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We study meron quasiparticle excitations in the �=1 quantum Hall bilayer. Considering the well-known
single meron state, we introduce its effective form, valid in the long-distance limit. That enables us to propose
two �and more� meron states in the same limit. Further, establishing a plasma analogy of the �111� ground state,
we find the impurities that play the role of merons and derive meron charge distributions. Using the introduced
meron constructions in generalized �mixed� ground states and corresponding plasmas for arbitrary distance
between the layers, we calculate the interaction between the construction implied impurities. We also find a
correspondence between the impurity interactions and meron interactions. This suggests a possible explanation
of the deconfinement of the merons recently observed in the experiments.
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I. INTRODUCTION

The �=1 quantum Hall bilayer1 is the subject of intensive
experimental and theoretical investigations.2 In 1995, the
pseudospin theory of the bilayer3 was advanced for this sys-
tem. The theory introduced meron—a new type of quantum
Hall quasiparticle. Nevertheless, even today it is not known
what a construction of a pair of merons looks like.4 Under-
standing of that would bring us closer to the understanding
of increased susceptibility to the presence of disorder of the
neutral superfluid in the pseudospin channel of the bilayer.
Namely, because of the persistent dissipation in the counter-
flow measurments,5,6 there is a widespread belief that even in
the presence of a moderate amount of disorder, merons—
vortices of the superfluid—are liberated, dissociated from
one another.2,7,8 On the other hand, since Laughlin’s seminal
paper,9 the plasma analogy has proven to be a very useful
concept in analyzing quasiparticle state properties.

In this paper we develop a description of the meron exci-
tations of the pseudospin theory in the long-distance limit.
We use the plasma techniques of Ref. 10, and argue that
meron presence introduces a new type of impurity in the
plasma analogy of the so-called �111� ground state. That en-
ables us to easily derive meron charge distributions in the
long-distance limit and infer what the construction of a pair
of merons would look like in the same limit.

We also consider the same constructions in mixed, com-
posite boson–composite fermion, ground states,11 proposed
as a way to capture in the ground state description the effect
of quantum fluctuations and disordering3 at a finite distance,
d, between the layers. Charge screening of the single meron
construction in the plasma analogy of mixed states is almost
without change with respect to the �111� case. But the
strength of the ln�r� interaction in the plasma analogy be-
tween a pair of merons gets reduced, being proportional to
the density of bosons that decreases as a function of d. As
detailed below, because of a formal correspondence between
the interaction laws between merons and the interaction laws
between impurities, this is very suggestive of a mechanism
that �with composite fermion screening; see below� might be

responsible for a confinement weakening. Together with dis-
order the mechanism may lead to the deconfinement believed
to exist in the experiments.2

In Sec. II we discuss the plasma analogy for the �111�
state, including an effective plasma description of the meron
excitations above the same state. In Sec. III we deal with the
plasma description of the mixed states and derive screening
properties and the interaction law of the effective meron con-
structions above the mixed states. Section IV is devoted to
discussion and conclusions.

II. (111) STATE, MERONS, AND THE PLASMA ANALOGY

In the following we will introduce plasma techniques10

for the �111� state. Because of the unusual nature of the
statistical model based on the �111� state implied by the
Laughlin prescription,9 it is not clear whether they are valid
in this case, but we will show that, indeed, they can capture
the leading long-distance behavior. Let us begin with the
most obvious generalization of the Laughlin quasihole con-
struction for the case of the two-component, ↑ and ↓, �111�
state,

��w� = �
i=1

�w − z↑,i��111�z↑,z↓� , �1�

where the �111� state is,

�111�z↑,z↓� = �
i�j

�zi,↑ − zj,↑��
k�l

�zk,↓ − zl,↓��
p,q

�zp,↑ − zq,↓�

�2�

�with omitted Gaussian factors�. To get the charge distribu-
tions at point r away from the center w of the excitation, we
use an effective plasma expansion �see Ref. 10�. As usual in
the plasma approach,9 we consider the exponentiated form of
���w��2, and then expand the resulting exponentials. The en-
suing expansion contains the contributions that are easily
visualized as a type of chain diagrams, such as shown in Fig.
1, connecting the impurity �w=0� to the probing point �r� on
the right-hand side �rhs� Other contributions that do not in-
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clude both points cancel with Gaussian and other factors that
represent the neutralizing background contribution. Also we
do not consider in the long-distance approximation the dia-
grams that are simple multiples of the chain diagrams, be-
cause they can be neglected in the same approximation. Most
importantly, in order to capture in the first approximation the
dominant screening effects, we do not consider any other
type of diagrams but chain. In Fig. 1, in the Fourier space,
the wriggly line is the two-dimensional �2D� Coulomb
plasma interaction, −2� / �q� �2; the vertices are the empty
circle of the value of the total density n; and the circle with
up arrow denotes the density n↑ of the up particles. We probe
the ↑ charge density at r �on the rhs in the diagrams of Fig.
1�; otherwise, if we probe ↓ density, the corresponding sum
does not have the first contribution in Fig. 1. Therefore, to
get the ↑ and ↓ charge distributions, we have to Fourier trans-
form ��d2q�eiq��w� −r���¯�� the following expressions in which
V�q��=−2� / �q� �2,

