in combmaﬂon with some qther c_harged fields,
as for the other orbifolds and the generalized hierarchy theo-

ries in Sec. lll D] In all cases, the rationale for the structure
is that the electroffor other fundamental charged particie
represented in the edge theory by a field like"' 9%, which

For readers familiar with, or ready to learn about, CFT,has fixed boundary conditions in all sectors, and all fields
we mention that the theories for the cylinder described in thisnust be local with respect to it, just as in the bulk, all wave
section are examples of the construction known as “orbifunctions must be single valued functions of the electron
folding.” Definitions, results, and examples of orbifolds can coordinates.
be found in Refs. 29, 31, and 32. In brief, the general alge- Our description of the orbifolds glossed over one aspect
braic definition of an orbifold involves starting with a ratio- of the systems discussed here. The usual definition of chiral
nal CFT with a chiral algebraZ on which some finite group algebras assumes that all fields in the chiral algetivath
¢ acts as a symmetry. One then takes the subalgefiya .7 and .7;) have integral conformal weight. In our ex-
that is invariant underZ” as the new chiral algebra. The amples, and, that appear for the Pfaffian and 331 states
representations ofZ will be representations of#, also, but have half-odd-integral weight, and foq odd, so does
will, in general, be reducible; each irreducible componente®@¢. Thus,. 7 is actually a chiral superalgebra in these
transforms as an irreducible representatiorvofin addition,  cases,and so is 7, in some case&nd also for the algebra
there will be “twisted” representations of7, that are not of the Laughlin state fog odd, and the generalized hierarchy
representations ofZ. The same operations are applied to thestates whenever applicable to electron¥e emphasize that,
left-moving chiral algebraZ and its representations. The for our purposes, a superalgebra is one where some fields
(symmetric, diagonalorbifold CFT then has a primary field have half-odd-integral conformal weight, rather than one
for each representation o/, which at the same time are where some of the relations are anticommutators instead of
primary for the isomorphic left-moving algebraZ,. The = commutators. In fact, to describe electrons, which are fermi-

E. Orbifolds, chiral superalgebras,
and modular transformations
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ons, rather than the quantum Hall effect of charged boson®ns, in the cases with) even but requires modification of the
the chiral algebra is always a superalgebra, except in the capartition function to include the factof—1)" in the trace
of the HR states, due to the violation of the spin-statisticoover states, wher& is the total number of fermions. The
theorem there as discussed earlier. same should apply fary(2)/{=1} invariance forq odd.

The fact that the chiral algebra is sometimes a superalge- We also mention here some isomorphisms of the chiral
bra has consequences for the modular transformation progdgebras of our systems to known algebrés. this para-
erties that we may expect for the partition functions calcu-graph,c is the central charge, amld is not the number of
lated in this section. Ik=e?™", and Imr>0 (7 should not particles) For the Laughlin statéof boson$ at v=1/2, the
be confused with earlier uses of the same symbiblen fields e*"2%, g¢ generate the S@) current(Kac-Moody)

modular transformations act as algebra of level 1. For the Laughlin stateiat 1/3, we havé
the N=2 superconformal algebra &=1, generated by
;s artb 4.29 e*3¢ je. For the Pfaffian statéof boson with g=1, the
cr+d’ operatoree™'V9¢ are the bosonized representation of a Dirac

field, or of a pair of Majorana fieldg/..;, which together
with the Majorana field)= ¢, forms a triplet of Majoranas.
a b This c= 3/2 theory contains an SP) current algebra of level
. d) (4.29 2, or equivalently an (@) algebra of level 1, in which the
currents are the bilinears, ¢, , a,b=*=1,0. This symmetry
is a member of SL(Z), the group of X 2 integer matrices shows up, for example, in the degeneracies of the excited
of determinant 1[The group of modular transformations energy levels, as long as the velocities goand are equal.
themselves is SL(Z)/{=1}.] The modular group is gener- The 3q=3 sectors, even untwisted, odd untwisted, and

