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The Hilbert spaces of the edge excitations of several ‘‘paired’’ fractional quantum Hall states, namely, the
Pfaffian, Haldane-Rezayi, and 331 states, are constructed and the states at each angular momentum level are
enumerated. The method is based on findingall the zero-energy states for those Hamiltonians for which each
of these known ground states is the exact, unique, zero-energy eigenstate of lowest angular momentum in the
disk geometry. For each state, we find that, in addition to the usual bosonic charge-fluctuation excitations, there
are fermionic edge excitations. The wave functions for each case have a similar form, related to Slater
determinants, and the edge states satisfy a ‘‘projection rule,’’ that the parity of the number of fermions added
to the edge equals the parity of the charge added. The edge states can be built out of quantum fields that
describe the fermions, in addition to the usual scalar bosons~or Luttinger liquids! that describe the charge
fluctuations. The fermionic fields in the Pfaffian and 331 cases are a noninteracting Majorana~i.e., real Dirac!
and Dirac field, respectively. For the Haldane-Rezayi state, the field is an anticommuting scalar. For this
system, we exhibit a chiral Lagrangian that has manifest SU~2! symmetry, but breaks Lorentz invariance,
because of the breakdown of the spin-statistics connection implied by the scalar nature of the field and the
positive-definite norm on the Hilbert space. Finally, we consider systems on a cylinder, where the fluid has two
edges, and construct the sectors of zero-energy states, discuss the projection rules for combining states at the
two edges, and calculate the partition function for each edge excitation system at finite temperature in the
thermodynamic limit. The corresponding theory for the hierarchy and its generalizations is also given. It is
pointed out that the conformal field theories for the edge states are examples of orbifold constructions. Two
appendixes contain technical details.

I. INTRODUCTION

The theory of the excitations at the edge of an incom-
pressible fractional quantum Hall state1 has undergone exten-
sive development since its beginnings a few years ago.2–5 In
the integer quantum Hall effect, that is, when the bulk fluid
fills an integer number of Landau levels, the edge excitations
are essentially single electrons occupying single-particle
edge states6 that propagate in one direction along the edge
and correspond to the classical skipping orbits. There is one
‘‘channel’’ of such edge states for each filled Landau level;
each channel can be considered as a more or less noninter-
acting, one-dimensional, unidirectional Fermi sea. In the
fractional effect, the edge excitations, like the bulk states, are
highly correlated and cannot be described by single-electron
states. The basic variables are density fluctuations, which
propagate in one direction along the edge. The quantum field
theory, which describes these, is a chiral Luttinger liquid.2,5

In the simplest case, that of the Laughlin states at filling
factors 1/q, q odd, this density mode is the only low-energy
excitation at the edge. In the special case of the integer effect
at filling factor 1, this is equivalent, via bosonization, to the
single-electron, Fermi-sea description.3 The theory was soon
extended2,5 to the edge excitations of the hierarchy theory,1

which yields an incompressible ground state in the bulk for
all rational filling factorsp/q with q odd. In general, some
chiral conformal field theory, which generalizes the chiral
Luttinger liquid, is expected to describe the low-energy,
long-wavelength excitations. It was predicted, in Ref. 7, that
this theory would, in general, be the same as the conformal
field theory, the correlation functions of which reproduce the

bulk wave functions, and which describes such universal
properties of the bulk states as the statistics of their fraction-
ally charged excitations, as it does for the hierarchy states.
This deep connection implies that the properties of the edge
states are not only of interest in their own right, but they can
also be used to probe the properties of the underlying bulk
state. Effects in tunneling into or between edge states have
been the subject of various works.8,9

In this paper, we wish to extend the theory of edge states
to cover some other interesting states that have been pro-
posed and which do not fit into the hierarchy scheme. In
particular, there are~i! the Haldane-Rezayi~HR! ~Ref. 10!
state, proposed to explain the plateau observed atn55/2 in
terms of a half filling of the first excited Landau level, in
which the electrons have no net polarization;~ii ! the Moore-
Read~Pfaffian! state,7 again for a half-filled Landau level,
but this time with spin-polarized or spinless electrons. They
are ground states of electron systems with special short-range
interactions, described later in this paper. The nature of the
observed 5/2 state remains controversial~other suggestions
include an alternative spin-singlet state,11 which we believe
to be a spin-singlet generalized hierarchy state!, while the
Pfaffian has been proposed as an explanation for an51/2
plateau in double layer systems,12 though theoretical calcu-
lations do not support this suggestion. Instead, they suggest13

that the ground state there is~iii ! the so-called 331 state.
Since this is constructed as a two-component generalization
of the Laughlin states, it is part of the generalized
hierarchy,14 but since it can also be interpreted, like the HR
and Pfaffian states, as a ‘‘paired’’ state, it will be natural to
include it here.
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The terminology ‘‘paired’’ state must be interpreted care-
fully. It is an old idea that Laughlin’s states might be gener-
alized if the electrons are first grouped into clusters ofm
particles~such as pairs,m52) and the resulting objects of
chargem then form a Laughlin state. While this may be
possible, and was apparently part of the idea of HR~Ref. 10!,
it is not quite what we have in mind. In terms of the now-
popular composite fermions, which consist of an electron
plus an even numberq of attached vortices, and which at
filling factor 1/q behave as particles in zero net field,15 the
paired states are obtained by forming a BCS-type paired
ground-state wave function, rather than a Fermi sea~the real-
space wave functions are given in Sec. II!. This was first
pointed out in Ref. 7, and has been discussed more recently
in Refs. 16 and 17. We note that it is not clear that these two
procedures lead to equivalent states. In particular, the first
idea seems to lead to a prediction of abelian statistics for
fractionally charged quasiparticles,12 while the second has
been connected with nonabelian statistics.7 The comparison
of the two procedures hinges on the question of whether the
two operations, of grouping particles into pairs, and of at-
taching an appropriate number of vortices, commute. In any
case, they do both lead to the result that quasiparticles have
charges in multiples of 1/2q rather than 1/q,7 and, in the
latter procedure, to the existence of BCS-type~composite!
fermionic excitations obtained by breaking pairs; these are
expected to have a gap in their spectrum. In this paper, we
will see that the gap for the latter excitations goes to zero at
the edge, and the fermions appear as gapless edge excita-
tions, in addition to the usual bosonic charge fluctuations.
The fermions can be described by quantum field theories,
which are related to relativistic conformal field theories
~CFT’s!; in the cases of the Pfaffian and 331 states, these are
the chiral versions of familiar Majorana and Dirac fermions,
respectively.

The goal of this paper is to understand the structure of the
Hilbert spaces, and the field theories, of the edge excitations
of these paired states. Only closed systems are considered,
with the fluid in the form of either a droplet with one edge,
or an annulus with two oppositely moving edges. Knowledge
of these field theories provides the necessary background for
the study of the tunneling and other properties of these states,
which might be useful as a diagnostic for the nature of the
bulk ground state.

There is some previous work on the edge states consid-
ered here. Wen18 has provided numerical evidence for de-
coupled Majorana fermions at the edge of the Pfaffian state.
Wen, Wu, and Hatsugai19 studied the edge excitations of the
HR and other states, using techniques developed by Wen and
Wu,20 for applying operator product expansions in CFT to
FQHE wave functions along the lines of Ref. 7. They ob-
tained analytical results for the edge states, but were not able
to show either the completeness or the linear independence
of their states, though the dimensions of the spaces were
confirmed numerically for the lowest excitations.

In the remainder of this paper, we will first write~in Sec.
II !, for the Pfaffian, HR, and 331 states, wave functions for
edge excitations that are zero-energy eigenstates of the ap-
propriate Hamiltonian and manifestly allow an interpretation
as decoupled systems of fermion and the usual boson excited
states at the edge. These states appear to be linearly indepen-

dent, and it remains to check that we have obtained all the
edge~or zero energy! states. This is proved in Appendix A.
Linear independence is confirmed, up to the eighth level of
excited states for the Pfaffian, and the sixth level for HR, by
direct construction in Appendix B. For the Pfaffian, this re-
produces and extends Wen’s18 numerical results, and analo-
gous results for the HR state by Wen, Wu, and Hatsugai.19

Our method has the advantage over the computer calcula-
tions of beinganalyticand valid for any number of electrons.
In Sec. III, we present a 111 fermion field theory for the
neutral part of the spectrum of the HR state; the SU~2! sym-
metry of the system is explicit in this construction. The ex-
ponents in the singularity in the electron occupation number
at the edge are predicted. We also present a CFT, the corr-
elators of which reproduce thebulk wave functions in the
manner of Ref. 7. Finally, in Sec. IV, we consider systems
on a cylinder, with two edges, which gives further informa-
tion about the structure of the systems. This information, a
complete description of the number of states at each excita-
tion level in the thermodynamic limit, is conveniently ex-
pressed as a partition function similar to the usual grand
canonical one. The results are interpreted using the CFT idea
of an orbifold construction. We emphasize that our basic
results are derived without the use of CFT, which is needed
only in Sec. III and at the end of Sec. IV, where the results
are compared with CFT’s.

II. EDGE STATES OF A DISK

A. Edge states of the Laughlin state

In this section, we will first review what is known about
the edge states of the Laughlin states, emphasizing points
that will help us in studying other FQHE systems. We then
turn to results for the Pfaffian, HR, and 331 states.

Considering first the interior of a system, i.e., in the ther-
modynamic limit where the edge disappears to infinity, or in
a system filling a finite but closed geometry such as the
sphere, a FQH system at a given rational filling fraction pos-
sesses, by definition, a unique ground state~except for some
global phenomena in the case of surfaces of nontrivial topol-
ogy! and a gap for all excited states of the same or higher
density than this ground state. In a number of interesting
cases~with the particles confined to a fixed Landau level,
usually the lowest!, a model short-range repulsive interaction
can be found for which this ground state has a wave function
that is known exactly, and is a zero-energy eigenstate. There-
fore, turning to a QH droplet in a plane, with these interac-
tions there is always a possibility of excitations of zero en-
ergy, which are ‘‘inflations’’ of the densest zero-energy state
of the system. Hence a zero-energy state always involves
some deformation of the edge compared with the ground
state.

The simplest examples of these systems are modeled in
terms of Haldane’s pseudopotentials21 by the Hamiltonian
~we work in the lowest Landau level throughout!

H5 (
l50

q21

V l(
i, j

P l
i j , ~2.1!

whereV l are positive constants~pseudopotentials! andP l
i j

is the projection operator onto the relative angular momen-
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tum state of angular momentuml , for particlesi and j . The
densest zero-energy eigenstate ofH ~2.1!, that is the one
with the lowest total angular momentum~5 total degree of
the polynomial part!, is the Laughlin state~here in the sym-
metric gauge!22

CL~z1 , . . . ,zN!5)
i, j

~zi2zj !
qexpF2 1

4( uzi u2G .
~2.2!

If the Laughlin state is multiplied by any symmetric polyno-
mial in thezi ’s, it will still be a zero-energy state.

21 We will
elaborate a little on this point.

The Laughlin quasihole operator

)
i51

N

~zi2w!, ~2.3!

multiplied intoCL , produces a quasihole located atw, and
many-quasihole states can be obtained by repeated use of
this operator. All such states are clearly zero-energy excita-
tions for ~2.1!, because the wave function still vanishes as
(zi2zj )

q aszi→zj . The operator can be viewed as a gener-
ating function, through the expansion

)
i51

N

~zi2w!5eN1•••1~2w!N22e21~2w!N21e1

1~2w!N, ~2.4!

for the elementary symmetric polynomials,

en5 (
1< i1, i2,•••, i n<N

zi1•••zin. ~2.5!

The symmetric polynomials in thezi form a closed set under
the operations of taking sums, differences, and products, so
they form a ring with unit element 1; allowing linear combi-
nations with arbitrary complex coefficients, they form an al-
gebra. All such polynomials, and therefore all zero-energy
states, are obtained as linear combinations of products of the
en , i.e., theen’s form a basis for the algebra of symmetric
polynomials. Theen’s can be obtained by integrating the
quasihole operator, times a suitable factor, over allw; thus
all zero-energy states can also be obtained as linear combi-
nations of products of integrals of quasihole operators acting
onCL . Single Laughlin quasihole states reconstructed from
theen’s via ~2.4! are not orthogonal and may be considered
as coherent states, similar to those of a single electron in the
lowest Landau level, which can be expanded in angular mo-
mentum eigenstates. Likewise here, theen are operators that
increase the angular momentum of the electrons byn. Also,
as operators, they clearly commute.

As long as w lies well inside the disk of radius
A2q(N21) formed by the electrons, say more than one
magnetic length from the edge, it represents the position of
the quasihole. Asw→`, the disturbance in density, due to
the quasihole, approaches the edge and eventually, in the

limit, becomes trivial. The leading corrections to this limit
are then the termse1 ,e2 , . . . , so thaten with larger angular
momentum represent larger distortions of the edge. This is
borne out by the energetics, if we introduce a termlM into
the Hamiltonian, whereM is the operator representing total
angular momentum about the origin. Since rotations are a
symmetry of the unperturbed problem, this term merely
splits the degeneracy of the different angular momentum
eigenstates. Then it is clear that statesenCL have energy
increasing linearly withn and since gapless excitations can
occur only near the edge of an incompressible QH state, we
can again conclude that these states are edge excitations.
This can be verified in detail for theq51 case, which is a
filled Landau level.3,2 The same expansion for these coherent
states with more than one quasihole gives for each linearly
independent bosonic state a corresponding edge state. By the
arguments above, these must span the full space of edge
excitations.

One may count the number of states at each increased
angular momentum, as follows. Note that to describeedge
states, we consider the limitN→`, with DM5M2M0
fixed @M0 is the angular momentum in the ground state, and
M05qN(N21)/2 in the Laughlin state#. Bulk states are ob-
tained either by fixingw’s in quasihole states or by applying
en’s with n of orderN, and thenN→` in either case. Since
DM in an edge state)aena

CL is DM5(ana , the total

number of states atDM is p(DM ), the number of ways
DM can be divided~‘‘partitioned’’ ! into positive integer
parts, the sum of which isDM . However, their meaning is
clearest if we use a different basis for the algebra of sym-
metric polynomials, namely, the sums of powers

sn5(
i
zi
n ~2.6!

~these are not all independent for finiteN, but must all be
used asN→`), which are one body operators, and, up to
constant factors, can be viewed as the positive angular mo-
mentum components of the change in density at the edge
from the ground state, projected into the space of zero-
energy states. Thus, the edge states are built up out of re-
peated applications of density operators, which do behave as
boson creation operators~i.e., they commute! for n positive.
The components of the projected density withn negative act
as destruction operators and with a suitable normalization,
the algebra of independent simple harmonic oscillators is
obtained, or equivalently, the abelian„U~1!… analog of a Kac-
Moody algebra. This point of view is extensively discussed
in Refs. 2, 3 and 5.

The partition function can be obtained from Euler’s gen-
erating function, which is an infinite series in an indetermi-
natex:

Z~x![11 (
DM51

`

p~DM !xDM[ )
n51

`

~12xn!21, ~2.7!

where we used the binomial expansion
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~12xn!21511xn1x2n1 . . . . ~2.8!