�↑�q� = V�q� +
V�q�n↑V�q�
1 − nV�q�

, �3�

and

�↓�q� =
V�q�n↑V�q�
1 − nV�q�

, �4�

for ↑ and ↓ charge, respectively. We immediately see that the
total charge is screened,

�c�q� � �↑ + �↓ =
V�q�

1 − nV�q�
, �5�

and limq→0 �c�q�=Const, like in the usual Laughlin quasi-
hole case, but the pseudospin charge �s�q���↑−�↓=V�q� is
unscreened, growing as ln�r� �if w=0� with distance r.
Therefore, the capacitive energy defined as

Ec =	 d2r���↑ − �↓�2, �6�

which is in the first approximation proportional to the energy
to excite the quasihole, is proportional to �up to logarithmic
factors� the area of the system. This is the conclusion of the
numerical study in Ref. 4. Therefore, the plasma analogy is
able to reproduce the main result of the detailed
investigation4 �which helps us to eliminate from further con-
sideration the constructions of the form in Eq. �1� as relevant
excitations for the bilayer�. The agreement does not come as
a surprise if we analyze more closely the diagrams in Fig. 1.
In them we are justifiably using the screening properties of
the charge channel, which behaves as a plasma. Because of

this, from now on, we will refer to the statistical model based
on the �111� state as plasma.

In the second quantization formalism the meron excitation
of the pseudospin theory3 that parallels the construction in
Eq. �1� is

��m�w = 0�
 = �
m=0

N−1

�cm+1,↑
† + cm,↓

† ��0
 . �7�

cm,�
† ’s create the lowest Landau level �LLL� states, �m

= �zm /�2�2mm!� exp�− 1
4 �z�2 ,m=0, . . . ,N−1 �N is the num-

ber of particles in the system�. In the first quantization de-
scription of Eq. �7�, ↑ orbitals are shifted �in the expansion of
the Slater determinant of a filled LLL� in the following man-
ner:

�m�z↑� →
z↑

�2�m + 1�
�m�z↑� . �8�

This is a nontrivial change and cannot be described by a
simple multiplication operation on the ground state, such
as in Eq. �1�. When �z↑�→�, more precisely when m
=N−1→� �i.e., m is the last orbital in the ground state�,
��m�z↑��2 behaves, in the first approximation, like a delta
function, at �z↑�=�2�m+1� and, in this sense, we can ap-
proximately take for multiplying z↑ in Eq. �8�, z↑
=exp�i	�2�m+1�. If we extend the ansatz to lower angular
momentum orbitals, except those very near the origin, the
excitation looks like

�
i=1

N �exp�i	i
1

��111�z↑,z↓� �9�

in the first quantization.3 To get a change in the charge dis-
tribution away from the origin we need further corrections to
the limit in Eq. �9�. Again we are concerned with an approxi-
mation for the last orbital, m=N−1, in the ground state. We
do this by looking for the density distribution of the state in
Eq. �7� in the first quantization �which is accompanied by the
multiplication described in Eq. �8�� in which we have
to approximate �z↑�2��m�z↑��2, m=N−1. The appropriate
�long distance� range of �z↑�, for which a simple analytical
approximation is expected, is beyond the delta-function
peak, from �2�m+1�, to infinity. If we assume that in this
range the correction is of the following form, �z↑�2=2�m+1�

�1+C / �z↑��, we find C by solving the following equation,
with m=N−1,

	
�2�m+1�

�

drr�z�2��m�z��2

= 2�m + 1�	
�2�m+1�

�

drr��m�z��2 + 2�m + 1�C


	
�2�m+1�

�

dr
r��m�z��2

r
. �10�

In the limit m→� we get C=0.8, as can be seen in Fig. 2. So
R=�2�m+1�=�2N is a characteristic shortest length for this
long-range approximation, and as corrections die out as