and the matrix

ated by the elements: 7— 7+ 1, represented by twisted, correspond to primary fields that transform respec-
tively as spins 0, 1, 1/2, under both the left- and right-
11 moving SU2). Moreover, the products;ois_, generates
T= 0o 1/ (4.30 N=1 superconformal symmetr though this operator does
not survive the projection toZ,. Finally, the algebra#, for
andS: 7— —1/7, represented by the v= 1/2 Pfaffian state is generated Iy~ "'?¢, which has
0o 1 weight 3/2, and the algebra can be recognized as supercon-
S=( ) (437 formalN=2 atk=23%In this case, the unprojected algebra
-1 0 _# contains S2) level 1 and an S(2) triplet of supercur-

] ) ] ) rents 1//ei“‘°7‘*’, Yde, which generate all=3 superconfor-
When the chiral algebra is strictly an algeliiz., not a 4 algebra®

superalgebna then the partition functions will be modular
invariant, if we modify the definition to include the factor
(xx) %24 wherec is the central charge of the CRWot the
matrix element just aboyeCentral charges are additive; the  To conclude, we have found complete descriptions of the
values of the central charge aze-1 for the Laughlin state, wave functions, the Hilbert spaces and the field theories of
1+1/2=3/2 for the Pfaffian, +2=—1 for the HR, the edge states of the paired systems considered. The explicit
1+1=2 for the 331(all independent of the value of), and  wave functions are very appealing and make the enumeration
n for the (generalizeyl hierarchy states. Modular invariance of excited states in terms of elementary excitations straight-
occurs forg even in the case of the Laughlin state, anddd ~ forward. The combination of complete proofs of some re-
for the Pfaffian and 331 states, all of which describe thesults, and enumeration for low excited states in others, makes
fractional quantum Hall effect of charged bosons, not electhe correctness of those results not explicitly proven here
trons. When some of the fields that generate the chiral algealmost certain. The results confirm the general prediction in
bra have half-integral conformal weight, they will obey an Ref. 7 of a relation between bulk and edge properties. For the
antiperiodic boundary condition in the space direction, andPfaffian and HR states, this provides indirect evidence for
the (modified partition function cannot be invariant under the prediction of nonabelian statistics of the quasiparticles in
the full modular group; the only boundary conditions that arethe bulk of these states. The twist fields in the edge confor-
invariant under the whole group are periodic around anymal field theories proposed here certainly have such proper-
cycle on the torus. In these cases, which as we have segies when exchanged in space time at the e@leono-
apply to all states considered here that can describe electrortromy”). For the 331 state, as for all generalized hierarchy
with the sole exception of the HR states wiijheven, we states, the monodromy, and the statistics of the bulk quasi-
expect that our expressions are invariant only under the sulparticles, is abelian.

group of the modular group that leaves the antiperiodic The explicit wave functions for the edge excitations, par-
boundary condition on the electron field invariant. This sub-ticularly for two edges on a cylinder, are reminiscent of re-
group is generated by the elemer@sand T? and can be sults for integrable one-dimensional systems, especially
shown to be isomorphic tB,(2)/{*+1}, whereI'y(2) is the  those of the Calogero-Sutherlaf@S) type* for which there
subgroup of SL(Z) consisting of matrices where the matrix are explicit, simple wave functions for the ground state and
elementc=0 (mod 2). For the HR state, the situation is a many excited energy eigenstates. Indeed, the similarity of the
little more subtle. Modular invariance may be expected wherLaughlin state and the ground state of the CS model has
using the nonunitary CFT of Sec. IV B for the scalar fermi- often been remarked. In the limit>N, the Laughlin state

V. CONCLUSION
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on the cylinder essentially becomes the Calogero-Sutherlanchnnot appear either, because it is symmetrig iand k,
ground staté/ the coordinate transverse to the edges can bahile a form

viewed as the canonical momentum. The edge excitations of

the Laughlin state are in one-one correspondence with the (z—2zd(zi—2) Nzi—z) "

excitations of the CS model, and the low-energy CFT of the;qyq, but this can be rewritten as a difference of simple
latter is once again a Luttinger liquid. It is interesting to yojes,

speculate that there might be some integrable one-

dimensional Hamiltonians with long-range interactions, gen- (zi—zj)*l—(zi—zk)*l.