We recognizeZ(x) as the statistical-mechanical partition
function of a chiral Bose field, that is a collection of simple
harmonic oscillators of frequenciesnv, n51, 2, . . . , if we
setx5exp(2v/kBT) ~and\51). For the convenience of the
reader, at later points in this paper, we include a table of the
partition functionp(DM ) for smallDM :

DM 1 2 3 4 5 6 7 8

dim5p(DM ) 1 2 3 5 7 11 15 22

In addition to these states, we can obtain states with a net
charge added to the edge, either by changing the electron
number, which of course can only give integral charges, or
by adding quasiholes at the center of the disk, which allows
the charge effectively added to the edge to be a multiple of
1/q. The wave functions of such a state, with a positive
chargem/q added at the edge, are the same as the above,
except that a factor) izi

m is included. The partition function
for the states in each such sector is the same as form50;
these again represent density fluctuations on top of the state,
which now has chargem/q added. The states with different
electron number will, in the following, generally be found to
play a role in the structure of the theory. Whether the states
with quasiholes added at the center should be viewed as part
of the edge theory is somewhat a matter of taste; they could
alternatively be viewed as a part of the more general theory
of bulk and edge excitations together.

B. Edge states of the Pfaffian state

The Pfaffian state,7 for even particle numberN, is defined
by the wave function

CPf~z1 , . . . ,zN!5 PfS 1

zi2zj
D)
i, j

~zi2zj !
q

3expF2 1
4( uzi u2G , ~2.9!

where the Pfaffian is defined by

PfMi j5
1

2N/2~N/2!! (
sPSN

sgns)
k51

N/2

Ms~2k21!s~2k!

for an N3N antisymmetric matrix, the elements of which
areMi j . It is the lowest angular momentum ground state of
the Hamiltonian,12

H5V(
^ i jk &

d2~zi2zj !d
2~zi2zk!, ~2.10!

~where the sum is over distinct triples of particles! for the
caseq51 and of similar three-body short-range interactions
for q.1. The filling factor is 1/q. The Pfaffian state is totally
antisymmetric forq even, so could describe electrons, while
for q odd, it describes charged bosons in a high magnetic
field. Zero-energy quasihole excitations correspond to in-
creasing the flux inside the area spanned by the fluid, as
usual, but, in this case, the basic objects contain a half flux
quantum each and must be created in pairs. A wave function
for two quasiholes was proposed in Ref. 7; it is

C~z1 , . . . ,zN ;w1 ,w2!5
1

2N/2~N/2!! (
sPSN

sgns
Pk51

N/2 @~zs~2k21!2w1!~zs~2k!2w2!1~w1↔w2!#

~zs~1!2zs~2!!•••~zs~N21!2zs~N!!

3)
i, j

~zi2zj !
qexpF2 1

4( uzi u2G . ~2.11!

It is clear that forq51, the quasihole states are zero-energy eigenstates ofH, ~2.10!; this also holds for the appropriate three
body H for q.1. It will be seen that it is the pairing structure built into the ground state, which allows insertion of
Laughlin-like factors, which act on only one member of each pair and hence effectively contain a half flux quantum each,
unlike the usual Laughlin quasihole that corresponds to a full flux quantum. The same structure requires that quasiholes are
made in pairs, since the wave function must be homogeneous. When quasiholes coincide, that is, whenw15w2 , a Laughlin
quasihole is recovered.

The multiquasihole states can be used to generate the edge spectrum of the Pfaffian state. We initially used such an
approach, but now find it simpler to write down an ansatz which, we believe, in fact describes all the zero-energy states. We
construct wave functions forN electrons (N odd or even!, which we will interpret as havingF fermions created at the edge:

Cn1 , . . . ,nF
~z1 , . . . ,zN!5

1

2~N2F !/2~N2F !/2! (
sPSN

sgns
Pk51

F zs~k!

nk

~zs~F11!2zs~F12!!•••~zs~N21!2zs~N!!

3)
i, j

~zi2zj !
q expF2 1

4( uzi u2G . ~2.12!
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Here 0<n1,n2,•••,nF , are a set of distinct non-
negative integers, andN2F clearly must be even. The sum
over permutations can be divided into a sum of terms in each
of which the unpaired electrons@those with indicess(1)
throughs(F) in the above expression# are antisymmetrized
among themselves. Then each term contains a Slater deter-
minant in these coordinates, representing fermions in wave
functionsznk, hence the stated conditions on thenk’s. The
angular momentum of the states is

M5 (
k51

F

nk1
1

2
@qN~N21!2~N2F !#. ~2.13!

Hence, the angular momentum relative to the ground state,
DM5M2M0 , is

DM5 (
k51

F

~nk1
1
2 !. ~2.14!

Note that the angular momentum of the ground state is cal-
culated at the same number of electrons, and is
M05N@q(N21)21#/2. Such a ground state only exists for
N even, but we use the formula as an interpolation forN odd
also, to yield~2.14!. We interpret the states as having fermi-
ons created in orbitals of angular momentumDM5n11/2,
n50,1, . . . ,which is exactly the description of the ground
state~antiperiodic! sector for Majorana-Weyl fermions on a
circle. We should note, however, that if we choose a certain
even numberN0 of electrons and use the ground state for
N5N0 as a reference ground state, then the odd-fermion-
number sectors occur only when some charge has been either
added or removed from the ground state. More precisely,
odd-fermion numbers can occur whenN is odd, so an odd
amount of charge has been added to the edge, and similarly
for even numbers. Thus, the parity of the fermion number is
equal to the parity of the~integral! charge added. This seem-
ingly trivial observation indicates that the fermion and
charge edge degrees of freedom are not completely decou-

pled. This is analogous to the spin-charge separation at the
edge of the Halperin states, where although the spin and
charge form separate excitations that can be moved along the
edge independently, there are global selection rules that re-
late the total spin and charge added at the edge, in a similar
way to here.23 This is closely related to the absence of any
spin-charge separation in the quasiparticles in the bulk,
which can carry spin 1/2, only if they also carry nonzero
charge. These ‘‘projection rules’’ will be discussed more ex-
tensively later, including the hierarchy states, to one of
which the Halperin state is isomorphic.

In addition to these states, we can also take any one of
them multiplied by a symmetric polynomial in all thezis,
which is again a zero-energy eigenstate. These polynomials
represent the ubiquitous chiral bosons associated with charge
excitations and need not be considered further at the mo-
ment. To ensure that all these states represent linearly inde-
pendent edge excitations, we must certainly take the limit
N→` when studying each space of angular momentum
eigenstates atDM fixed and finite. As we will see below, the
states without symmetric polynomial factors appear to be
linearly independent, but a full proof of this, and of indepen-
dence of the symmetric polynomials, appears difficult. In
Appendix A, we prove that all zero-energy states can be
written as linear combinations of the forms~2.12! times sym-
metric polynomials. In Appendix B, we indicate how we
showed, forDM up to 8, that all these states are linearly
independent. This provides rather convincing evidence for
our simple form~2.12!.

For completeness, we also give expressions for the edge
states in the other, ‘‘twisted,’’ sector, where the Majorana-
Weyl field obeys periodic boundary conditions. These states
occur when an odd number of quasiparticles are present far
inside the edge. For simplicity, we consider a single quasi-
hole at the center of the disk. The ground state in this sector
can be produced by taking the two-quasihole state above,
dividing by w2

N/2 and lettingw1→0, w2→`. On including
unpaired electrons as above, we obtain

Cn1 , . . . ,nF
~z1 , . . . ,zN!5

1

2~N2F !/2~N2F !/2! (
sPSN

sgns
Pk51

F zs~k!

nk P l51
~N2F !/2~zs~F12l21!1zs~F12l !!

~zs~F11!2zs~F12!!•••~zs~N21!2zs~N!!

3)
i, j

~zi2zj !
qexpF2 1

4( uzi u2G . ~2.15!

These states have angular momentum

M5 (
k51

F

nk1
1

2
qN~N21!. ~2.16!

Hence the ground state, in whichF50, has angular momen-
tum M05qN(N21)/2 and the angular momentum relative
to the ground state,DM5M2M0 , is

DM5 (
k51

F

nk . ~2.17!

Similar remarks to those above about theF odd cases apply
here. These quantum numbers are exactly those expected for
Majorana-Weyl fermions obeying periodic boundary condi-
tions, in which fermions can be added in orbitals with angu-
lar momentumn50,1, . . . . In particular, note that for
F51, we can taken150 and obtain a state with zero in-
creased angular momentum. This state is entirely meaning-
ful; since it has an odd number of electrons, it is not the same
as the ground state~with the added quasihole!, which has an
even number of electrons. That all states in this sector have
the form shown is also proved in Appendix A; proof of linear
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independence along the lines of Appendix B has been done
at low DM .

Other numbers of quasiholes, either even or odd, are ob-
tained by taking states in the untwisted or twisted sectors,
respectively, and multiplying in Laughlin quasihole factors
) izi

m . These states are similar to those in the two sectors
above, but with additional charge at the edge, to which it has
been pushed by the quasiholes at the center.

All these states with quasiholes at the center of the disk
obey projection rules similar to those for the states without
the quasiholes. In this case, asN varies, the charge at the
edge runs over values which are integers plus a fixed fraction
~defined mod 1, and equal to a multiple of 1/2q). If the
charge added at the edge is defined relative to a reference
ground state at evenN5N0 , for each number of quasiholes
at the center, then the projection rules are unchanged. This
avoids problems of definition in the case whereq Laughlin
quasiholes have been added at the center. A more satisfac-
tory approach will be given for the case of two edges, as on
the cylinder, in Sec. IV. The states with quasiholes added at
the center of the disk can be viewed as a special case of this.
One could argue that for the disk, it is more natural to ex-
clude any bulk excitations, in which case there are no twisted
or quasihole sectors. The other sectors arise only when both
edges are present, or in the presence of bulk quasiparticles.

For completeness, we include a table of the dimensions of
the spaces of fermion states for lowDM in the untwisted
sector:

DM 1 2 3 4 5 6 7 8

dim 0 1 1 2 2 3 3 5

The entries in the table are the ones that have been veri-
fied in Appendix B. The dimensions of the full space of edge
excitations in the untwisted, even particle number sector are
found by convoluting these numbers with those for the U~1!
chiral boson system given earlier. Thus, all states in this
sector have been verified to be linearly independent up to
DM58. In a numerical calculation in Ref. 18, only the states
for DM,5, which, in fact, contain a maximum of two ex-
cited fermions, were found. The first state with four fermions
excited appears atDM58 ~and is included in the table!.

C. Edge states of the Haldane-Rezayi state

The HR state10 can be written in terms of the coordinates
of N/2 up-spin electrons atz1

↑ , . . . , andN/2 down-spin elec-
trons atz1

↓ , . . . as

CHR~z1
↑ , . . . ,zN/2

↑ ,z1
↓ , . . . ,zN/2

↓ !5 (
sPSN/2

sgns
1

~z1
↑2zs~1!

↓ !2•••~zN/2
↑ 2zs~N/2!

↓ !2 )
i, j

~zi2zj !
qexpF2 1

4( uzi u2G . ~2.18!

Hereq is even to describe fermionic electrons, and the filling factor is 1/q. The first factor is of course just a determinant. The
product overzi ’s with no spin labels attached is over all particles. The fact that this describes a singlet is discussed carefully
in Ref. 10. Strictly speaking, the form given is an abuse of notation. The correct way to write the functions is as a function of
N electron coordinates, numbered from 1 toN, half of which have up spin and half down, and the permutations are over the
subset of electrons of each spin. On including the proper sign factors, the spatial wave functions can be combined with the
spinor wave functions of theN electrons, and then summed over all ways of choosing which electrons have which spin. In this
way, wave functions that are totally antisymmetric under exchange of both the space and spin labels of particles are con-
structed. This procedure is standard and has been described in the literature;10,24,25it can be used to produce states of definite
total spin. Since the construction of such states from the functions given below is straightforward, if tedious, it will be omitted,
and we will continue to use the abused notation as in~2.18!. In Ref. 7 it was pointed out that this state can be regarded as a
BCS-type condensate of spin-singlet pairs of spin-1/2 neutral fermions that consist of an electron andq vortices, from which
the spin-singlet property can be more easily understood. The HR state is the unique zero-energy state atNf5q(N21)22 flux
of a ‘‘hollow-core’’ pseudopotential Hamiltonian that gives any two particles a nonzero energy when their relative angular
momentum is exactlyq21.10

As for the Pfaffian state, excitations ofhc/2e flux are expected and by flux quantization they should occur in pairs. In exact
analogy with the Pfaffian state, the wave function for two quasiholes is

CHR~z1
↑ , . . . ,zN/2

↓ ;w1 ,w2!5 (
sPSN/2

sgns
Pk51

N/2 @~zk
↑2w1!~zs~k!

↓ 2w2!1~w1↔w2!#

~z1
↑2zs~1!

↓ !2•••~zN/2
↑ 2zs~N/2!

↓ !2 )
i, j

~zi2zj !
qexpF2 1

4( uzi u2G . ~2.19!

Due to the spin independence of the newly inserted factors
acting on each pair inside the sum over permutations, the
state is still a spin singlet and this suggests that the quasi-
holes carry no spin. We will see further evidence of this
later. The two quasihole state is again a zero-energy eigen-
state of the ‘‘hollow-core’’ Hamiltonian, where all pseudo-
potentials~includingV0) are zero, exceptVq21 , i.e., for two
particles to interact, their relative angular momentum should

beq21. To see this fact, expand the inserted factors for each
pair in terms of powers ofzk

↑6zs(k)
↓ . Due to the symmetry

betweenzk
↑ and zs(k)

↓ in each factor, it is easy to see that
zk
↑2zs(k)

↓ must occur to an even power. Thus, in the com-
plete wave function, the absence of (zk

↑2zs( l )
↓ )q21 for any

k, l , and hence the zero-energy property of the ground state,
is preserved in the quasihole states.
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It is possible to write down directly the forms of all the
zero-energy states of the hollow core Hamiltonian, in anal-
ogy with those for the Pfaffian. In the untwisted sector, in
terms of the coordinates ofN↑ up electrons,N↓ down elec-
trons, the wave functions are linear combinations of~omit-
ting symmetric polynomial prefactors!

1

~N↑2F↑!!
(

rPSN↓

sPSN↑

sgns sgnr

3
Pk51

F↑ ~zs~k!
↑ !nkP l51

F↓ ~zr~ l !
↓ !ml

~zs~F↑11!
↑ 2zr~F↓11!

↓ !2•••~zs~N↑!
↑ 2zr~N↓!

↓ !2

3)
i, j

~zi2zj !
qexpF2 1

4( uzi u2G . ~2.20!