FIG. 1. Diagrammatic summation leading to the ↑ charge distri-
bution away from an impurity.
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�z↑�→� we in fact probe the physics at �and a little beyond�
that length, which is a measure of the radius of the system
that also grows in the thermodynamic limit. As a result we
capture the longest distance physics. Therefore, in this ap-
proximation, in the approach with fixed up and down number
of particles, the ↑ charge density of the excitation in Eq. �7�
can be extracted from the following integral, with �z↑1��r:

�w=0�r� � 	 d2z↑2 ¯	 d2z↓N exp��
i

C

�zi↑�
���111�z↑,z↓��2,

�11�

and analogously for the ↓ charge density. We take that each
integration has a short-distance cutoff �to avoid the singular-
ity at the center�, we have the right longest distance behavior
�we simply exponentiated the 1/ �z↑� correction so that a
plasma analogy can be developed9�, but otherwise, the rest of
behavior at intermediate distances ��z��1� we model as a
simple continuation of the longest distance one. This choice
will not influence our final conclusions because they �the
density tails we want to get� depend only on the longest
distance behavior in the plasma approach we take. In this
way, in the �111� plasma, we consider a new type of impurity
which connects via the interaction C / ��zi↑�� to the ↑ particles
of the plasma. In this sense we can propose the following
long-distance form of the meron excitation at some point w
�0 in general,

�
i

zi↑ − w

�zi↑ − w�
exp�� C

2�zi↑ − w�� · �111�z↑,z↓� . �12�

This construction can be easily generalized to the cases when
there are more than one meron �of both vorticities�.

To obtain the charge distributions �↑ and ↓� far away from
the center of the excitation, we use the same type of the
approximation introduced in the beginning, considering Eq.
�11�. We get the changes in the charge distributions from the

ground state values �n↑ and n↓� at some distance r from the
center w=0 of the excitation, by Fourier transforming
��d2q�e−iq�r��¯�� the following expressions:

�↑�q� = Vm�q� +
Vm�q�n↑V�q�

1 − nV�q�
, �13�

and

�↓�q� =
Vm�q�n↑V�q�

1 − nV�q�
, �14�

where Vm�q��1/q represents the Fourier transform of the
C /r interaction. With respect to the case of the excitation in
Eq. �1�, we changed the way impurity connects to the plasma
by switching from V�q��1/q2 to Vm�q��1/q. In this way
�↑�q�� 1

2Vm�q� and �↓�q��− 1
2Vm�q� in the q→0 limit and

for n↑=n↓, resulting in Ec� ln R, where R is the radius of the
system, for the energy to excite a meron, in agreement with
the XY model considerations and pseudospin theory.3

By considering the new impurities in the �111� plasma and
applying the plasma techniques, we can prove the usual XY
model logarithmic interactions between them �in the
plasma�, which is a result without an obvious connection
with the physics and the XY model of the bilayer. By con-
sidering also a pair of the old impurities �that follow from the
construction in Eq. �1��, with same charge and opposite vor-
ticity, we can find that their interaction energy in the plasma
grows quadratically as a function of distance. It was found in
Ref. 4, in numerics, that their real �capacitive� interaction
energy behaves in the same way. Therefore the correspond-
ing plasma have impurities with identical interaction energy
laws, up to the value of couplings, to the interaction laws
among corresponding quasiparticles in the quantum Hall sys-
tem.

III. THE MIXED STATES, MERON EXCITATIONS,
AND THE PLASMA ANALOGY

The mixed states proposed as the ground states11 at finite
�not small� d as mixtures of composite bosons of the �111�
state and composite fermions of the nearby phase of two
decoupled Fermi-liquidlike states can be expressed as

�o = PA��
i�j

�zi↑ − zj↑��
k�l

�zk↓ − zl↓��
p,q

�zp↑ − zq↓�� f
↑�w↑,w̄↑�


�
i�j

�wi↑ − wj↑�2� f
↓�w↓,w̄↓��

k�l

�wk↓ − wl↓�2


�
i,j

�zi↑ − wj↑��
k,l

�zk↑ − wl↓�


�
p,q

�zi↓ − wq↑��
m,n

�zm↓ − wn↓�� . �15�

z’s and w’s denote bosons and fermions respectively, � f
� ,�

= ↑ ,↓ are two filled-Fermi-sea wave functions, P is the pro-
jection to LLL, and A is the antisymmetrizer for bosons and
fermions in each layer separately. The portion of composite
fermions increases as d increases. Extracting the number of
flux quanta—the number of particles relations from Eq.