eralizing the CS model, for which the ground and excited o all possible functions can be written as linear combina-
states might be related in a similar way to the wave functions. P . . L
jons of the forms already given, where the singularities in-

discussed in this paper. If so, then we expect the low-energ olve disjoint pairs of particles.

f|elq theon.es of the_ one-dimensional models to be Zse Without loss of generality, the general state can be taken
orbifolds discussed in Sec. IV. 0 be a linear combination of states written by antisymme-
Finally, we note that the approach used here can be apE— y y

plied to other states for which the ground state is the zero-riZing a function obtained by dividing the particles into

energy eigenstate of a suitable local Hamiltonian, as here. ARAS: writing an odd .factor for each pair and symmetrizing
example is another paired state, the permanent Stakéch over exchange of pairs. These condmons are of cour se.suf—
is a spin singlet, and is the densest zero-energy eigenstate f(]_)gent, but pot necessary f‘”.”‘? final ar!tlsymmetr!zatlon
a certain three-body HamiltonidA The resulting theory is a over all particles to be nonvan|sh|1ng. Tzhat is, neglecting the
Z, orbifold containing spin-1/2 bosons of conformal weight omnipresent factofl(z —z)exp(~ 1=[z|%), we must have

1/2 at the edge. Such a system, like the HR state, violates the S s N2 f o Zor 2o 11 s Zot 2k1)

spin-statistics connection, so that the edge field theory is nofS' ggpy —— 2 k=1 @ Tot2rlo 7 1) Fol2rh] , (A1)
conformal. The corresponding nonpositive conformal fields<Sy (Zo(1)~ Zo(2)  * (Zg(N-1) " Zo(N)

theory, the correlators of which reproduce the bulk wav
functions, is theB-y ghost systeni,so the relation of bulk
and edge theories is maintained.

Swhere thef, are symmetric polynomials in two variables.
For N odd, we can write a similar form withk
=1,...,(N—=1)/2, and include for the unpaired particle an
arbitrary polynomial factof o(z,n;)-
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APPENDIX A: ZERO-ENERGY STATES

FOR THE THREE-BODY An={(21-2,)°"s\?:n=0,1,2, .. }, (A2)

AND HOLLOW-CORE HAMILTONIANS . .
for m=0,1,2 . ... Weclaim that the full set of symmetric

In this Appendix, we will justify directly the general form functions in two variables is spanned by linear combinations
of the zero-energy eigenstates(8f10, and by extension its of the polynomials in the set
analog forq>1, and show, in particular, that they lead to the .
forms for the edge states i{2.12, (2.15. We then briefly Um=0Am (A3)
address similar questions for the hollow-core Ham|lton|an(there is no need to take products of these funcliohkis

for which the HR state is the unique ground state, and corzgn pe shown by induction from the fact that products of

responding issues on the cylinder. . sums of powers span the symmetric polynomials, together
The Hamiltonian(2.10), taken with Bose statistics for the \ith the identities

particles so that the Pfaffian state with=1 is a possible

ground state, implies that the wave function of a zero-energy 532>5512)=25£]2>+n
state vanishes whenever any thfee more particles coin- 12 !
cide. This implies that zero-energy states can be written in
the form of the Vandermonde determinalit_;(z—z),
times an antisymmetric function that, as a function of anywhich (by induction on the ordgrexpress a product of ele-
two coordinatesz; ,z;, may have a simple pole &=z;, ments of A, as a linear combination of elements of
times the usual Gaussian factors. Such a state will have zery,, A4, ... .

energy provided the antisymmetric function involved does Now eachf, in (1.1) can be chosen to be an element of

(2 =p)(Z2-28),  (A4)

2 -25=(2,-2) (2] '+ 2} P2+ +2571), (A5)

not have a triple pole of the form Ui _oAm. If fi is an elemens® of Ay, we will try to pull
outside the sum on permutatiooshe corresponding sum of