Here, N↑2F↑5N↓2F↓ is the number of unbroken pairs,
and we may assume thenk’s, mk’s are strictly increasing as
for those in the Pfaffian edge states. These functions have a
structure similar to the real space wave functions for a BCS
state with some broken pairs, that is with BCS quasiparticles
added; the latter would have a similar form for the sum over
permutations, but the factorszi

↑nk would be replaced by plane
waves. Here, of course, they represent edge states, in which
the fermions do behave as if they occupied plane waves run-
ning along the one-dimensional edge. As written, these states
do not have definite spin, but eigenstates ofS2 and ofSz can
be constructed as indicated above. Since the paired electrons
form singlets, the spin is determined by the spin-1/2 unpaired
fermions in the sums overs andr, which behave identically
to ordinary spin-1/2 fermions. Hence, the possible spin states
are determined by adding the spins of electrons in different
orbitals ~labeled bynk or mk), with the only constraint that
an orbital occupied with both an up and a down fermion
must form a singlet.

The angular momentum of the wave functions given is

M5 (
k51

F↑

nk1 (
k51

F↓

mk1
1

2
@qN~N21!22~N2F↑2F↓!#.

~2.21!

Hence, the angular momentum relative to the ground state,
DM5M2M0 , is

DM5 (
k51

F↑

~nk11!1 (
k51

F↓

~mk11!. ~2.22!

Conformal invariance ideas suggest that this implies that the
edge excitations are fermions of conformal weight 1, not
conformal weight 1/2, as for the Pfaffian state~Sec. II B! and
the 331 state~Sec. II D!. This will be discussed further in
Sec. III. We note that the projection rule arising from our
states is the same as for the Pfaffian, i.e., the parities of the
fermion and charge numbers are the same.

From these wave functions, we can obtain the total num-
bers of the low-lying edge excitations~excluding symmetric
polynomials! of the HR state in the untwisted sector at fixed
evenN:

DM 1 2 3 4 5 6

dim 0 1 4 5 8 10

Again, though the count of states based on the wave func-
tions given could of course be continued, the table has been
terminated at the largestDM , where we were able to verify
linear independence directly~see Appendix B!. Note that
spins larger than 1 do not occur at these lowDM . Our num-
bers for spin 0 and 1 excitations agree, when convoluted
with the U~1! numbers, with those calculated in Wen, Wu,
and Hatsugai,19 though our results forN large extend to
higherDM than they can attain in a small system without
encountering finite size effects.

The twisted sector is again obtained by including
a spin-independent quasihole factor, this time
) l51
N↑2F↑(zs(F↑1 l )

↑ 1zr(F↓1 l )
↓ ), in the sum on permutations.

The angular momentum of the excited states relative to the
ground state in this sector is

DM5 (
k51

F↑

~nk11/2!1 (
k51

F↓

~mk11/2!. ~2.23!

Finally, it is once again possible to multiply in factors
) izi

m that add charge to the edge, which are spin independent
and identical to those for the Laughlin states.

D. Edge states of the 331 state

The 331 state is just one of a family of two-component
states, the so-calledmm8n states, first introduced by
Halperin.26 Using the notation↑, ↓ for the two components,
even though they need not represent spin, and bearing in
mind that similar remarks to those at the beginning of Sec.
II C about constructing totally antisymmetric wave functions
apply here also, these states can be written

Cmm8n~z1
↑ , . . . ,zN/2

↓ !

5)
i, j

~zi
↑2zj

↑!m)
k, l

~zk
↓2zl

↓!m8)
rs

~zr
↑2zs

↓!n

3expF2 1
4(

i
uzi u2G . ~2.24!

The generalmm8n state is the unique lowest total-angular-
momentum ground state of a spin-dependent pseudopotential
Hamiltonian, that generalizes~2.1! to the two-component
case, which gives positive energy to any state in which two
↑ or ↓ particles have relative angular momentum less than
m orm8, respectively, or in which an↑ and a↓ particle have
relative angular momentum less thann.

For the case when the exponents in these states are of the
form m5m85q11, n5q21, q>1 ~which give filling fac-
tor n51/q, and the partial filling factors for↑, ↓ are both
1/2q; for brevity, we will continue to refer to this class of
states with generalq as the 331 state!, then use of the
Cauchy determinant identity
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)
i, j

~zi
↑2zj

↑!)
k, l

~zk
↓2zl

↓!)
rs

~zr
↑2zs

↓!215detS 1

zi
↑2zj

↓D
~2.25!

allows the ground states to be written in a paired form, simi-
lar to the Pfaffian and HR states.16,17 This identity can be
understood physically, in terms of the description of bulk
fractional quantum Hall effect wave functions as conformal
field theory correlators,7 as expressing bosonization of
correlators of a chiral Dirac~or Weyl! field ~on the right
hand side!, in terms of correlators in a Coulomb gas~or
exponentials of a chiral scalar Bose field! ~on the left hand
side!. In terms of BCS-type pairing, this function describes
p-type spin-triplet pairing, with each pair in theSz50 state
of a spin triplet.16,17

We will extend the fermionized description immediately
to include the edge excitations in the untwisted sector, omit-
ting symmetric polynomial prefactors:

1

~N↑2F↑!!
(

rPSN↓

sPSN↑

sgns sgnr

3
Pk51

F↑ ~zs~k!
↑ !nkP l51

F↓ ~zr~ l !
↓ !ml

~zs~F↑11!
↑ 2zr~F↓11!

↓ !•••~zs~N↑!
↑ 2zr~N↓!

↓ !

3)
i, j

~zi2zj !
qexpF2 1

4( uzi u2G , ~2.26!

which is particularly similar to the HR case. For the angular
momentum, we obtain

M5 (
k51

F↑

nk1 (
k51

F↓

mk1
1

2
@qN~N21!2~N2F↑2F↓!#.

~2.27!

Hence, the angular momentum relative to the ground state,
DM5M2M0 , is

DM5 (
k51

F↑

~nk11/2!1 (
k51

F↓

~mk11/2!. ~2.28!

This is the correct behavior for the states of a chiral Dirac~or
Weyl! field, where the two types↑ and ↓ denote particles
and antiparticles. This is as expected from the general argu-
ments based on the form of the bulk ground-state wave
function,7 which, as we have mentioned above, includes a
correlator of this same type of fields. The projection rule is
once again the same as for the Pfaffian.

The edge states can be reexpressed in bosonic form as

F ↑F ↓Cq11,q11,q21 , ~2.29!

in which F ↑ (F ↓) are symmetric polynomials in the↑ (↓)
coordinates only, and the numbersN↑ , N↓ of ↑ and↓ par-
ticles need not be equal.

This system also has a twisted sector obtained in a similar
way as in the other examples, by multiplying by factors
)zi
↑ or )zi

↓ that represent the elementary quasiholes located

at the center of the drop. For a single such factor, this leads
to a formula forDM like ~2.28!, but in which the 1/2’s in the
expression are dropped.

In the bosonic form, it is easy to see that all these states,
both twisted and untwisted, are zero-energy eigenstates for
the above-mentioned pseudopotential Hamiltonian, as an ex-
tension of the arguments for the one-component Laughlin
states, and that they span the space of such states. The
equivalence of the bosonic and fermionic forms of edge state
wave functions involves generalizations of the Cauchy deter-
minant identity~2.25!. We will return to the bosonized de-
scription in Sec. IV D.

III. FIELD THEORY OF THE HR STATE

A. Field theory of the edge states of the HR state

We have seen in the previous section that, apart from the
charge-fluctuation excitations, the edge excitations in the
states that we have studied are free fermions~for most of this
section, we ignore the projection rules exhibited in Sec. II;
they will be reincorporated in Sec. IV!. For the Pfaffian and
331 states, these can clearly be described by relativistic
Fermi fields in 111 dimensions~i.e., distance along the
edge and time! of scaling dimension 1/2, which we will de-
notec for the Majorana field in the Pfaffian case, andc↑ ,
c↓ for the Dirac field and its adjoint in the 331 case. These
standard field theories need not be described here. For the
HR state, a natural candidate might have been the Dirac
theory, with up and down excitations described by particle
and antiparticle. However, in the Dirac field theory, there is
no SU~2! symmetry that can be generated by local expres-
sions for the spin density and current, and, in fact, it cor-
rectly describes the edge of the 331 state. Moreover the an-
gular momentum quantum numbers show that the field for
the HR state does not have scaling dimension 1/2, but instead
dimension 1. This puzzle will be addressed in this section.
Another attempt at its resolution has been made by Wen and
Wu,20 which described the bulk wave functions, but did not
exhibit the simple Lagrangian description shown here.

First, we write a Hamiltonian that reproduces the angular
momentum eigenvalues already found. Introducing a veloc-
ity vs for the spin excitations when a termlM is present, the
Hamiltonian for an edge of circumferenceL would be

H5vs(
n51

`

k~ak↑
† ak↑1ak↓

† ak↓!. ~3.1!

Here, the operatorsaks , aks
† , with k52pn/L, obey the ca-

nonical anticommutation relations$aks
† ,ak8s8%5dkk8dss8,

$aks ,ak8s8%5$aks
† ,ak8s8

† %50. Comparing with the result for
the Pfaffian state, where there is a real~Majorana!, right-
moving ~Weyl! fermion ~see, for example, Ref. 2!, we see
that apart from the extraSz quantum number, the boundary
condition is periodic in the ground-state~untwisted! sector
here, while it was antiperiodic in the Majorana-Weyl system.

Therefore, we propose a new 111-dimensional fermion
theory for the neutral part of the HR edge, with a doublet of
complex Fermi fieldsCs(x,t), s5↑ or ↓, and a chiral La-
grangian density~inspired by that for chiral scalar bosons3!
of the explicitly SU~2! invariant form:
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L5 1
4 «ss8~] t2vs]x!Cs]xCs81H.c. ~3.2!

Here,«ss852«s8s, «↑↓51. The canonical procedure leads
to the following, simpler looking Hamiltonian:

H5
1

2E dx vs~]xC↑]xC↓1]xC↓
†]xC↑

†!, ~3.3!

together with canonical momentaP↑5]xC↓ , P↓
52]xC↑ . Using periodic boundary conditions, and going
to Fourier modes, we see that, for the zero wave vector
modes, we obtain the first-class constraints that the corre-
sponding momenta vanish:Ps(k50)[0. The constraints
can be included by simply omitting the zero modes hence-
forth in this chiral theory. Quantization using canonical an-
ticommutation relations then leads to quantized fields:

C↑5 (
k.0

ak↑

AkL
exp2 ik~x1vst !1 (

k.0

ak↓
†

AkL
expik~x1vst !,

~3.4!

C↓5 (
k.0

ak↓

AkL
exp2 ik~x1vst !2 (

k.0

ak↑
†

AkL
expik~x1vst !,

~3.5!

and their adjoints where $aks
† ,ak8s8%5dkk8dss8,

$aks ,ak8s8%5$aks
† ,ak8s8

† %50, and k52pn/L, with n5

1,2, . . . for asystem of circumferenceL. It is assumed that
the vacuumu0& obeysaksu0&50. The normal ordered ver-
sion of ~3.3! then yields~3.1!.

Because of the Fermi statistics chosen for the field, and
the positive-definite norm imposed, as usual, on the Hilbert
space, this field theory is not Lorentz invariant, in spite of the
gapless linear spectrum. Consequently, it is not conformally
invariant either. This may be surprising, since we have be-
come used to the edge theories being some chiral conformal
system, but in fact, since we started with a nonrelativistic
system of electrons in a high magnetic field, nothing guaran-
tees that the edge must be Lorentz invariant, even when there
is a linear dispersion relation for the excitations. Nonethe-
less, we will see that there is a closely related conformal field
theory.

Returning to the chiral theory, the SU~2! currents can be
found using the standard Noether procedure:

J 0
a5

1

2(
s,s8

]L

]~] tCs!
i tss8

a Cs81H.c., ~3.6!

where we specify the Grassmann derivativedL/d(] tC i) to
be taken from the left,ta (a51,2,3) are Pauli matrices, and
normal ordering is assumed. Then the total spin operators for
the edge areSa5* dx J 0

a(x), and

Sz5(
k

1

2
~ak↑

† ak↑2ak↓
† ak↓!, ~3.7!

S15(
k
ak↑
† ak↓ , ~3.8!

S25(
k
ak↓
† ak↑ , ~3.9!

which are easily seen to satisfy the SU~2! commutation rela-
tions. However, unlike other FQHE systems, such as the
Halperin state, where the edge theory is not only conformally
invariant, but also has a Kac-Moody current algebra as a
spectrum-generating algebra, here the currents do not form a
Kac-Moody algebra, and their correlation functions contain
logarithmic factors.

We are ready to identify the operators describing the ad-
dition or removal of electrons at the edge in our conjectured
edge field theory. The operators]C↑e

2 iAqw and]C↓e
2 iAqw

represent the electron annihilation field operatorsC↑el and
C↓el . In these expressions,w(x,t) is the usual chiral boson
field representing the density fluctuations at the edge, with
propagator

^w~x,t !w~0,0!&52 ln~x2vt !; ~3.10!

it is related to the electronic charge density by
r52 i ]w/Aq.5,7 The exponential of the boson operator cre-
ates a bosonic object wheneverq is even, so the scalar ferm-
ion, like the Majorana fermion in the Pfaffian case, field
makes the whole thing into a fermion, as the electron should
be. Note that the gradient of the scalar fermion field appears
here, not the field itself; this reproduces the spin 1 field
found earlier. Taking the charge excitations to propagate
with velocity vc , we find that the electron propagator is

^0uC↑el
† ~x,t !C↑el~0,0!u0&}

1

~x1vst !
2~x1vct !

q , ~3.11!

where the space-time separation of the two fields should be
small compared with the circumference of the disk. The total
exponent is thusq12, in contrast to that for the Pfaffian and
331 state atn51/q, which giveq11, whereas the Laughlin
states giveq. Consequently, the expectationn(k) of the oc-
cupation number of thekth single-electronstate, which can
be obtained by Fourier transforming~in one dimension,
along the edge! the equal-time electron Green’s function, has
a power-law singularityn(k);uk2kmaxuq11 for the HR
state, while the exponent isq for the Pfaffian and 331 states,
q21 for the Laughlin states@for the full Landau level,
q51, and there is a discontinuity inn(k)#. Numerical simu-
lations have been performed for both the Haldane-Rezayi
and Pfaffian states,27 but no conclusion about the exponents
in occupation numbern(k) versusk relevant to the edge
field theory is drawn in the published work.

One might also expect that, just as the bulk system has
pairing of the composite fermions,7 similar algebraic BCS-
type expectations should appear at the edge. Indeed, because
of the form of the operators~3.5!, we have, for example,

^0u]C↑~x,t !]C↓~0,0!u0&}
1

~x1vst !
2 , ~3.12!

which can be viewed as a pairing function. However, this
correlator omits the exponentials ofw needed to represent
the electron operators; if these were included, the correlator
would decay rapidly, since the fields carry the same, not
opposite, charge. This could be taken to illustrate, for the
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edge theory, how pairing occurs for the composite fermions,
not for electrons. Similar phenomena can be found in the
Pfaffian and 331 states. However, while the correlator shown
is legitimate as it stands for the scalar fermion field theory, it
is not a legitimate correlator for the HR edge theory, because
the required intermediate states, where only a single fermion
has been added or removed from the ground state~or excited
states, in the finite temperature case!, do not obey the pro-
jection rule found in Sec. II C. Since fermions can be created
from the ground state only by breaking pairs, states with an
odd number of fermions occur only when an odd number of
charges have also been added at the edge~assuming there are
no changes in the interior of the system!. Only operators that
respect this rule can be constructed in the edge field theory.
Thus, in the theory of the HR edge, this correlator can be
constructed only for equal times, and must then be viewed as
the expectation of a single, nonlocal, operator.