FIG. 2. Dependence of C �Eq. �10�� on m=N−1 �the first value
at m=1�.
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�15�—we can find that the number of up and down compos-
ite fermions must be the same. We have the number of flux
quanta, N�, is related to the number of ↑ and ↓ bosons and
fermions, Nb↑, Nb↓, Nf↑, and Nf↓, respectively, as

N� = Nb↑ + Nb↓ + Nf↑ + Nf↓,

=2Nf↑ + Nb↑ + Nb↓,

=2Nf↓ + Nb↑ + Nb↓, �16�

leading to this conclusion. The mixed states are very close to
the exact diagonalization ground states. In the following we
will apply on them the weakly screening plasma approach,10

which, again, in the long-distance approximation, was able to
reproduce the basic physics of the Fermi-liquidlike compos-
ite fermion states. Because of the presence of � f’s, any ver-
tex representing a connection through composite fermions is
effectively the static structure factor of free Fermi gas, i.e.,
s��q��q in the small momentum limit. Because Nf↑=Nf↓ in
the mixed states, we also have s↑=s↓.

The expectation that the meron construction in Eq. �12�
on �111 when applied to the mixed state �Eq. �15�� comes
with confinement properties similar to the ones in the �111�
case can be corroborated by a calculation of the plasma in-
teraction among the meron pair of opposite vorticity but the
same charge in a mixed state. In the calculation we neglected
the antisymmetrizer in �o. We state the final result,

Vint�q� =
Vm

2 �q�V�q��n↑n↓ + n↑s↑�q� + n↓s↓�q��
1 − V�q��n + 2s�q��

+
Vm

2 �q�s2�q�
1 − V2�q��2s�q��2


�nV2�q� +
n2 + n�2s↑�q� + 2s↓�q��

1 − V�q��n + 2s�q��
V3�q�� ,

�17�

where s↑�q�=s↓�q�=s�q� and n↑ , n↓, and n=n↑+n↓ denote
bosonic densities. This can be obtained straightforwardly
with the help of diagrams, and the derivation can be found in
Appendix A. In the q→0 limit we have,

Vint�q� → �− �Vm
2 n↑n↓

n
+ �2

n↑n↓
n2 −

1

2
�Vm

2 �q�s�q� , �18�

i.e., the leading term is the attractive ln�r� interaction, and
the correction is a 1/r interaction due to the screening by
composite fermions that vanishes in the n↑=n↓ case.12 This is
a result in the formal setting of plasma analogy, but very
likely, due to the mentioned correspondence, also a relevant
conclusion for the interaction between two merons in the
quantum Hall system. Please note again that n↑ , n↓, and n
are not overall densities but reduced, due to the presence of
fermions, bosonic densities. Therefore, though the type of
interaction �ln�r�� stays the same, the coupling strength is
weaker due to its proportionality to the density of bosons.

Certainly, it is appropriate to check the amounts of the
screening charges of a single meron construction in a mixed
state that is the generalization of the construction in Eq. �12�.

Again with the help of diagrams, they can be easily found,
and we will just state their limiting, q→0, behavior,

�↑�q� →
Vm�q�

2
+

n↑ − n↓

n
Vm�q� , �19�

and

�↓�q� →
Vm�q�

2
+

− 2n↓

n
Vm�q� . �20�

The complete expressions can be found in Appendix B.
Therefore, in the n↑=n↓ case, the limits do not differ from the
case without composite fermions, and we can conclude that
the meron constructions in Eq. �12� applied to �111, when
applied to the mixed state �Eq. �15�� retain their confinement
property.

IV. DISCUSSION AND CONCLUSIONS

In conclusion we derived, using the plasma analogy, an
effective, long-distance form of the meron excitation. That
enabled us to describe the interaction law between merons
for arbitrary distance between layers based on the mixed
state description. From Eq. �17�, the interaction law in the
plasma setting, and using the expected correspondence be-
tween the laws in the plasma and real system, we can con-
clude, adopting the XY model description of the real system,
that the pseudospin stiffness is propotional to the density of
composite bosons. Further numerical work on the mixed
state wave function13 reveals a drastic decrease of the density
of composite bosons; therefore, the pseudospin stiffness de-
crease with distance, especially in the experimentally avail-
able region. Thus we point out this microscopic reason, the
one in the very nature of the interacting system, that together
with disorder may lead to the anomalous behavior �“nonideal
superfluidity”�, and the presence and increased fraction of
composite fermions in the mixed states in the experimental
region.