[(zi—Z)(zj—2)(z—2)]17F, powers in allN coordinatess, [see Eq(2.6)]; this will leave
behind terms with fewef, e Ay. Repeating this procedure,
asi,j,k approach one another, for any,k. A form like eventually all f,’s remaining inside the sum will be in

. Um—1An and we will have finishedf, that are inA,
[(zi—z)(zi—z)] (M=1) contain €, 2.0-11—Zo-(k))> Which cancels a



13578 M. MILOVANOVIC AND N. READ 53

factor in the denominator, so these particles are unpaired imorphic function must be antisymmetric among particles of
this term and the wave function will be a linear combinationthe same spin. For zero-energy states this function must
of the forms(2.12). have, as any two particles come to the same point, either a
For the basic(untwisted sector of edge states, we can double pole, with zero residue, or be analytic. Because of
considem large and most,= 1, though this is not necessary antisymmetry, double poles can appear only for opposite
and the results below are valid for all wave functions of thespin particles. All antisymmetric functions can be obtained
stated form. Then we observe thatfif=s{>) e A,, then by antisymmetrization of functions of indefinite symmetry,
though we may as well omit functions that would vanish on
N2 N/2 N2 N2 antisymmetrization. If a double pole is present for a pair
> H froes, >, H fim > Z fio I fe, i,j, then it cannot be present for any other pair of the form
7Sz k=1 TSz kT2 TSN K2 K =2k 2k (A6) i,k or j,k. This is because the Vandermonde squared con-
tains the factors
where fork=2,3, .. .,
) 0 it -1 (Zi_Zj)z(zi_Zk)z(zj_Zk)zz(zi_zj)z{[%(Zi+zj)_zk]2
he= fs? if f#1, (A7) - 1(zi—7)%? (A9)

ands, can be taken outside the sum on permutatienghe  the expansion of which contributes only even powers to the
functionsf,s'?) can then be reduced using the identityd), relative angular momentum ofandj. In view of the double
and all the terms in the many-particle state are now of th@0l€ in z—z;, the whole wave function is a zero-energy
form of symmetric polynomials iN variables times anti- €genstate, provided there is not a single or double pole in
symmetric functions with fewef, that are members of, %~ % Of 2~ Z. for any k. Therefore, all pairing factors
and #1. Eventually, all f, are either 1 or areeA,, (zi—z) “ must contain distinct pairs. The unantisymme-

(m=1), and these states are linear combinations of the statdd2€d function can thus be written as a product of pair fac-
in the text. Similar methods work fo odd. Thus, we have tors for a? mlany opposite spin pairs as possible, times func-
shown that all zero-energy states are linear combinations dfons f«(zi ,zj) of the paired coordinates that can be taken
symmetric polynomials times the form (@.12. either symmetric or antisymmetric, and must be either non-
. ) i . . ,
To obtain the twisted sector, we can repldgeny f,s{? ~ vanishing a‘ZiT_?jl , or vanish at least as fast ag (7)),
in the above proof, leaving the?) factors intact inside the SO @S not to spoil the zero-energy property. The zero-energy

sum ono and 7 at each step. Of course, in a finite system wave functions thus have, without loss of generality, a form

our proof shows that these states can be expressed as coffiiilar 10 (AL). WeTnovxl/ try to pull any one of thé, that
binations of the others, but to study the Hilbert spaces ofl0€S not vanish atj =z outside the sum on permutations
edge states, we také— = before the number of, # 1 be- by the same procedure as for the Pfa}fflan, uﬂ_k@). Use of
comes large, and thus we obtain two different sectors in thi§A4),(A5) then shows that the resulting functions still obey

limit. Similar arguments apply if it is desired to include any the zero-energy property. The procedure can then be re-
other factor in eveny, in the state. peated until linear combinations of the forf2.20 are

The hollow-core Hamiltonia requires that zero-energy reached. We conclude that the wave functions in the form
states have no pairs of particles with relative angular mo(2-20 span all the zero-energy states, in the untwisted sector.