B. Conformal field theory of the bulk HR state

In Ref. 7, a mathematical connection between FQH wave
functions and correlators in CFT was presented, namely, the
elegant wave functions of some important FQHE states are
actually correlators~or conformal blocks! in a chiral two-
dimensional conformal field theory. However, the question
of what theory this would be for the HR state was left unre-
solved. The difficulty was to understand the SU~2! symmetry
~in fact, the singlet nature of the state! in terms of CFT. We
will present a solution to this problem here. The natural
choice for the CFT in the HR case is a nonunitary theory
with the Euclidean action~containing at this stage both right-
and left-moving degrees of freedom for convenience!:

S5E d2x

8p
«ss8]mCs]mCs8 ~3.13!

and the Grassman fieldCs is regarded as real. Thus,Cs is a
relativistic scalar fermion and this model is conformally in-
variant, but its states do not all have positive self-overlaps,
because of the violation of the spin-statistics connection, so
we say that the Virasoro representations are nonunitary; the
central charge isc522. @We note that the spin-statistics
theorem relates the statistics of the fields in a positive-
definite, Lorentz-invariant field theory to the ‘‘spin’’ defined
by rotations of the Euclidean two-dimensional space-time,
which in a conformal theory is the difference of the right-
and left-moving conformal weights, and not to what we have
been calling spin, which describes the transformation prop-
erties under SU~2! rotations that leave the spatial coordinates
unchanged.# This system is an anticommuting counterpart to
the system of a pair of scalar boson fields, which is unitary
and hasc52. ]Cs is a field of conformal weight 1, the
correlators

^]C↑~z1
↑!•••]C↓~zN/2

↓ !& ~3.14!

of which reproduce the determinant in the HR state. The
actionS is manifestly invariant under the group of real sym-
plectic transformations Sp~2,R) @which preserves the reality
property of the fields, and has the same complexified Lie
algebra as SU~2!# and thus the correlator produces a singlet
~since the vacuum is invariant!. However, the Noether cur-

rents are of the formCs]Cs82(s↔s8), which are not
‘‘good’’ conformal fields, since their correlators contain
logarithms, so there is no Kac-Moody symmetry. We note
that Wen and Wu20 arrived at an equivalent description of
this c522 CFT system in terms of OPE’s, but did not give
the simple lagrangian description above.

It is possible to construct ‘‘twist’’ fields29 for the field
Cs , which play a role similar to the spin field of the Ising
~or Majorana! field theory in the construction of the bulk
quasihole wave functions.7 These fields obey identical rela-
tions, as those defined in the next subsection, so we postpone
discussion until then.

C. Relation of bulk and edge field theories

Next we will explain briefly how the relation of the bulk
and edge field theories can be used in order to define quasi-
hole operators at the edge. The field theories as defined in
Sec. III A, III B appear very similar. The difference is that, in
Sec. III A the fields were not required to satisfy a reality
condition, they and their adjoints both appeared in the action,
and the Hilbert space was found to have positive norms~but
no Lorentz invariance!, while in Sec. III B fields were real,
Lorentz invariance was maintained and the self-overlaps of
some states were negative. Here we will consider the
positive-definite theory of Sec. III A, and exhibit a conformal
structure in this system. This does not contradict the earlier
statements, because the stress-energy tensor involved is not
self-adjoint~with respect to this inner product!.

The correlators of the~gradients of the! fields in this sys-
tem, as already exhibited in~3.12!, are clearly conformally
invariant. If we work in imaginary timet, and use the space-
time coordinatez5x1 ivst, then the fields obey the operator
product expansion~ope!,

]Cs~z!]Cs8 ~0!;«ss8 /z
2, ~3.15!

up to the usual less singular terms~these have the same form
as those for the real fields in the theory in Sec. III B!. Then,
if we consider only correlators of]Cs , not of ]Cs

†, these
correlations are conformally invariant. The stress-energy ten-
sor that generates these transformations isT(z)
52«ss8:]Cs]Cs8:/2, which can be verified to obey the
ope’s of a stress-energy tensor, using only the ope~3.15!.
This operator is not self-adjoint, so its Fourier components
Ln , in general, do not obeyLn

†5L2n . However, the Hamil-
tonian L0 derived fromT coincides with that found above
~3.1!. Naturally, if we consider instead]Cs

† , there will be
another non-Hermitian stress tensor generating conformal
transformations of those correlators. The vacuum is annihi-
lated by the modesLn , n>21 of either of these stress ten-
sors, as required in a conformal field theory.

We may now consider twist operators in this theory,
which quite generally are operators that twist the boundary
conditions on the fields, in the manner already described in
Sec. II. We will require these to be also Virasoro primary
conformal fields for the stress tensorT above, as they are in
the nonpositive-definite theory. They are introduced by the
operator product expansion,
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]Cs~z!S ~w!;
1

Az2w
Ŝ 2s~w!, ~3.16!

whereS is a twist field andŜ s is an excited twist field of
spin s. In the presence of theS fields, the correlator for
]C↑ and]C↓ which, in the untwisted sector, is given by the
leading term in the ope~3.15!

^]C↑~z!]C↓~w!&5
1

~z2w!2
, ~3.17!

becomes

^S ~`!C↑~z!C↓~w!S ~0!&5

1

2 SAw

z
1Az

wD
~z2w!2

,

~3.18!

and by a standard calculation,29 we come to the equation

^S ~`!T~z!S ~0!&52
1

8

1

z2
, ~3.19!

which means that the conformal weight for the primary field
S is 21/8, and that the correlator

^S ~z!S ~0!&5z1/4 ~3.20!

increases with separation. Negative scaling dimensions can-
not appear in a conformal field theory described by unitary
representations of the Virasoro algebra. Since, in theories
obeying the BPZ axioms, operators correspond one-to-one
with states, they indicate the existence of states with energy
below that of the ground state. Since our Virasoro generators
Ln generate a nonunitary representation, this is not a problem
here. Moreover,L0 coincides with the physical Hamiltonian
in both the untwisted and twisted sectors, at least up to an
overall constant in the twisted case.~We note that, in order to
calculate this fromDM of the zero-energy states, a term
related to the contribution of the bulk to the angular momen-
tum must be subtracted; see the next section.! We now pro-
pose that this constant is22pvs/8L, as predicted by the
conformal considerations above, since this appears to contra-
dict no principles. There is no real inconsistency in asserting
that the energy of the supposedly ‘‘excited’’ twisted ground
state lies below that of the untwisted ‘‘true’’ one. We could
take the twisted sector~whereCs obeys antiperiodic bound-
ary conditions! as the ground-state sector. We do not do so,
because~i! the theory for the disk~i.e., the chiral theory!
clearly identifies the periodic sector as the ground state,
which has no quasiholes in the bulk;~ii ! the ground state in
the antiperiodic sector is not invariant under SL(2,C) gener-
ated byL0 , L61 , as required in a conformal theory, whereas
that in the periodic sector is.

For the edge states of the HR quantum Hall state~as in all
the paired theories considered in this paper!, the twisted sec-
tor of the fermions occurs only when the charge added at the
edge is 1/2q ~modulo 1/q). Making use of conformal argu-
ments for the states with added charge, we expect the con-
tribution to the energy from the charge sector to be
(2pvc /L)Q

2/2q, whereQ/q is the charge added to the
edge, as will be discussed in the next section. Thus, depend-

ing on the ratiovc /vs , the net energy of these states in the
HR case will be positive in most cases, except for the lowest
added charge sectors. In particular, forn51/2, the orginal
case of interest for HR, there will be a sector with ground-
state energy22pv/16L, if vs5vc . These sectors corre-
spond to operators of the formS eiw/2Aq, which are also the
operators used in the bulk conformal field theory to generate
quasihole states that are single valued, with respect to the
electron operators.7

IV. EDGE STATES AND THEIR FIELD THEORIES
ON A CYLINDER

A. General results and the Laughlin states

In this section, we consider zero-energy states on a cylin-
der. For the Laughlin states, considered in the present sub-
section, the structure of the edge states is well known~see
especially Ref. 2!, but will be reviewed here to ensure that
the ideas are clear, and so as to introduce the partition func-
tion for two oppositely moving edges.

On a right cylinder of circumferenceL, we work in the
Landau gauge. In terms of a complex coordinatez, the
single-particle wave functions in the lowest Landau level are
e2p inz/Le2(1/2)y2, wheren is an integer andy5Imz; it has
been assumed that the boundary condition is that wave func-
tions are periodic underz→z1L. A more general boundary
condition is that the wave function changes byeif under
such a transformation; in that case, the wave functions be-
come ei (2pn1f)z/Le2(1/2)y2. Returning to the caseeif51
from here on, we can write many-particle wave functions in
terms ofZj5e2p izj /L, for example, the Laughlin state:28

CL5)
i, j

~Zi2Zj !
qexpF2 1

2(
i
yi
2G . ~4.1!

As anyzi approaches anyzj , this function clearly retains the
properties of the Laughlin state in the plane, namely, it van-
ishes as theqth power.

The Landau gauge has explicit symmetry under transla-
tion around the cylinder, and the corresponding conserved
quantum number,M , is the sum of the powersMi ’s of the
Zi ’s in the many-particle wave functions.M is the angular
momentum; alternatively, we could use the linear momen-
tum equal to 2pM /L. For eif51, M is integral. In the
Laughlin state above,M5qN(N21)/2, and theMi ’s of in-
dividual particles are in the range 0, . . .q(N21). The
single-particle wave function withMi5n is peaked at
y522pn/L, so the Laughlin state occupies a corresponding
range in they direction. Due to translational symmetry in the
y direction, there are, however, also an infinite number of
other Laughlin states obtained by shifts, which are produced
by acting repeatedly on the wave function with) iZi ~or its
inverse!. This operator shifts theMi by 1, so since the filling
factor is 1/q, it corresponds to shifting a charge 1/q from one
edge to the other. Fractional shifts change the boundary con-
dition on the wave function, so they are not allowed in the
Hilbert space at fixedeif.

The infinite set of Laughlin states~‘‘ground states’’! are
the most dense or compact zero-energy states, in the sense
that theMi ’s lie in a range of minimum possible width~note
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that the pseudopotential Hamiltonian in arbitrary geometry is
defined in terms of the order of vanishing of the wave func-
tions as two-particles approach each other, which in the
plane is equivalent to relative angular momentum!. The total
angular momentum of the Laughlin states isM
5 1

2qN(N21)2pN, for the state where we have applied
)Zi

2p , p integral, to the Laughlin state~4.1!. The range of
Mi values found in this state is then
2p<Mi<q(N21)2p. @Note that forq(N21) even, we
could choosep, such thatM50 and obtain a state symmetri-
cal aboutMi50.# All other zero-energy states have a broader
range ofMi ’s, and are obtained as edge excitations of the
two edges. In theN→` limit, the different Laughlin states
become infinitely far apart in angular momentum, and the
assignment of edge excitations as belonging to a particular
ground state~from which their angular momentum differs by
a finite amount! becomes unambiguous. There are then two
sets of elementary edge excitations, out of which these ex-
cited states can be built, and as for the disk, these are linearly
independent in theN→` limit. The elementary bosons that
create them are the operatorssn5(Zi

n and s̄n5(Zi
2n

(n.0). We refer to the excitations created by the action of
the sn’s, the contribution of which toDM tot , the change in
M relative to the corresponding Laughlin state, is positive, as
right moving. The other operators,s̄n’s, create excitations at
the other edge, haveDM tot,0, and are viewed as left mov-
ing. ~Here right and left refer to the two directions parallel to
the edge.! Thus, if we can splitDM tot into DM2DM , where
the two terms are the contributions at the two edges, then we
would like to view DM1DM as the ‘‘pseudoenergy’’
~within a scale factor!, where both terms are defined as non-
negative for the case in the present subsection. The direction
of motion then follows from the group velocity, the change
in pseudoenergy with momentum of an elementary excita-
tion.

A more realistic, and well-defined, method would be to
introduce a Hamiltonian that breaks the degeneracy of the
zero-energy ground states and edge excitations; for example,
a parabolic confinement potential( iM i

2 , would suffice, but
unfortunately the wave functions that can be easily written
down are not eigenstates of such a form, except forq51. We
assume that as such a term is turned on and the eigenstates
evolve, they stay in one-one correspondence with those
found here. We expect on physical grounds that excitations
that move electrons further from the minimum of this poten-
tial, as the edge excitations do, have higher energy, and so
for small uDM u the bosons have a dispersion relation
E;uDM u for either edge, and form the modes of a~non-
chiral! scalar Bose field. The effect of the Hamiltonian on the
low-lying states of the system can then be determined
through a renormalization group analysis, as has been done
for the present case already.9 In fact, the analysis of the
effective field theory of low-lying excitations, and its opera-
tor content, given here is the basis for such an analysis for
the paired states.

If the electron number in the Laughlin ground state is
changed by 1, the width changes byq units. We can view
this as an operation that adds charge to a single edge, without
disturbing the bulk ground state. The full set of possible
ground-state systems can then be parametrized by the posi-

tions of the two edges, which are almost independent. Each
edge can be shifted byq units without affecting the other.
Shifts bym51, . . . ,q21 must be performed on both edges
together. A shift byq units at both edges is equivalent to
removing an electron from one edge and inserting it in the
ground state at the other. If we extend the idea of a charge
sector to include in a single sector all those that differ by
integral charges, then there are onlyq sectors, of charge 0,
1/q, . . . ,121/q ~modulo integers!, where the charge is
shifted by the stated amount from one edge to the other. For
the pseudopotential Hamiltonian without the confining po-
tential, theseq sectors are on an equal footing and the choice
of zero is arbitrary. Above these ground states, bosonic ex-
citations can be created at either edge, and have the same
character in all sectors. Thus, the Hilbert space of the edge
excitations can be written in the form

V5 % r50
q21Vr /q^Vr /q . ~4.2!

Each Hilbert spaceVr /q (Vr /q), r50,1, . . .q21, is the span
of the full set of states in the extended charge sectors at the
right- ~left-! moving edge. The conformal field theory of the
edge states that includes the operators of charge 1 in the
chiral algebra is known as the ‘‘rational torus’’~see, e.g.,
Ref. 7!. Loosely, the chiral algebra is the algebra of operators
that affect only a single edge. There is such an algebra for
both edges, the two algebras are isomorphic, and operators in
one commute or anticommute with those in the other. Each
Hilbert spaceVr /q (Vr /q), r50,1, . . .q21, is an irreducible
representation of the fully extended right-~left-! moving chi-
ral algebra.