The dependence of the spin stiffness on the imbalance
between the layers �n↑−n↓� that we can infer from Eq. �17� is
consistent with existent theories of the imbalanced case �see,
for example, Ref. 14�, and supports our previous identifica-
tion. An interesting conclusion can be drawn in that case
considering Eq. �17�. If the correspondence holds, the attrac-
tive interaction between merons becomes weaker in that case
and the system, in the presence of disorder, is more prone to

FIG. 3. Three types of connecting vertices.
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the meron deconfinement. The observed nonlinear depen-
dence on the imbalance of the longitudinal resistances, in
Refs. 15, may follow from the dependence encoded in Eq.
�17�, as an effect that modifies the basic �linear� behavior
caused by disorder and interactions.
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APPENDIX A

To calculate the interaction between merons of opposite
vorticity, we sum chain diagrams with both bosonic and fer-
mionic vertices and contributions. The sum has two distinct
parts: one when the connecting vertices are �n↑ ,n↓�, �s↑ ,n↓�,
and �n↑ ,s↓�, the first contributions are depicted in Fig. 3; and
the other when they are �s↑ ,s↓�, the first contribution is de-
picted in Fig. 4. The double wriggly line denotes the Vm�q�
interaction, vertices ↑ and ↓ with a letter f �for fermionic�
denote s↑ and s↓ �fermionic static structure factors�, respec-
tively, the rest of vertices denote ↑ and ↓ bosonic densities,
and the vertex with an empty circle denotes the ↑ and ↓
bosonic contributions combined. The screening is obtained
summing the geometric series with the increasing powers of
n↑+n↓+2s where s↑=s↓=s. It is important to notice that be-
cause s↑=s↓=s the summation is possible in the form of the
geometric series for this part. We depicted in Fig. 5 the first
nontrivial diagram contribution for �s↑ ,n↓�, connecting verti-
ces, which implies n↑+n↓+2s↑ contribution, note the dou-
bling of the fermionic contribution because of a direct fermi-
onic ↑↑ coupling, and it is easy to see that for �n↑ ,n↓� this is
n↑+n↓+s↑+s↓ �Fig. 6�. Due to the equivalence s↑=s↓ and
considering the chain diagrams with arbitrary number of ver-
tices, we come to the total contribution from this part �using
the geometric series ansatz�,

Vm
2 �q�V�q��n↑n↓ + n↑s↑�q� + n↓s↓�q��

1 − V�q��n + 2s�q��
. �A1�

The second part when the connecting vertices are �s↑ ,s↓� is
more involved. The first diagrams for this part are depicted

in Fig. 7. It is easy to recognize the existence of the screen-
ing structure where the second, third, and fourth diagrams
are followed by the series and the type of screening we al-
ready had in the first part. This contributes

Vm
2 �q�s2�q��nV2�q� +

n2 + n�2s↑�q� + 2s↓�q��
1 − V�q��n + 2s�q��

V3�q�� ,

�A2�

but we must also recognize the intervening, additional dia-
grams of the type depicted in Fig. 8, which brings us to the
situation similar to the beginning diagram in Fig. 7, and re-
quires the same type of resummation. The total contribution
of these additional diagrams can be put in the form of a
geometric series, and therefore, in the end, the total contri-
bution from this part is

Vm
2 �q�s2�q�

1 − V2�q��2s�q��2�nV2�q� +
n2 + n�2s↑�q� + 2s↓�q��

1 − V�q��n + 2s�q��
V3�q�� .

�A3�

This combined with Eq. �A1� leads to the expression in Eq.
�17�.

APPENDIX B

The screening charges, �↑�q� and �↓�q�, of a single meron
construction in a mixed state can be found by regrouping of
diagrams in a manner very similar to the one we already
explained in Appendix A. Therefore we will just state com-
plete, final results,

FIG. 4. The fermionic connecting vertices.

FIG. 5. The first contributions to mixed �bosonic and fermionic�
connecting vertices.

FIG. 6. The first contributions to only bosonic connecting
vertices.

FIG. 7. The first diagrams for fermionic connecting vertices.
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�↑ =
Vm�q��2n↑ + s↑�V�q�
1 − V�q��n + 2s�q��

+ Vm�q� +
Vm�q�

1 − 2s↑V�q�
+ � f ,

�B1�

and

�↓ =
Vm�q��2n↑ + s↑�V�q�
1 − V�q��n + 2s�q��

+ � f , �B2�

where

� f =
Vm�q�s�q�

1 − V2�q��2s�q��2


�nV2�q� +
n2 + n�2s↑�q� + 2s↓�q��

1 − V�q��n + 2s�q��
V3�q�� . �B3�
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