mentumq— 1. (Another way to say this, which is useful in Similar arguments apply to the twisted sector,Ng#N |,
other geometries, is in terms of the order of vanishing of thénd to combinations of these. .
functions) We recall that the relative angular momentum of Finally, we comment on zero-energy states on the cylin-
a pair, say 1,2, is defined by expressing the wave function i€ On replacing; by Z; (see Sec. 1Y, we see that iA1)

the form (neglecting the Gaussian factor, and the spin labeldx must still be symmetric, but may contain negative powers

if any) of Z; . [The pairing factorsZ; —ZJ-)‘1 can be left unchanged
without loss of generality.We extend the definition of the
* sets of symmetric function@\2) by allowing the exponents
W(21,25,23, .- - ZN)= 2 (21— 25)™(z1+2)" n in the symmetric polynomialsﬁf) to be negative as well as
m.n=0 positive or zero, whilam is still non-negative; we claim that

X2, « . ZN), (Ag)  these span all symmetric holomorphic functions in two vari-

ables on the cylinderA4),(A5) apply unchanged to all in-
in which each term in the sum is an eigenstate of relativaegral values oi,,n,, although(A5) becomes an infinite
angular momentum of 1 and 2 of eigenvalne The densest  series. The proof then works as before, by pulling sums of
zero-energy state of the hollow-core Hamiltonian occurs atpositive or negativepowers outside the sum on permuta-
filling factor v=1/q. The largesq for which the pairing in  tions. The HR case works similarly.
which we are interested can occurgs-2. Forg>2, zero-
energy states can be obtained from thoseqgfer2 by multi- APPENDIX B: LINEAR INDEPENDENCE

plying by the Vandermonde determinant. fepr 2, the wave  pop gimALL AM IN THE PFAFFIAN AND HR CASES
functions are required to be totally antisymmetric when the

spin states are includddee Sec. Il € For fixed spins of the In this appendix, we construct and verify the linear inde-
N particles, the wave functions can be written aspendence of the states in the untwisted, eMesector for all
Hi<j(zi—zj)2 times a meromorphic function, and the mero- AM=<8 for the Pfaffian andA\M=<#6 for the HR state. We
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use a different basis from that derived in Appendix A. WeThis does not, however, mean that the quasiholes are bosons
first return to the two-quasihole states for the Pfaffian. Due tan general, which would contradict the assertion that they
the symmetry of exchanging; andw,, they may be ex- obey nonabelian statistié3To obtain the expansion, we first

panded in the form expand the numerator i2.11) inside the Pfaffian, i.e., for a
N2 fixed choice of pairs, described by the permutation
iring i i NZ(N/2)! different o's].
W(zy, ... Zn Wy Wo)= V(7. ...z [each pairing is obtained from"™Z(
(z N W W) mz:o ngo mrl 21 v For each pair o(2k—1), o(2k) the factor

[(ZU(Zk*l)_Wl)(ZO'(ZK)_WZ)+(W1HW2)] will contribute
Zo(2k-1)Zo(2K) (zg(zk_l)fo(Zk)) ora constant to an expan-
where all theW,, are linearly independent. This may be sion coefficient¥ ,,. This observation suggests the use of
interpreted as saying that the quasiholes behave as twan alternative basis for the space of edge states spanned by
bosons, which may each occupy any oneN#®+ 1 states. theV,,,, defined by

X(wiwy "+wiwi™ ™), (Bl

_ 1 2 sgnr
2VANI)! 724, (Zo(1)— Zo(2) " (Zon-1)—

Dams(Zr, - oo 2Zn) . (N)){[(20(1)20(2))m1'”(Za'(N—l)ZO'(N))mNIZ
(o

: (B2)

X (Zg(1)F Zg(2) " - '(Z(r(N—1)+ZU(N))nN/2]}i1;[j (Zi_zj)leF{_%E ;|2

where AM=M— M, is again the difference between the total angular momertirof the edge state and the angular
momentum of the ground stalM,. The expression in curly brackets is defined as the sum over permutatidig phirs:

L(Zo(1)Zo2) ™ - (Zo(N=1)Zo(N) ™A Zo (1) F Z2) ™ - - (Zgn=1) T Zo(n)) "NV2]}

=t > (Zo(1)Zo(2) "D - (Zo(N= 1) Zo(N) TN (Zg (1) F Zi(2) "D - (Zgn=1) T Zo(n)) TN, (B3)
2

TeSy

which makes this expression invariant under permutations ofoincides with the number of states with two fermions added

the pairs, and under permutationg,m,— N4y, My (4 - to the ground state and the saa® in the Majorana field
V" is the number of permutations By, that leave the se- theory.
guence of paire,,m,, a«=1,..., N/2 invariant. In the Further expansions of the states with more than two

states®, s the numbers,,m, are defined to be 0 or 1, quasiholes should generate, besides further symmetric poly-

such that n,+m,<1, and Eg’jlma:AM —s, nomial factors, all even-fermion-number excitations. Wen
N2 n,=2s—AM. With these restrictions, there is clearly has demonstrated numerically f¢2.10 for up to N=10

just one distinct polynomial of the forniB3) for eachs, particles that the number of lo&dM zero-energy states co-

which will be denoted P,y s, and we see that incides with that in the Majorana field theory. We will go a

s<AM=2s, AM—s<N/2, 2s—AM=<N/2, ands<N/2. little further analytically, for arbitraryN. States with 2

Comparing®,y s and¥,,,, we see thahM=N-m. quasiholesp>1, at positions{wy, ... w,,} will, in place
From(B2), it is easy to calculate how many edge states off the factor

fixed AM the expansion of two quasiholes gives, as

N—o. There are ¥ AM/2 linearly independent states for N/2

AM even and AM +1)/2 for AM odd. But for fixedAM, kljl [(Zo(2k-1) = W1)(Zg(2k) = W2) + (W1=W)]  (BS)
%ﬂ P B B4 inside the sum on permutatiomssin (2.11), have aproduct
o, AMST €am s (B4) of such factors, each involving a distinct pairwfs. Thus,

the degree of the wave function will beN,
wheree,, is an elementary symmetric polynomial, indepen-=q(N—1)—1+n. There are 2n! distinct ways to associate
dent of the permutationr, which can, therefore, be brought thew’s in pairs, but only 271 of the resulting electron wave
outside the sum on permutations as a multiplicative factorfunctions are linearly independefds functions of thez;’s
This arises because bringing the two quasiholes to the sander fixed w’s) for n>1.3° Provided that they are degenerate
position,w; =w,, produces a single Laughlin quasihole. Thein energy, which is true by inspection for the appropriate
remaining edge states, which span spaces of dimensionkree-body Hamiltonian, the fact that this numbersid is
AM/2 for AM even and AM—1)/2 for AM odd, require the basis for nonabelian statistics. When the quasiholes are
nontrivial factors inside the sum over permutations and repexchanged adiabatically, the usual Berry phase is replaced by
resent degrees of freedom that are not simply density fluca matrix acting in this space of degenerate quasihole states;
tuations at the edge. At eadtM, the number of such states however, this has not yet been explicitly demonstrated in this
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or any other examplésee Ref. 3b Here we are interested to {[(zo1)— ZU(Z))2(ZU(3>_ 20(4))2(20(5)+ Zg(e>)2
see what edge excitations we can obtain by expanding these
states. Evidently expanding in powers\f, . .. wy, will X(Zo(1) T Zoe)) 1} (B16)
generate the general polynomiglB3) inside the sum on
permutations, without restrictions on the,’'s andn,’s. We  {[(Zo(1)~ Zo(2) *(Zo(3)~ Zo(4) (Zo(5) T Zo(6)) (Zo(7) F Zo(8))
will then have to take into account the linear relations among X (2o o+ Zor1o) 1} (B17)
some of these states, corresponding to those discussed in o(9) T £o(10)/14
Ref. 35 forn=2. and