To extend our definition of the pseudoenergy, which was
given for the edge excitations of a single Laughlin state at
fixed ~but large! particle number, to the full set of sectors just
described, we introduce an arbitrary reference ground state
with N5N0 particles and shiftp5p0 , so that the angular
momentum M05

1
2qN0(N021)2p0N0 . We calculate

DM tot for Laughlin states, where an integral amount of
charge has been added to a single edge, by changingN and
adjusting the shiftp from p0 , such that either the maximum
or minimum occupiedMi is unchanged compared with the
reference state in the case of charge added to the left- or
right-moving edge, respectively. After subtracting a quantity
related to the bulk of the system, a step analogous to mea-
suring momentum from the Fermi wave vector in a Fermi
gas, this gives a formula forDM or DM , valid in these
special cases. This will then be used in all the sectors. The
occupied states, in general, lie in the interval
2p<Mi<qN(N21)/22p. To add charge at the right-
moving edge, we letN5N01DN, andp5p0 . Then we cal-
culate

DM tot5qDN2/21DN@q~N021/2!2p0#. ~4.3!

Therefore, if we defineE[DM tot2@q(N021/2)2p0#DN
for the excitation pseudoenergy at the right edge, we obtain
E5qDN2/2, for the Laughlin states, and this is consistent
with result for the charge-fluctuation bosons, which do not
change the charge at the edge. Similarly, for the left edge,
where we must use the adjusted shiftp5p01qDN, so that
the right edge is unmoved, we obtain
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DM tot52qDN2/21DN@2q/22p0#. ~4.4!

Then for the excitation pseudoenergyĒ at this edge, we must
use Ē52DM2@q/21p0#DN. For each edge, the coeffi-
cient ofN is the mean of the angular momenta of the highest
~respectively, lowest! occupied single-particle states in the
reference state withN0 and withN011 electrons, so it re-
sembles the Fermi wave vector in a Fermi sea, on two sides
of the Fermi sphere. We now use these formulas also for the
ground ~and excited! states in any charge sector, having a
combination of electrons added toN0 , shifts of charge from
one edge to the other, and charge fluctuations; for such states
we can always calculate, for each edge separately, the
amount of charge effectively added, which may now be frac-
tional, but is always a multiple of 1/q.

All information about the number and quantum numbers
of the edge excitations in the thermodynamic limit~taken
with L2/N fixed! can be conveniently summarized in a par-
tition function analogous to that in Sec. II A. The partition
function is a double series in a complex parameterx and its
complex conjugatex̄, which contains information about right
and left movers, respectively. In fact, ifH is the Hamiltonian
the eigenvalues of which are 2pv/L times the sum of anE
and anĒ found above, wherev is the speed of propagation
of the edge excitations, and takingx5 x̄5e22pbv/L, then this
partition function is the Gibbs grand canonical partition
function of statistical mechanics, Tre2bH. ~This is consistent
with the assignments in Sec. II and Sec. III.! TheE’s of the
charge sectors that we have found agree with the conformal
weights that are found in the conformal field theory.2 The
result is expected to be the same for a more realistic Hamil-
tonian with a confining potential, as discussed above. The
partition function is defined as

Z~x,x̄!5TrxEx̄Ē. ~4.5!

The structure ofV given above now allows us to express
Z in terms of the trace over each spaceVr /q , and we define
@using the Euler partition sump(n) for the bosons from Sec.
II A #

x r /q
6 ~x![ (

m52`

`

~61!mx~mq1r !2/2q)
n51

`

~12xn!21 ~4.6!

and the complex conjugate forVr /q . The traces, such as the
x r /q

1 ’s, over the right- and left-moving spaces are known as
characters, since they are essentially the characters, in the
algebraic sense, of the irreducible representationsVr /q of the
chiral algebra.~The greater generality afforded by the inser-
tion of 61, and by allowingr to be an arbitrary real number,
will be useful later.! The partition function can then be writ-
ten as

Z~x,x̄!5 (
r50

q21

ux r /q
1 ~x!u2. ~4.7!

Similar structures to those found here for the Laughlin states
on a cylinder will be found for the other states in the follow-
ing subsections; unfortunately, for the paired states, while
the method for calculatingE and Ē produces a similar con-
tribution for the different charge sectors, it is too crude to

produce the analogous energies that we expect to originate in
the fermion sectors, such as the21/8 discussed in the pre-
ceding section, though we believe that they could, in prin-
ciple, be obtained in a refined calculation.

B. Pfaffian state

As for the Laughlin states, the zero-energy states on the
cylinder can be obtained from those in Sec. II B by replacing
zi by Zi , the Gaussian factor by exp@21

2( i yi
2], and recalling

that the exponents of theZi ’s run over all the integers, posi-
tive and negative. The formula forDM of the edge excita-
tions in the untwisted sector containing fermions only still
applies,

DM tot5 (
k51

F

~nk11/2!, ~4.8!

but nownk>0 describes right-moving fermions,nk,0 left
moving. For the latter, we can defineDM52DM tot .

By inspection of the resulting states, we deduce that, in
the untwisted sector, ifN even is fixed atN0 , then the total
number of fermions excited is even, and the parity of the
number at each edge~i.e., whether it is even or odd! must be
the same. But if we increaseN by 1, we must create or
destroy a fermion at one edge, as well as increase the charge
by 1, which can be done at the same edge without affecting
the other. So the chiral algebra includes the operator
ceiAqw which does this.7 Then the parity of the fermion num-
bers at the two edges can be opposite, provided the parity of
the integral amount of charge added relative to the reference
state is also opposite. Applying the operation, or its adjoint,
once more to the same edge, we find states where the charge
has changed by 0 or 2 relative to the reference state, but the
number of fermions has the same parity, still without affect-
ing the other edge. Thus, all these states lie in the same
extended charge sector, and similar results hold in the other
untwisted sectors, where a fractional chargem/q has been
shifted from one edge to the other. A total of 2q sectors
results from these considerations.

The twisted sector is obtained from the untwisted by in-
serting a factor

)
l51

~N2F !/2

~Zs~F12l21!1Zs~F12l !!

in the states withF unpaired fermions~in the notation of
Sec. II B! to produce the effective shift by a half unit that
transfers charge 1/2q from one edge to the other. The angular
momentum of the excited fermions is then

DM tot5 (
k51

F

nk , ~4.9!

where once againnk can run over the integers. This time
nk.0 represents right movers,nk,0 left movers.nk50 is
the zero mode, which cannot be assigned to the right- or
left-moving sectors. On the other hand, the requirement that
the total number of fermions must be even whenever the
charge added to the reference state is even, and odd when it
is odd, still applies. Thus, we have the general projection rule
that applies in all the sectors, twisted and untwisted, that the
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total number of fermions created in right moving, left mov-
ing, or zero modes together must be equal to the parity of the
total charge added to the system at the two edges together. In
the twisted sectors, it can be satisfied by allowing either par-
ity of right- and of left-moving fermions in all charge sec-
tors, then choosing the occupation number~either 0 or 1) of
the zero mode to obey the condition. Consequently, the dis-
tinction between ‘‘even’’ and ‘‘odd’’ sectors, that existed
among the untwisted sectors and was responsible for the fac-
tor 2 in the 2q sectors, no longer applies, and there are just
q distinct sectors~or irreducible representations of the chiral
algebra!. The total number of sectors is therefore 3q, which,
in line with the general connection between bulk and edge
states made in Ref. 7, is the same as the number of zero-
energy ground states found in the toroidal geometry.12 Note
that in this case the description of the chiral algebra as af-
fecting only a single edge is not quite correct, because the
right-moving operatorc, and its left-moving analogc̄, each
contain a term that changes the occupation number of the
zero mode. Nonetheless, in the Majorana field theory, these
operators anticommute; similarly, the algebra of operators
assigned to one edge does~anti-!commute with those as-
signed to the other, even in the twisted sector.

The calculation of the partition function, which formalizes
the above remarks, is conveniently performed in terms of
characters. The basic objects are characters for the states at
one edge that differ in charge only by integers, and, in the
untwisted sector, the parity of the charge difference from that
in the lowest energy state is equal to the parity of the change
in fermion number. Characters for the fermions alone will be
useful; these are, for untwisted~antiperiodic! boundary con-
ditions,

x0
MW~x!5

1

2 F )
n50

`

~11xn11/2!1 )
n50

`

~12xn11/2!G ,
x1/2
MW~x!5

1

2 F )
n50

`

~11xn11/2!2 )
n50

`

~12xn11/2!G ,
~4.10!

which are, respectively, for even and odd numbers of
Majorana-Weyl~MW! fermions. The subscripts are the con-
formal weights of the corresponding primary fields, or the
energies of the ground state in each sector. In the twisted
sector~periodic boundary conditions!, there is only a single
nonvanishing character:

x1/16
MW~x!5x1/16)

n51

`

~11xn!. ~4.11!

~The zero mode is omitted here, as it will be accounted for
separately, as already explained.! The constant 1/16 inE for
the twisted ground state here is the analog of those in the
different charge sectors as derived in Sec. IV A, where it was
mentioned that we cannot at present derive this one directly
from our zero-energy wave functions. 1/16 is the conformal
weight of the corresponding operators, the spin field, which
twists the boundary condition on the Majorana fermion, like
the twist fieldS discussed in Sec. III. These three expres-
sions are well known as the Virasoro characters of the criti-

cal two-dimensional Ising model, as well as in other con-
texts. The characters of the chiral algebra relevant to the
edge states of the Pfaffian are

x r /q,even,untwisted
Pf ~x!5 1

2 x0
MW~x!@x r /q

1 ~x!1x r /q
2 ~x!#

1 1
2 x1/2

MW~x!@x r /q
1 ~x!2x r /q

2 ~x!#,

x r /q,odd,untwisted
Pf ~x!5 1

2 x1/2
MW~x!@x r /q

1 ~x!1x r /q
2 ~x!#

1 1
2 x0

MW~x!@x r /q
1 ~x!2x r /q

2 ~x!#,

x~r11/2!/q,twisted
Pf ~x!5x1/16

MW~x!x~r11/2!/q
1 ~x!. ~4.12!

It can easily be seen that these expressions are sums over
states with the necessary constraints on the combinations of
fermion and charge states included, apart from those that
enter on combining right and left movers and zero modes.
The partition function is, finally,

ZPf~x,x̄!5 (
r50

q21

@ ux r /q,even,untwisted
Pf ~x!u21ux r /q,odd,untwisted

Pf ~x!u2

1ux~r11/2!/q,twisted
Pf ~x!u2#. ~4.13!

C. HR state

As for the Pfaffian state, the edge states of the HR state on
a cylinder can be deduced almost immediately from the re-
sults for the disk. In the HR case, the untwisted sector is
found now to contain zero modes, while the twisted sector
does not. The zero mode, like the nonzero, right- and left-
moving modes, can be occupied by a spin up or a spin down
fermion, or both. From these states we can deduce the pro-
jection rule. It has the same form as for the Pfaffian, in all
sectors. The projection rule requires even fermion number
when no charge has been added, and that a fermion is created
or destroyed whenever a unit of charge is added to a single
edge, so that the chiral algebra includes an operator
]Cse

iAqw, very similarly to the Pfaffian. We can, therefore,
write down the characters without further ado. The charac-
ters for the fermions are

x0
C~x!5

1

2 F )
n51

`

~11xn!21 )
n51

`

~12xn!2G ,
x1

C~x!5
1

2 F )
n51

`

~11xn!22 )
n51

`

~12xn!2G ,
x21/8

C ~x!5
1

2
x21/8F )

n50

`

~11xn11/2!2

1 )
n50

`

~12xn11/2!2G ,
x3/8

C ~x!5
1

2
x21/8F )

n50

`

~11xn11/2!22 )
n50

`

~12xn11/2!2G .
~4.14!
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Note that the first two are the even- and odd-fermion-number
states in the untwisted sector, omitting the zero modes, while
the last two are the same for the twisted sector, and we have
used the negative conformal weight of the twist fields inwrit-
ing the latter. In this case, we have maintained the distinction
between even- and odd-fermion numbers in the sec-tor that
contains the zero modes, so as to exhibit its fate explicitly.
~If desired, the following approach can also be taken for the
Pfaffian state, and the expressions already given for the par-
tition function can be derived in this manner, verifying the
argument, given in words in the preceding text, that there are
only 3q sectors.! The characters for the chiral algebra of the
HR state are

x r /q,ev,untw
HR ~x!5 1

2 x0
C~x!@x r /q

1 ~x!1x r /q
2 ~x!#

1 1
2 x1

C~x!@x r /q
1 ~x!2x r /q

2 ~x!#,

x r /q,od,untw
HR ~x!5 1

2 x1
C~x!@x r /q

1 ~x!1x r /q
2 ~x!#

1 1
2 x0

C~x!@x r /q
1 ~x!2x r /q

2 ~x!#,

x~r11/2!/q,ev,tw
HR (x)5 1

2x21/8
C ~x!@x~r11/2!/q

1 ~x!1x~r11/2!/q
2 ~x!#

1 1
2 x3/8

C ~x!@x~r11/2!/q
1 ~x!

2x~r11/2!/q
2 ~x!#,

x~r11/2!/q,od,tw
HR ~x!5 1

2 x3/8
C ~x!@x~r11/2!/q

1 ~x!1x~r11/2!/q
2 ~x!#

1 1
2 x21/8

C ~x!@x~r11/2!/q
1 ~x!

2x~r11/2!/q
2 ~x!#. ~4.15!

We may now form the partition function, by combining the
sectors subject to the rules already mentioned. In particular,
in the untwisted sector where the zero mode occurs, we may
combine right- and left-moving sectors of the same parity, in
which case the zero mode may be either unoccupied or dou-
bly occupied, or we may combine sectors of opposite parity
if the zero mode is occupied once, which may be with either
spin. Thus, we find for the partition function:

ZHR~x,x̄!5 (
r50

q21

$2ux r /q,ev,untw
HR ~x!u212ux r /q,od,untw

HR ~x!u2

12@x r /q,ev,untw
HR ~x!x r /q,od,untw

HR ~x!

1x r /q,od, untw
HR ~x!x r /q,ev,untw

HR ~x!#

1ux~r11/2!/q,ev,tw
HR ~x!u21ux~r11/2!/q,od,tw

HR ~x!u2%

5 (
r50

q21

@2ux r /q,ev,untw
HR ~x!1x r /q,od,untw

HR ~x!u2

1ux~r11/2!/q,ev,tw
HR ~x!u21ux~r11/2!/q,od,tw

HR ~x!u2#,

~4.16!

which shows that there are in fact 4q sectors. The untwisted
characters have combined into simpler ones, similarly to the
twisted Pfaffian state characters:

x r /q,untw
HR ~x!5 )

n51

`

~11xn!2x r /q
1 ~x!, ~4.17!

which, however, appear twice inZ. The 4q sectors show
that there are 4q primary fields of the chiral algebra in the
system, which~in the notation of Sec. III, except that the
fieldsCs , S are now the nonchiral fields that act on both
right and left movers! are 1 ~the identity operator!, C↑C↓ ,

S ei (w1 w̄ )/2Aq, Ŝ ss̄e
i (w1 w̄ )/2Aq (Ŝ ss̄ is the twist field excited

in both left and right sectors, ands,s̄5↑,↓), and these op-

erators times additional factorsei (w1 w̄ )/Aq, which shift charge
1/q from one edge to the other. All of these fields are spin

singlets, exceptŜ ss̄ , which transforms as spin12 ^
1
250

%1. The fieldC↑C↓ is not strictly a primary field, since it
has weight zero, but this is not an important distinction here.
All other fields are descendants of these, that is they can be
obtained by acting with operators in the chiral algebras; as a
particular example, the state created from the untwisted
ground state with unoccupied zero modes by the zero mode
of C↑ times a unit charge at the right-moving edge is ob-
tained fromC↑C↓ , by acting with]C↑e

iAqw. Acting again,
with a similar operator, leads us to the identity, so the rep-
resentations are not irreducible, which is a peculiarity of this
system.

D. 331 state and the hierarchy and its generalizations

The edge states and the partition function for the 331 state
are, by now, easily obtained. There are zero modes in the
twisted sector, as for the Pfaffian, but there are two types of
fermions ~particles and antiparticles!, as in the HR state.
Similar selection rules governing even- and odd-fermion
numbers apply as in the other cases. Accordingly, the parti-
tion function can be written using the Weyl~or chiral Dirac!
characters:

x0
Weyl~x!5

1

2 F )
n50

`

~11xn11/2!21 )
n50

`

~12xn11/2!2G ,
x1/2
Weyl~x!5

1

2 F )
n50

`

~11xn11/2!22 )
n50

`

~12xn11/2!2G ,
x1/8
Weyl~x!5

1

2
x1/8F )

n51

`

~11xn!21 )
n51

`

~12xn!2G ,
x9/8
Weyl~x!5

1

2
x1/8F )

n51

`

~11xn!22 )
n51

`

~12xn!2G .
~4.18!

The characters entering the partition function are

x r /q,ev,untw
331 ~x!5 1

2 x0
Weyl~x!@x r /q

1 ~x!1x r /q
2 ~x!#

1 1
2 x1/2

Weyl~x!@x r /q
1 ~x!2x r /q

2 ~x!#,

x r /q,od,untw
331 ~x!5 1

2 x1/2
Weyl~x!@x r /q

1 ~x!1x r /q
2 ~x!#1 1

2 x0
Weyl~x!

3@x r /q
1 ~x!2x r /q

2 ~x!#,
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x~r11/2!/q,ev,tw
331 ~x!5 1

2 x1/8
Weyl~x!@x~r11/2!/q

1 ~x!1x~r11/2!/q
2 ~x!#

1 1
2 x9/8

Weyl~x!@x~r11/2!/q
1 ~x!

2x~r11/2!/q
2 ~x!#,

x~r11/2!/q,od,tw
331 ~x!5 1

2 x9/8
Weyl~x!@x~r11/2!/q

1 ~x!1x~r11/2!/q
2 ~x!#

1
1

2
x1/8
Weyl~x!@x~r11/2!/q

1 ~x!

2x~r11/2!/q
2 ~x!#. ~4.19!

The partition function is

Z331~x,x̄!5 (
r50

q21

@ ux r /q,ev, untw
331 ~x!u21ux r /q,od,untw

331 ~x!u2

12ux~r11/2!/q,ev,tw
331 ~x!1x~r11/2!/q,od,tw

331 ~x!u2#.

~4.20!

Again the twisted terms have combined to form a simpler
character,

x~r11/2!/q,tw
331 ~x!5„x1/16

MW~x!…2x~r11/2!/q
1 ~x!, ~4.21!

and there are two distinct sectors with this character. The
equality of some characters of distinct sectors may also hap-
pen with the rational torus or Laughlin state characters, for
which the characters obeyx r /q

6 (x)56x (q2r )/q
6 (x).

By bosonization,3 the Dirac~or Weyl! characters can be
written, using the Jacobi triple product formula, in terms of
characters for a chiral boson withq51 ~summed over charge
sectors!:

x0
Weyl~x!6x1/2

Weyl~x![x0/1
6 ~x!, ~4.22!

2„x1/16
MW~x!…2[x~1/2!/1

1 ~x!, ~4.23!

and so the 331 partition functions can be written in the form
of sums for two boson fields, which is described in detail
below. As mentioned in Sec. II, the bosonized description of
the field theories is closely related to the description of the
bulk wave functions as two-component generalizations of the
Laughlin states. TheE’s for the various sectors can be ob-
tained in that description by an argument similar to that
given in Sec. IV A for the Laughlin state. Since this includes
a contribution from the fermions, as well as from the charge
degrees of freedom, this holds out some hope that a deriva-
tion in the ‘‘pairing’’ representation of wave functions,
which might also be applicable to the Pfaffian and HR states,
should exist.

Here we will give without proof the general results for the
hierarchy and its generalizations, restricting ourselves, for
simplicity, to the case where the matrixG below is positive
definite, with the 331 state as a special case. Physically, this
is the case where all modes at the same edge propagate in the
same direction. The other case has been discussed recently in
Refs. 9 and 30. The bosonized field theory for the right-
moving edge2 can be formulated in terms of chiral boson
fieldswa , which have correlators~in imaginary time!

^wa~z!wb~0!&52dablnz, ~4.24!

wherea,b run from 1 ton, and here, in the hierarchyn, is
the number of levels. Thea51 component could be taken to
be the density fluctuation field that we have used up to now.
The others represent the internal, neutral degrees of freedom.
In the composite fermion approach,n is the number of Lan-
dau levels for the fermions,14 and the density mode is usually
taken to be the sum of thewa . The chiral operators that are
allowed to be used at this edge without affecting the other
~which generate the chiral algebra! are of the formeivawa(z)

~we use the summation convention!. The vectorsv, the com-
ponents of which in the basis labeled bya areva , lie on a
~Bravais! latticeL in n-dimensional Euclidean space, that is
they take the form of integral linear combinations ofn lin-
early independent vectorsea . Thus, the chiral algebra can be
generated bye6 ieaawa(z), a51, . . . ,n. The scalar products
of theea areGab5ea•eb , which defines the Gram matrix of
L; G is positive definite here, because we assumed Euclid-
ean space. In the~generalized! hierarchy theory,G is a ma-
trix of integers, and soL is an integral lattice. Ifv5vaea ,
then we havev•v85vaGabvb8. Since the basis labeled bya
~which is not an integral basis! is orthonormal, we find that
the conformal weight of the chiral operators isv2/2, and so is
either integral or half integral.

The possible shifts of charge or the other U~1! quantum
numbers related to the components ofwa from one edge to
the other are described by similar operators that act on both
edges simultaneously, as in the states considered earlier. The
right-moving part of such an operator is of the form
eiwawa(z), wherew is a vector in the dual~or reciprocal!
latticeL* of L; the dual lattice is defined as the set of all
vectorsw, such thatw•v5 an integer for allvPL. Clearly
L is a sublattice ofL* . The right-moving conformal weight
~or ground-state energy in the corresponding charge sector!
of the operatorseiwawa(z) is againw2/2, which is the same
~modulo 1) as the statistical parameteru/2p of the quasipar-
ticles in the bulk of the same state, which are also labeled by
vectors inL* ~the ‘‘excitation lattice’’ in the terminology of
Ref. 14!. The latticeL ~the ‘‘condensate lattice’’! labels the
combinations of quasiparticles that make up the possible or-
der parameters. The relation of these to changes in the
charges at one edge was mentioned in Ref. 14, and forms the
basis for the results quoted here. If we view the lattices as
additive groups, we find thatL has index detG in L* , and
so the quotient groupL* /L is a finite group of detG ele-
ments. The extended charge sectors are labeled by the pos-
sible shifts modulo fields in the chiral algebra, that is, by the
elements ofL* /L. These can be described by a set of vec-
tors wA , A51, . . .,detG, in L* , one in each coset ofL.
The simplest case is the Laughlin states, wheren51,
G5(q), L5AqZ, L*5Z/Aq, andL* /L5Zq , which is
equivalent to the description in Sec. IV A. Another simple
case is the integral quantum Hall effect, in which forn Lan-
dau levels,G is ~in a convenient basis! the n3n identity
matrix, soL is then-dimensional simple~hyper-! cubic lat-
tice, detG51, andL*5L. Thus, in this case, all edge exci-
tations are just electrons in the various Landau levels.

For the 331 states, the matrixG in the basis natural for the
ground-state wave function in the form~2.24! is

G3315S q11, q21

q21, q11D . ~4.25!
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The resulting latticeL embodies the projection rules by be-
ing distinct from an orthogonal direct sum of one-
dimensional lattices. We note that there are detG54q ex-
tended charge sectors, as found earlier. Moreover, unlike the
lattices for the hierarchy states, for the generalized hierarchy
states, and the 331 state, in particular, the sublattice (L* )'

of operators that are neutral is not the same as the sublattice
L' of L. The lowest-weight neutral operator that is in
L* , but not inL, represents the Fermi fieldcs of weight
1/2. Since it does not appear inL, it cannot be applied to one
edge, but must be combined with a similar operator for the
other edge, or with another Fermi field or a charged field at
the same edge. This is a consequence of the projection rules
that we saw using the fermionic form of wave functions;
states differing only by one fermion at one edge do not both
exist in the Hilbert space. In contrast, for the hierarchy, the
projection rules place no restriction on the neutral operators
that can be applied to one edge, since all vectors in (L* )'

are also inL'.
We may now describe the partition function for the~gen-

eralized! hierarchy states, in the case whereG is positive
definite. The sectors are labeled by the detG cosets ofL, and
in each sector the chiral characters are sums over vectors in
the coset, together with fluctuations in thewa . That is, define

xA~x![ (
vPL

x~wA1v!2/2)
m51

`

~12xm!2n. ~4.26!

The partition function is simply

ZL~x,x̄!5 (
A51

detG

uxA~x!u2. ~4.27!

For the 331 states, this agrees with that derived by bosoniza-
tion fromZ331. It is interesting that, in the theory of the edge
states, the relation of composite boson and composite
fermion approaches maps exactly onto the usual
111-dimensional bosonization~or its inverse, fermioniza-
tion!.

E. Orbifolds, chiral superalgebras,
and modular transformations

For readers familiar with, or ready to learn about, CFT,
we mention that the theories for the cylinder described in this
section are examples of the construction known as ‘‘orbi-
folding.’’ Definitions, results, and examples of orbifolds can
be found in Refs. 29, 31, and 32. In brief, the general alge-
braic definition of an orbifold involves starting with a ratio-
nal CFT with a chiral algebraA on which some finite group
G acts as a symmetry. One then takes the subalgebraA0
that is invariant underG as the new chiral algebra. The
representations ofA will be representations ofA0 also, but
will, in general, be reducible; each irreducible component
transforms as an irreducible representation ofG . In addition,
there will be ‘‘twisted’’ representations ofA0 that are not
representations ofA. The same operations are applied to the
left-moving chiral algebraA and its representations. The
~symmetric, diagonal! orbifold CFT then has a primary field
for each representation ofA0 , which at the same time are
primary for the isomorphic left-moving algebraA0 . The

rule for combining left- and right-moving representations is
that all fields must be invariant under the simultaneous action
of G on left and right movers, and untwisted~twisted! fields
must combine with untwisted~twisted!.

The CFT’s of all the paired states described in this section
are examples of orbifolds withG5Z2 . The algebraA for
the Pfaffian is generated by the fieldse6 iAqw, c, and con-
tains the U~1! current algebra generated by]w and the Vi-
rasoro algebra forc as subalgebras. The primary fields are
eir w/Aq, r50,1, . . . ,q21 ~we suppress the left-moving op-
erators for now!. Z2 acts simultaneously onw,c by
w→w1pAq andc→2c. The algebraA0 is generated by
ce6 iAqw, and the primary fields areeir w/Aq, ceir w/Aq, r5
0,1, . . . ,q21, which result from the splitting of the repre-
sentations ofA ~the untwisted representations!, together
with the twisted representationssei (r11/2)w/Aq, r50,1, . . . ,
q21, which include the spin fields, which is the analog for
the Majorana fermion of the twist field discussed in Sec. III.
The states~or descendant fields! in these representations
obey the ‘‘projection rules’’ found earlier, and the full de-
scription of the combination of left and right movers, and the
resulting partition functions, can be done in agreement with
the rules obtained from the wave functions in this section.
Very similar descriptions work for the HR and 331 states.
@For the 331 state, the orbifold that we find is that where
c↑ transforms bye

ip, c↓ transforms bye
2 ip. These factors

are both equal to21, but the point is that the factors written
describe the way the phase of either field winds on taking it
round the twist field; there is also an adjoint twist field
around which they wind the reverse way. This behavior is
required by the structure of the twisted states, which have
definite pseudospin as well as charge quantum numbers. It is
most easily understood in the bosonized representation
w5w1 , c↑5eiw2, in the same notation as in Sec. IV D. Then
the symmetry isw1→w11pAq, w2→w21p. This orbifold
leads back to the lattice described in Sec. IV D. In particular,
the spin~or twist! field for cs is bosonized aseiw2/2, which
must appear in combination with some other charged fields,
as for the other orbifolds and the generalized hierarchy theo-
ries in Sec. III D.# In all cases, the rationale for the structure
is that the electron~or other fundamental charged particle! is
represented in the edge theory by a field likece6 iAqw, which
has fixed boundary conditions in all sectors, and all fields
must be local with respect to it, just as in the bulk, all wave
functions must be single valued functions of the electron
coordinates.7

Our description of the orbifolds glossed over one aspect
of the systems discussed here. The usual definition of chiral
algebras assumes that all fields in the chiral algebras~both
A andA0) have integral conformal weight. In our ex-
amples,c andcs that appear for the Pfaffian and 331 states
have half-odd-integral weight, and forq odd, so does
e6 iAqw. Thus,A is actually a chiral superalgebra in these
cases,7 and so isA0 in some cases~and also for the algebra
of the Laughlin state forq odd, and the generalized hierarchy
states whenever applicable to electrons!. We emphasize that,
for our purposes, a superalgebra is one where some fields
have half-odd-integral conformal weight, rather than one
where some of the relations are anticommutators instead of
commutators. In fact, to describe electrons, which are fermi-
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ons, rather than the quantum Hall effect of charged bosons,
the chiral algebra is always a superalgebra, except in the case
of the HR states, due to the violation of the spin-statistics
theorem there as discussed earlier.

The fact that the chiral algebra is sometimes a superalge-
bra has consequences for the modular transformation prop-
erties that we may expect for the partition functions calcu-
lated in this section. Ifx5e2p i t, and Imt.0 (t should not
be confused with earlier uses of the same symbol!, then
modular transformations act as

t °
at1b

ct1d
, ~4.28!

and the matrix

S a b

c dD ~4.29!

is a member of SL(2,Z), the group of 232 integer matrices
of determinant 1.@The group of modular transformations
themselves is SL(2,Z)/$6I %.# The modular group is gener-
ated by the elementsT:t→t11, represented by

T5S 1 1

0 1D , ~4.30!

andS:t→21/t, represented by

S5S 0 1

21 0D . ~4.31!