The linear relations among some of the states are obtained
from the following general identity. For any set of complex {[(Z(r(l)_zrr(Z))z(Z(r(l)+20(2))(20'(3)_Z(r(4))2(zo'(3)+zfr(4))
numbersa;, i=1,... P, P>2 even,

X(Z(5)F Zo(6)) 1} (B19)

Pfla;—a))=0. (B6) All these expressions are linearly independent of each other.
This follows because the Pfaffian is the square root of a Since symmetric polynomials can always be multiplied
determinant in which any three rows or columns obey a lininto zero-energy states to obtain another zero-energy state, it
ear relation. All cases witlP>4 can be viewed as applica- is convenient to decompose all states into a product of a
tions of the identity forP=4. One consequence of the iden- symmetric polynomial and another part that is linearly inde-

tity is that when we insert the expression pendent of symmetric polynomials. The latter represents ex-
citations that are not density fluctuations at the edge. The full
{[(z,,(l)—20(2))2(2(,(3)—20(4))2]} (B7) Hilbert space of edge excitations thus can be written as a

tensor product of a bosonic Fock space of density excita-
tions, as described earlier, and another space of independent
excitations. Since thaM’s of the excitations add, the di-
mension of the full space at anyM can be obtained by
convoluting those of the two factor spaces. It is easy to cal-
culate the dimensions obtained for the latter space by build-
2 2 ing its states up from products of th&,y s (rendered lin-
{[(Zo(1)=20(2) (20(3) = Zo(4) (Zo(5) T Zo(s) 1}, (BE) early independent of,,,) and then subtracting the number
5 5 of linear relations just obtained. F&iM <7, we find that the
1(Zo(1)~ 20(2) (Zo(3) = Zo(a)) 1} €1 (B9 jinear relations eliminate all the states obtained from more

Notice that in the first expression the distinct pai¢5), ~ than two quasiholes. Thus, we find that foM <7 the edge
o(6) is introduced, which does not affect the vanishing,ex_c'ta“ons of_the Pfaf_flan state e_xactly match those in _the
which is due to the summation over permutations of thechiral boson times Majorana fermion system, in the fermion
other four particles. In the second, we have simply multiplied?Umber zero or two sectors.
the insertion(B7) by an elementary symmetric polynomial, !N Principle, it is possible to find the number of the edge
which is linearly independent of the other expression. Fronptates at arbitrarily high M, by deriving these expressions
here on, we will omit the expressions which are products of" & Systematic way. First, we list all polynomials of degree
the ones valid for lowenM and symmetric polynomials. AM of the form
Then, forAM =6, the linearly independent expressions pro-

[defined in analogy witiB3)], or similar expressions, into
the Pfaffian the resulting expression vanish@s/) can be
expanded in the basi®3) and this gives a linear relation
among the states obtained. Therefore, bhM=4, we
“lose” one state. FOrAM =5, the expressions are

ducing linear relations among the states are {[(z(,(l)—z(,<2))2(z(,(3)—z(,(4))2- -~ 1h (B19)

2 2 2 where dots denote additional squared differences or sums
L(Zo(1)= 20(2) (Zo(3) = Zo(4)) (Zo(5) = Z(6)) 1 B10  ihar multiply the first two terms. Then we take the space of

5 5 5 expressions that vanish when inserted in the Pfaffian at lower
1(Zo(1) = 202) (Z0(3) = Z0() (Zo(5) T Zo(0) 11, (B1D AM | multiplied with all possible products of symmetric

) ) polynomials that make the degree of the expresaibh We
{[(Zo(1) = Zo(2) (Zo(3) = Zo(2)) (Zo(5) T Z(6) expand these in the terms of the fofBi19). Some terms in