When the chiral algebra is strictly an algebra~i.e., not a
superalgebra!, then the partition functions will be modular
invariant, if we modify the definition to include the factor
(xx̄)2c/24, wherec is the central charge of the CFT~not the
matrix element just above!. Central charges are additive; the
values of the central charge arec51 for the Laughlin state,
111/253/2 for the Pfaffian, 122521 for the HR,
11152 for the 331~all independent of the value ofq), and
n for the ~generalized! hierarchy states. Modular invariance
occurs forq even in the case of the Laughlin state, andq odd
for the Pfaffian and 331 states, all of which describe the
fractional quantum Hall effect of charged bosons, not elec-
trons. When some of the fields that generate the chiral alge-
bra have half-integral conformal weight, they will obey an
antiperiodic boundary condition in the space direction, and
the ~modified! partition function cannot be invariant under
the full modular group; the only boundary conditions that are
invariant under the whole group are periodic around any
cycle on the torus. In these cases, which as we have seen
apply to all states considered here that can describe electrons,
with the sole exception of the HR states withq even, we
expect that our expressions are invariant only under the sub-
group of the modular group that leaves the antiperiodic
boundary condition on the electron field invariant. This sub-
group is generated by the elementsS and T2 and can be
shown to be isomorphic toG0(2)/$6I %, whereG0(2) is the
subgroup of SL(2,Z) consisting of matrices where the matrix
elementc[0 ~mod 2). For the HR state, the situation is a
little more subtle. Modular invariance may be expected when
using the nonunitary CFT of Sec. IV B for the scalar fermi-

ons, in the cases withq even but requires modification of the
partition function to include the factor~21!F in the trace
over states, whereF is the total number of fermions. The
same should apply forG0~2!/$6I % invariance forq odd.

We also mention here some isomorphisms of the chiral
algebras of our systems to known algebras.~In this para-
graph,c is the central charge, andN is not the number of
particles.! For the Laughlin state~of bosons! at n51/2, the
fields e6 iA2w, ]w generate the SU~2! current ~Kac-Moody!
algebra of level 1. For the Laughlin state atn51/3, we have7

the N52 superconformal algebra atk51, generated by
e6 iA3w, ]w. For the Pfaffian state~of bosons! with q51, the
operatorse6 iAqw are the bosonized representation of a Dirac
field, or of a pair of Majorana fieldsc61 , which together
with the Majorana fieldc5c0 forms a triplet of Majoranas.
Thisc53/2 theory contains an SU~2! current algebra of level
2, or equivalently an O~3! algebra of level 1, in which the
currents are the bilinearscacb , a,b561,0. This symmetry
shows up, for example, in the degeneracies of the excited
energy levels, as long as the velocities forw andc are equal.
The 3q53 sectors, even untwisted, odd untwisted, and
twisted, correspond to primary fields that transform respec-
tively as spins 0, 1, 1/2, under both the left- and right-
moving SU~2!. Moreover, the productc1c0c21 generates
N51 superconformal symmetry,33 though this operator does
not survive the projection toA0 . Finally, the algebraA0 for
then51/2 Pfaffian state is generated byce6 iA2w, which has
weight 3/2, and the algebra can be recognized as supercon-
formalN52 at k52.33 In this case, the unprojected algebra
A contains SU~2! level 1 and an SU~2! triplet of supercur-
rentsce6 iA2w, c]w, which generate anN53 superconfor-
mal algebra.33

V. CONCLUSION

To conclude, we have found complete descriptions of the
wave functions, the Hilbert spaces and the field theories of
the edge states of the paired systems considered. The explicit
wave functions are very appealing and make the enumeration
of excited states in terms of elementary excitations straight-
forward. The combination of complete proofs of some re-
sults, and enumeration for low excited states in others, makes
the correctness of those results not explicitly proven here
almost certain. The results confirm the general prediction in
Ref. 7 of a relation between bulk and edge properties. For the
Pfaffian and HR states, this provides indirect evidence for
the prediction of nonabelian statistics of the quasiparticles in
the bulk of these states. The twist fields in the edge confor-
mal field theories proposed here certainly have such proper-
ties when exchanged in space time at the edge~‘‘mono-
dromy’’!. For the 331 state, as for all generalized hierarchy
states, the monodromy, and the statistics of the bulk quasi-
particles, is abelian.

The explicit wave functions for the edge excitations, par-
ticularly for two edges on a cylinder, are reminiscent of re-
sults for integrable one-dimensional systems, especially
those of the Calogero-Sutherland~CS! type34 for which there
are explicit, simple wave functions for the ground state and
many excited energy eigenstates. Indeed, the similarity of the
Laughlin state and the ground state of the CS model has
often been remarked. In the limitL@N, the Laughlin state
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on the cylinder essentially becomes the Calogero-Sutherland
ground state;27 the coordinate transverse to the edges can be
viewed as the canonical momentum. The edge excitations of
the Laughlin state are in one-one correspondence with the
excitations of the CS model, and the low-energy CFT of the
latter is once again a Luttinger liquid. It is interesting to
speculate that there might be some integrable one-
dimensional Hamiltonians with long-range interactions, gen-
eralizing the CS model, for which the ground and excited
states might be related in a similar way to the wave functions
discussed in this paper. If so, then we expect the low-energy
field theories of the one-dimensional models to be theZ2
orbifolds discussed in Sec. IV.

Finally, we note that the approach used here can be ap-
plied to other states for which the ground state is the zero-
energy eigenstate of a suitable local Hamiltonian, as here. An
example is another paired state, the permanent state,7 which
is a spin singlet, and is the densest zero-energy eigenstate of
a certain three-body Hamiltonian.35 The resulting theory is a
Z2 orbifold containing spin-1/2 bosons of conformal weight
1/2 at the edge. Such a system, like the HR state, violates the
spin-statistics connection, so that the edge field theory is not
conformal. The corresponding nonpositive conformal field
theory, the correlators of which reproduce the bulk wave
functions, is theb-g ghost system,7 so the relation of bulk
and edge theories is maintained.
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APPENDIX A: ZERO-ENERGY STATES
FOR THE THREE-BODY

AND HOLLOW-CORE HAMILTONIANS

In this Appendix, we will justify directly the general form
of the zero-energy eigenstates of~2.10!, and by extension its
analog forq.1, and show, in particular, that they lead to the
forms for the edge states in~2.12!, ~2.15!. We then briefly
address similar questions for the hollow-core Hamiltonian
for which the HR state is the unique ground state, and cor-
responding issues on the cylinder.

The Hamiltonian~2.10!, taken with Bose statistics for the
particles so that the Pfaffian state withq51 is a possible
ground state, implies that the wave function of a zero-energy
state vanishes whenever any three~or more! particles coin-
cide. This implies that zero-energy states can be written in
the form of the Vandermonde determinant) i, j (zi2zj ),
times an antisymmetric function that, as a function of any
two coordinateszi ,zj , may have a simple pole atzi5zj ,
times the usual Gaussian factors. Such a state will have zero
energy provided the antisymmetric function involved does
not have a triple pole of the form

@~zi2zj !~zj2zk!~zk2zi !#
21,

as i , j ,k approach one another, for anyi , j ,k. A form like

@~zi2zj !~zi2zk!#
21

cannot appear either, because it is symmetric inj and k,
while a form

~zj2zk!~zi2zj !
21~zi2zk!

21

could, but this can be rewritten as a difference of simple
poles,

~zi2zj !
212~zi2zk!

21.

So all possible functions can be written as linear combina-
tions of the forms already given, where the singularities in-
volve disjoint pairs of particles.

Without loss of generality, the general state can be taken
to be a linear combination of states written by antisymme-
trizing a function obtained by dividing the particles into
pairs, writing an odd factor for each pair and symmetrizing
over exchange of pairs. These conditions are of course suf-
ficient, but not necessary for the final antisymmetrization
over all particles to be nonvanishing. That is, neglecting the
omnipresent factor)(zi2zj )exp(2

1
4(uzi u2), we must have

(
sPSN

sgns
(tPSN/2

Pk51
N/2 f k~zs@2t~k!21# ,zs@2t~k!#!

~zs~1!2zs~2!!•••~zs~N21!2zs~N!!
, ~A1!

where thef k are symmetric polynomials in two variables.
For N odd, we can write a similar form withk
51, . . . ,(N21)/2, and include for the unpaired particle an
arbitrary polynomial factorf 0(zs(N)).

A convenient way to describe the symmetric functions in
two variablesz1 ,z2 , is the following. We know that sym-
metric functions can be written as sums of products of the
sums of powerssn

(2)5z1
n1z2

n . We will separate the symmet-
ric functions that vanish atz15z2 by writing the disjoint sets
of functions,

Am5$~z12z2!
2msn

~2! :n50,1,2, . . .%, ~A2!

for m50,1,2, . . . . Weclaim that the full set of symmetric
functions in two variables is spanned by linear combinations
of the polynomials in the set

øm50
` Am ~A3!

~there is no need to take products of these functions!. This
can be shown by induction from the fact that products of
sums of powers span the symmetric polynomials, together
with the identities

sn1
~2!sn2

~2!52sn11n2
~2! 2~z1

n12z2
n1!~z1

n22z2
n2!, ~A4!

z1
n2z2

n5~z12z2!~z1
n211z1

n22z21•••1z2
n21!, ~A5!

which ~by induction on the order! express a product of ele-
ments of A0 as a linear combination of elements of
A0 , A1 , . . . .

Now eachf k in ~1.1! can be chosen to be an element of
øm50

` Am . If f k is an elementsn
(2) of A0 , we will try to pull

outside the sum on permutationss the corresponding sum of
powers in allN coordinates,sn @see Eq.~2.6!#; this will leave
behind terms with fewerf kPA0 . Repeating this procedure,
eventually all f k’s remaining inside the sum will be in
øm51

` Am and we will have finished.f k that are inAm

(m>1) contain (zs@2t(k)21#2zs„2t(k)…)
2, which cancels a
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factor in the denominator, so these particles are unpaired in
this term and the wave function will be a linear combination
of the forms~2.12!.

For the basic~untwisted! sector of edge states, we can
considerN large and mostf k51, though this is not necessary
and the results below are valid for all wave functions of the
stated form. Then we observe that iff 15sn

(2)PA0 , then

(
tPSN/2

)
k51

N/2

f k}sn (
tPSN/2

)
k52

N/2

f k2 (
tPSN/2

(
k52

N/2

f̂ k )
k852,k8Þk

N/2

f k8,

~A6!

where fork52,3, . . . ,

f̂ k5H 0 if f k51

f ksn
~2! if f kÞ1,

~A7!

andsn can be taken outside the sum on permutationss. The
functions f ksn

(2) can then be reduced using the identity~A4!,
and all the terms in the many-particle state are now of the
form of symmetric polynomials inN variables times anti-
symmetric functions with fewerf k that are members ofA0
and Þ1. Eventually, all f k are either 1 or arePAm
(m>1), and these states are linear combinations of the states
in the text. Similar methods work forN odd. Thus, we have
shown that all zero-energy states are linear combinations of
symmetric polynomials times the form in~2.12!.

To obtain the twisted sector, we can replacef k by f ks1
(2)

in the above proof, leaving thes1
(2) factors intact inside the

sum ons andt at each step. Of course, in a finite system,
our proof shows that these states can be expressed as com-
binations of the others, but to study the Hilbert spaces of
edge states, we takeN→` before the number off kÞ1 be-
comes large, and thus we obtain two different sectors in this
limit. Similar arguments apply if it is desired to include any
other factor in everyf k in the state.

The hollow-core Hamiltonian10 requires that zero-energy
states have no pairs of particles with relative angular mo-
mentumq21. ~Another way to say this, which is useful in
other geometries, is in terms of the order of vanishing of the
functions.! We recall that the relative angular momentum of
a pair, say 1,2, is defined by expressing the wave function in
the form~neglecting the Gaussian factor, and the spin labels
if any!

C~z1 ,z2 ,z3 , . . . ,zN!5 (
m,n50

`

~z12z2!
m~z11z2!

n

3Cmn~z3 , . . . ,zN!, ~A8!

in which each term in the sum is an eigenstate of relative
angular momentum of 1 and 2 of eigenvaluem. The densest
zero-energy state of the hollow-core Hamiltonian occurs at
filling factor n51/q. The largestq for which the pairing in
which we are interested can occur isq52. For q.2, zero-
energy states can be obtained from those forq52 by multi-
plying by the Vandermonde determinant. Forq52, the wave
functions are required to be totally antisymmetric when the
spin states are included~see Sec. II C!. For fixed spins of the
N particles, the wave functions can be written as
) i, j (zi2zj )

2 times a meromorphic function, and the mero-

morphic function must be antisymmetric among particles of
the same spin. For zero-energy states this function must
have, as any two particles come to the same point, either a
double pole, with zero residue, or be analytic. Because of
antisymmetry, double poles can appear only for opposite
spin particles. All antisymmetric functions can be obtained
by antisymmetrization of functions of indefinite symmetry,
though we may as well omit functions that would vanish on
antisymmetrization. If a double pole is present for a pair
i , j , then it cannot be present for any other pair of the form
i ,k or j ,k. This is because the Vandermonde squared con-
tains the factors

~zi2zj !
2~zi2zk!

2~zj2zk!
25~zi2zj !

2$@ 1
2 ~zi1zj !2zk#

2

2 1
4 ~zi2zj !

2%2, ~A9!

the expansion of which contributes only even powers to the
relative angular momentum ofi and j . In view of the double
pole in zi2zj , the whole wave function is a zero-energy
eigenstate, provided there is not a single or double pole in
zi2zk or zj2zk , for any k. Therefore, all pairing factors
(zi2zj )

22 must contain distinct pairs. The unantisymme-
trized function can thus be written as a product of pair fac-
tors for as many opposite spin pairs as possible, times func-
tions f k(zi

↑ ,zj
↓) of the paired coordinates that can be taken

either symmetric or antisymmetric, and must be either non-
vanishing atzi

↑5zj
↓ , or vanish at least as fast as (zi

↑2zj
↓)2,

so as not to spoil the zero-energy property. The zero-energy
wave functions thus have, without loss of generality, a form
similar to ~A1!. We now try to pull any one of thef k that
does not vanish atzi

↑5zj
↓ outside the sum on permutations

by the same procedure as for the Pfaffian, using~A6!. Use of
~A4!,~A5! then shows that the resulting functions still obey
the zero-energy property. The procedure can then be re-
peated until linear combinations of the form~2.20! are
reached. We conclude that the wave functions in the form
~2.20! span all the zero-energy states, in the untwisted sector.
Similar arguments apply to the twisted sector, toN↑ÞN↓ ,
and to combinations of these.

Finally, we comment on zero-energy states on the cylin-
der. On replacingzi by Zi ~see Sec. IV!, we see that in~A1!
f k must still be symmetric, but may contain negative powers
of Zi . @The pairing factors (Zi2Zj )

21 can be left unchanged
without loss of generality.# We extend the definition of the
sets of symmetric functions~A2! by allowing the exponents
n in the symmetric polynomialssn

(2) to be negative as well as
positive or zero, whilem is still non-negative; we claim that
these span all symmetric holomorphic functions in two vari-
ables on the cylinder.~A4!,~A5! apply unchanged to all in-
tegral values ofn1 ,n2 , although~A5! becomes an infinite
series. The proof then works as before, by pulling sums of
~positive or negative! powers outside the sum on permuta-
tions. The HR case works similarly.

APPENDIX B: LINEAR INDEPENDENCE
FOR SMALL DM IN THE PFAFFIAN AND HR CASES

In this appendix, we construct and verify the linear inde-
pendence of the states in the untwisted, evenN sector for all
DM<8 for the Pfaffian andDM<6 for the HR state. We
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use a different basis from that derived in Appendix A. We
first return to the two-quasihole states for the Pfaffian. Due to
the symmetry of exchangingw1 andw2 , they may be ex-
panded in the form

C~z1 , . . . ,zN ;w1 ,w2!5 (
m50

N/2

(
n50

m

Cmn~z1 , . . . ,zN!

3~w1
nw2

m2n1w2
nw1

m2n!, ~B1!

where all theCmn are linearly independent. This may be
interpreted as saying that the quasiholes behave as two
bosons, which may each occupy any one ofN/211 states.

This does not, however, mean that the quasiholes are bosons
in general, which would contradict the assertion that they
obey nonabelian statistics.35 To obtain the expansion, we first
expand the numerator in~2.11! inside the Pfaffian, i.e., for a
fixed choice of pairs, described by the permutations
@each pairing is obtained from 2N/2(N/2)! different s ’s#.
For each pair s(2k21), s(2k) the factor
@(zs(2k21)2w1)(zs(2k)2w2)1(w1↔w2)# will contribute
zs(2k21)zs(2k) , (zs(2k21)1zs(2k)) or a constant to an expan-
sion coefficientCmn . This observation suggests the use of
an alternative basis for the space of edge states spanned by
theCmn , defined by

FDM ,s~z1 , . . . ,zN!5
1

2N/2~N/2!! (
sPSN

sgns

~zs~1!2zs~2!!•••~zs~N21!2zs~N!!
$@~zs~1!zs~2!!

m1•••~zs~N21!zs~N!!
mN/2

3~zs~1!1zs~2!!
n1
•••~zs~N21!1zs~N!!

nN/2#%)
i, j

~zi2zj !
qexpF2 1

4( uzi u2G , ~B2!

whereDM5M2M0 is again the difference between the total angular momentumM of the edge state and the angular
momentum of the ground stateM0 . The expression in curly brackets is defined as the sum over permutations ofN/2 pairs:

$@~zs~1!zs~2!!
m1
•••~zs~N21!zs~N!!

mN/2~zs~1!1zs~2!!
n1
•••~zs~N21!1zs~N!!

nN/2#%

5N 21 (
tPSN/2

~zs~1!zs~2!!
mt~1!

•••~zs~N21!zs~N!!
mt~N/2!~zs~1!1zs~2!!

nt~1!
•••~zs~N21!1zs~N!!

nt~N/2!, ~B3!

which makes this expression invariant under permutations of
the pairs, and under permutationsna ,ma° nt8(a) , mt8(a) .
N is the number of permutations inSN/2 that leave the se-
quence of pairsna ,ma , a51, . . . , N/2 invariant. In the
statesFDM ,s the numbersna ,ma are defined to be 0 or 1,
such that na1ma<1, and (a51

N/2 ma5DM2s,
(a51
N/2 na52s2DM . With these restrictions, there is clearly

just one distinct polynomial of the form~B3! for eachs,
which will be denoted PDM ,s , and we see that
s<DM<2s, DM2s<N/2, 2s2DM<N/2, and s<N/2.
ComparingFDM ,s andCmn , we see thatDM5N2m.

From ~B2!, it is easy to calculate how many edge states of
fixed DM the expansion of two quasiholes gives, as
N→`. There are 11DM /2 linearly independent states for
DM even and (DM11)/2 for DM odd. But for fixedDM ,

(
s>DM /2

DM

PDM ,s5eDM , ~B4!

whereeDM is an elementary symmetric polynomial, indepen-
dent of the permutations, which can, therefore, be brought
outside the sum on permutations as a multiplicative factor.
This arises because bringing the two quasiholes to the same
position,w15w2 , produces a single Laughlin quasihole. The
remaining edge states, which span spaces of dimensions
DM /2 for DM even and (DM21)/2 for DM odd, require
nontrivial factors inside the sum over permutations and rep-
resent degrees of freedom that are not simply density fluc-
tuations at the edge. At eachDM , the number of such states

coincides with the number of states with two fermions added
to the ground state and the sameDM in the Majorana field
theory.

Further expansions of the states with more than two
quasiholes should generate, besides further symmetric poly-
nomial factors, all even-fermion-number excitations. Wen18

has demonstrated numerically for~2.10! for up to N510
particles that the number of lowDM zero-energy states co-
incides with that in the Majorana field theory. We will go a
little further analytically, for arbitraryN. States with 2n
quasiholes,n.1, at positions$w1 , . . . ,w2n% will, in place
of the factor

)
k51

N/2

@~zs~2k21!2w1!~zs~2k!2w2!1~w1↔w2!# ~B5!

inside the sum on permutationss in ~2.11!, have aproduct
of such factors, each involving a distinct pair ofw’s. Thus,
the degree of the wave function will beNf
5q(N21)211n. There are 2nn! distinct ways to associate
thew’s in pairs, but only 2n21 of the resulting electron wave
functions are linearly independent~as functions of thezi ’s
for fixed w’s! for n.1.35 Provided that they are degenerate
in energy, which is true by inspection for the appropriate
three-body Hamiltonian, the fact that this number is.1 is
the basis for nonabelian statistics. When the quasiholes are
exchanged adiabatically, the usual Berry phase is replaced by
a matrix acting in this space of degenerate quasihole states;
however, this has not yet been explicitly demonstrated in this
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or any other example~see Ref. 35!. Here we are interested to
see what edge excitations we can obtain by expanding these
states. Evidently expanding in powers ofw1 , . . . ,w2n will
generate the general polynomials~B3! inside the sum on
permutations, without restrictions on thema’s andna’s. We
will then have to take into account the linear relations among
some of these states, corresponding to those discussed in
Ref. 35 forn52.

The linear relations among some of the states are obtained
from the following general identity. For any set of complex
numbersai , i51, . . . ,P, P.2 even,

Pf~ai2aj !50. ~B6!

This follows because the Pfaffian is the square root of a
determinant in which any three rows or columns obey a lin-
ear relation. All cases withP.4 can be viewed as applica-
tions of the identity forP54. One consequence of the iden-
tity is that when we insert the expression

$@~zs~1!2zs~2!!
2~zs~3!2zs~4!!

2#% ~B7!

@defined in analogy with~B3!#, or similar expressions, into
the Pfaffian the resulting expression vanishes.~B7! can be
expanded in the basis~B3! and this gives a linear relation
among the states obtained. Therefore, forDM54, we
‘‘lose’’ one state. ForDM55, the expressions are

$@~zs~1!2zs~2!!
2~zs~3!2zs~4!!

2~zs~5!1zs~6!!#%, ~B8!

$@~zs~1!2zs~2!!
2~zs~3!2zs~4!!

2#%e1 . ~B9!

Notice that in the first expression the distinct pairs(5),
s(6) is introduced, which does not affect the vanishing,
which is due to the summation over permutations of the
other four particles. In the second, we have simply multiplied
the insertion~B7! by an elementary symmetric polynomial,
which is linearly independent of the other expression. From
here on, we will omit the expressions which are products of
the ones valid for lowerDM and symmetric polynomials.
Then, forDM56, the linearly independent expressions pro-
ducing linear relations among the states are

$@~zs~1!2zs~2!!
2~zs~3!2zs~4!!

2~zs~5!2zs~6!!
2#%, ~B10!

$@~zs~1!2zs~2!!
2~zs~3!2zs~4!!

2~zs~5!1zs~6!!
2#%, ~B11!

$@~zs~1!2zs~2!!
2~zs~3!2zs~4!!

2~zs~5!1zs~6!!

3~zs~7!1zs~8!!#%, ~B12!

and

$@~zs~1!2zs~2!!
2~zs~1!1zs~2!!~zs~3!2zs~4!!

2

3~zs~3!1zs~4!!#%. ~B13!

The last expression uses~B6!, with ai5zi
2 . ForDM57,

$@~zs~1!2zs~2!!
2~zs~3!2zs~4!!

2~zs~5!2zs~6!!
2

3~zs~7!1zs~8!!#%, ~B14!

$@~zs~1!2zs~2!!
2~zs~3!2zs~4!!

2~zs~5!1zs~6!!
3#%, ~B15!

$@~zs~1!2zs~2!!
2~zs~3!2zs~4!!

2~zs~5!1zs~6!!
2

3~zs~7!1zs~8!!#%, ~B16!

$@~zs~1!2zs~2!!
2~zs~3!2zs~4!!

2~zs~5!1zs~6!!~zs~7!1zs~8!!

3~zs~9!1zs~10!!#%, ~B17!

and

$@~zs~1!2zs~2!!
2~zs~1!1zs~2!!~zs~3!2zs~4!!

2~zs~3!1zs~4!!

3~zs~5!1zs~6!!#%. ~B18!

All these expressions are linearly independent of each other.
Since symmetric polynomials can always be multiplied

into zero-energy states to obtain another zero-energy state, it
is convenient to decompose all states into a product of a
symmetric polynomial and another part that is linearly inde-
pendent of symmetric polynomials. The latter represents ex-
citations that are not density fluctuations at the edge. The full
Hilbert space of edge excitations thus can be written as a
tensor product of a bosonic Fock space of density excita-
tions, as described earlier, and another space of independent
excitations. Since theDM ’s of the excitations add, the di-
mension of the full space at anyDM can be obtained by
convoluting those of the two factor spaces. It is easy to cal-
culate the dimensions obtained for the latter space by build-
ing its states up from products of thePDM ,s ~rendered lin-
early independent ofeDM) and then subtracting the number
of linear relations just obtained. ForDM<7, we find that the
linear relations eliminate all the states obtained from more
than two quasiholes. Thus, we find that forDM<7 the edge
excitations of the Pfaffian state exactly match those in the
chiral boson times Majorana fermion system, in the fermion
number zero or two sectors.

In principle, it is possible to find the number of the edge
states at arbitrarily highDM , by deriving these expressions
in a systematic way. First, we list all polynomials of degree
DM of the form

$@~zs~1!2zs~2!!
2~zs~3!2zs~4!!

2
•••#%, ~B19!

where dots denote additional squared differences or sums
that multiply the first two terms. Then we take the space of
expressions that vanish when inserted in the Pfaffian at lower
DM , multiplied with all possible products of symmetric
polynomials that make the degree of the expressionDM . We
expand these in the terms of the form~B19!. Some terms in
the expansion are obviously zero when inserted in the Pfaff-
ian; then the rest must give zero too. Fortunately for low
momenta (DM<7) each wave function of the form~B19! is
zero and that leaves us to prove only that the rest of the wave
functions are nonzero and linearly independent. This can be
done by taking pairwise limitsz1→z2 , etc., of particle coor-
dinates in the Pfaffian alone~i.e., without Laughlin-Jastrow
factor!, whenever these are singular, and examining the lin-
ear independence of the resulting functions of the remaining
variables, that are the residues of these poles.

We will just state that the number of the edge states that
we found atDM58 implies that the four fermion state
( 12,1

1
2,2

1
2,3

1
2) is present in the spectrum. So the numbers

found are those given in the table in Sec. II B.
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We now turn to the HR state. States with any even num-
ber, 2n, of quasiholes are zero-energy states and can serve as
generating functions for edge states. As in the Pfaffian case,
they suggest an overcomplete basis of the states in which
polynomials of the~B3! type are inserted. For more than two
quasiholes, linear dependences arise when more than one
factor like (zi

↑2zj
↓)2 cancels a similar factor in the denomi-

nator; this time, the factors in the denominator are them-
selves squared, and the sum over permutations of the rel-
evant particles gives a determinant, not a Pfaffian, so the
identity that replaces~B6! is simply that

detS 1 1 ••• 1

1 1

•

•

•

1 1 1

D 50. ~B20!

The linear dependencies that we mentioned in the Pfaffian
case with„i↑s( i )↓… pairs instead of@s( i )s( i11)# are then
valid here, except the last one in theDM56 andDM57
cases. Namely, if we insert any of these in the HR state
~2.18!, the sum over permutations will produce zero. There-
fore, the numbers of nontrivial edge states, that is, the states
without symmetric polynomials that we found so far in the
Haldane-Rezayi case are

DM 1 2 3 4 5 6 7

dim 0 1 1 2 2 4 4

All these states are singlets, because they consist of singlet
pairs.

The complete spectrum of edge states of the HR system
should contain also nonzero spin states. At present we have
no quasiholelike generating functions for these, but we can
still obtain the edge states by writing down suitable functions
directly. Each such state is formed when some of spin-singlet
pairs in the ground state are excited into triplet states of zero

energy. The broadest class of edge states made in this way,
with Sz50, has this polynomial in the numerator of the term
with a fixed arrangement of coordinates in pairs:

$@~z1
↑2zs~1!

↓ !n1•••~zN/2
↑ 2zs~N/2!

↓ !nN/2

3~z1
↑1zs~1!

↓ !m1
•••~zN/2

↑ 1zs~N/2!
↓ !mN/2#%, ~B21!

where noni51, and at least one ofni8s is an odd number.
For DM53, we have only$@(zi

↑2zs( i )
↓ )3#%, which corre-

sponds toS51,Sz50, i.e., belongs to the permutation group
representation (2N/22112). Similarly the two remaining
states of the triplet can be constructed. For example, the
Sz521 state is

CSz521~z1
↑ , . . . ,zN/211

↓ !

5 (
sPSN/211

sgns~zs~1!
↓ 2zs~2!

↓ !

3
1

~z1
↑2zs~3!

↓ !2•••~zN/221
↑ 2zs~N/211!

↓ !2

3)
i, j

~zi2zj !
qexpF2 1

4( uzi u2G . ~B22!

Note that these functions are simply related to the general
form of ~2.20!.

Then we proceed counting only linearly independent
states that do not contain symmetric polynomial factors. For
low angular momenta, we get these numbers:

DM 1 2 3 4 5 6

dim 0 0 1 1 2 2

where each state in the table is theSz50 element of a triplet,
S51. The total number of low-lying fermion edge states in
the untwisted sector of the HR state is then as given in the
table in Sec. II C. Finally, we note that the sets of linearly
independent functions obtained here for eachDM can be
rearranged into the general form derived in Appendix A.
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