(B12) the expansion are obviously zero when inserted in the Pfaff-

X(z +z , . .
(2o Zo1)) 1} ian; then the rest must give zero too. Fortunately for low

and momenta AM =<7) each wave function of the forB19) is
zero and that leaves us to prove only that the rest of the wave
{[(zg(l)—zo<2))2(zg(1)+20(2))(20(3)—20(4))2 functions are nonzero and linearly independent. This can be
done by taking pairwise limitg;—z,, etc., of particle coor-
X(Z53)+ Zo(a) - (B13  ginates in the Pfaffian alon@e., without Laughlin-Jastrow

facton, whenever these are singular, and examining the lin-
ear independence of the resulting functions of the remaining
— 2 _ 2 _ 2 variables, that are the residues of these poles.
2o = 202) (203~ 2010) (2015) = 2016) We will just state that the number of trr:e edge states that
X(Zy(7)F Zo(s)) 1} (B14)  we found atAM=8 implies that the four fermion state
(3,13,23,33) is present in the spectrum. So the numbers
{1(Zo(1)= Zo(2) X(Zo(3) = Zo(2) X(Zor(5) + Zor() T} (B15)  found are those given in the table in Sec. Il B.

The last expression uséB6), with a;=z>. ForAM=7,
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We now turn to the HR state. States with any even numenergy. The broadest class of edge states made in this way,
ber, 2n, of quasiholes are zero-energy states and can serve agth S,=0, has this polynomial in the numerator of the term
generating functions for edge states. As in the Pfaffian casayith a fixed arrangement of coordinates in pairs:
they suggest an overcomplete' basis of the states in whic (Zl=25 e (Zly— 7] )
polynomials of theB3) type are inserted. For more than two ) N2 “o(N/2)
quasihgles, linear dependence_s grise whe.n more than.one x(zﬁzi(l))ml. . .(Z;\llz—{-zi_(N/z))mN/Z]}, (B21)
factor like (z —z;)? cancels a similar factor in the denomi- o
nator; this time, the factors in the denominator are themhere nonj=1, and at least one of sl an odd number.
selves squared, and the sum over permutations of the rel- For AM =3, we have only{[(z - z,;)"]}, which corre-
evant particles gives a determinant, not a Pfaffian, so théPonds t&5=1S,=0, i.e., belongs to the permutation group

identity that replaceéB6) is simply that representation (¥27'1%). Similarly the two remaining

states of the triplet can be constructed. For example, the
1 S,=—1 state is
Ws - 1(2, - Zhze1)
de . =0. (B20)
: = > ng'(z(lr(l)_zfr(z))
1 1 1 TESNR+1
: : : : , 1
The linear dependencies that we mentioned in the Pfaffian X
oo ok g o (zl-2! )2 (2o — 2 )2

case with(i T o(i)]) pairs instead ofo(i)o(i +1)] are then 17 “o(3) Ni2—17 4o(N/2+1)

valid here, except the last one in tAeM =6 andAM=7

cases. Namely, if we insert any of these in the HR state Xl;[ (Zi—Zj)leF{—% |zi]?|. (B22)

i<j

(2.18, the sum over permutations will produce zero. There-
fore, the numbers of nontrivial edge states, that is, the statdsote that these functions are simply related to the general
without symmetric polynomials that we found so far in the form of (2.20.

Haldane-Rezayi case are Then we proceed counting only linearly independent
states that do not contain symmetric polynomial factors. For
AM 1 2 3 4 5 6 7 low angular momenta, we get these numbers:
dim 0 1 1 2 2 4 4 AM 1 2 3 4 5 6
All these states are singlets, because they consist of singlet dim 0 0 1 1 2 2
pairs.

The complete spectrum of edge states of the HR systerwhere each state in the table is tBe=0 element of a triplet,
should contain also nonzero spin states. At present we hav®=1. The total number of low-lying fermion edge states in
no quasiholelike generating functions for these, but we catmhe untwisted sector of the HR state is then as given in the
still obtain the edge states by writing down suitable functiongable in Sec. Il C. Finally, we note that the sets of linearly
directly. Each such state is formed when some of spin-singlehdependent functions obtained here for edckl can be
pairs in the ground state are excited into triplet states of zereearranged into the general form derived in Appendix A.
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