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We develop a nonperturbative approach to the quantum Hall bilayer �QHB� at �=1 using trial wave func-
tions. We predict phases of the QHB for arbitrary distance d and, our approach, in a dual picture, naturally
introduces a new kind of quasiparticles—neutral fermions. Neutral fermion is a composite of two merons of the
same vorticity and opposite charge. For small d �i.e., in the superfluid phase�, neutral fermions appear as
dipoles. At larger d dipoles dissociate into the phase of the two decoupled Fermi-liquid-like states. This
scenario is relevant for the experimental situation where impurities lock charged merons. In a translation
invariant �clean� system, continuous creation and annihilation of meron-antimeron pairs evolves the QHB
toward a paired phase. The quantum fluctuations fix the form of the pairing function to g�z�=1 /z�. A part of the
description of the paired phase is the two-dimensional superconductor i.e., BF Chern-Simons theory. The
paired phase is not very distinct from the superfluid phase.
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I. INTRODUCTION

The quantum Hall bilayer at �=1 consists of two layers of
two-dimensional �2D� electron gases that are brought close
to one another in the quantum Hall regime of strong mag-
netic fields. When the distance between the layers is much
smaller than the average distance between electrons inside
each layer, inter- and intra-Coulomb interactions are about
the same. Then the expected �=1 state is the state of a single
layer filled lowest Landau level �LLL� generalized to two
species. There is obvious degeneracy in dividing electrons
into two groups which leads to the phenomenon of sponta-
neous symmetry breaking1 and the existence of a Goldstone
mode.2 The expected superfluid behavior was verified also
by very large zero-bias voltage peak in tunneling
conductance,3 but no clear evidence was found for finite tem-
perature Berezinskii-Kosterlitz-Thouless �BKT� transition4

in transport experiments.5

Therefore there is a need to systematically address the
question of superfluid disordering in the quantum Hall bi-
layer �QHB�. In particular there is a need to understand the
role of quantum disordering in this system that becomes im-
portant as the distance between the layers is increased. In
most of the previous work the starting point for the discus-
sion of the physics of the bilayer was the ground state �GS�
for very small distance between the layers as a mean-field
solution to which none or some corrections were
developed.4,6 We will take a nonperturbative approach in-
spired by the Laughlin solution of the �=1 /3 problem in
which we will uniquely determine possible wave functions
�WFs� for the GSs of the bilayer at an arbitrary distance.

There are two basic paradigms of superfluid disordering
that are known: �1� BKT �2D XY model� for which the tran-
sition proceeds via unbinding of dipoles of vortex-antivortex
pairs, and �2� � transition type �three-dimensional �3D� XY
model� for which the transition is characterized by a conden-
sation of vortex-antivortex loops.7

On the other hand, in this paper, through an analysis of
the allowed possibilities for homogeneous WFs as the dis-

tance is varied, we will identify two families of WFs and
relate them to the two ways of disordering the QHB super-
fluid mentioned previously. The families will be introduced
in Sec. II.

One family, as it will turn out does not include elementary
vortices—merons of QHB, in its description of superfluid
disordering. Merons are part of the description of the QHB
superfluid for small distances as is well known and well es-
tablished in Ref. 4. Therefore this family of �homogeneous�
WFs can be relevant only for dirty systems—systems with
impurities, which can lock merons due to merons being
charged quasiparticles. Then the only vortices that may par-
ticipate in superfluid disordering and on which description of
this family of WFs is based are neutral composites of two
merons of opposite charges—neutral vortices, and as we will
find fermionic quasiparticles that carry only layer degree of
freedom. We will show that the superfluid disordering of this
family can be understood through a Coulomb �fermionic�
plasma picture of dipoles of these neutral fermions. There-
fore this family we can consider as the one that exemplifies
the BKT way of superfluid disordering, our first paradigm.
This whole picture will be corroborated by the fact that the
WFs of this family do not incorporate quantum fluctuations
�Sec. IV� and, therefore, do not incorporate quantum disor-
dering that is based on merons. The family from the view-
point of a dual description �i.e., in terms of quasiparticles—
neutral fermions� will be analyzed in Sec. III.

The other family incorporates weak pairing among neutral
fermions and, as we will show, by assuming a special kind of
pairing agrees and correlates with the description of quantum
fluctuations of the usual superfluid disordering in a transla-
tory invariant system that one finds in other approaches
�field-theoretical�. It is expected that this kind of disordering
and pairing would lead to a charge-density wave �CDW�
solution.8 Still our general considerations open possibilities
for other kinds of weak pairing that can be present in this
quantum Hall system. The most likely candidate is the one
with pairing function g�z�� 1

z� that results in nontrivial cor-
rections �from quantum fluctuations and disordering� to the
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ground-state wave function as the distance is varied. In gen-
eral we expect that a weak pairing scenario will correspond
to the superfluid disordering of the usual superfluid in 2+1
dimension and therefore to the class of 3D XY, our second
paradigm. The family with weak pairing ansatz will be ana-
lyzed in Sec. IV.

With respect to the experiments, where impurities are nec-
essarily present and we can expect also inhomogeneous
ground-state solutions, our homogeneous candidates of the
first family �without neutral fermion weak pairing� are still
possible solutions for which transitions may proceed via dis-
sociation of dipoles—pairs of opposite vorticity neutral fer-
mions. In this sense and as will be more clear later, the
quantum phase transitions with respect to changing the dis-
tance in Refs. 9–11 correspond to this dissociation. On the
other hand, an analysis will show that in a translatory invari-
ant system meron excitations via their loop condensation
may produce an intercorrelated paired liquid state for the
neutral sector, if a transition to a CDW does not occur.

II. UNIVERSALITY CLASSES OF GROUND STATES

A. Introduction

A great deal is known from the experimental and theoret-
ical point of view of the QHB in the two extremes when the
distance between layers, d, is �1� much smaller or �2� much
larger than the magnetic length, lB= �� /eB�1/2, where B is the
magnetic field, the characteristic distance between the elec-
trons inside any of the layers. When d� lB, i.e., inter and
intra Coulomb interactions are about the same, the good
starting point and description is so-called �111� state,12

�111�z↑,z↓� = �
i�j

�zi↑ − zj↑��
k�l

�zk↓ − zl↓��
p,q

�zp↑ − zq↓� ,

�1�

where zi↑ and zi↓ are two-dimensional complex coordinates
of electrons in upper and lower layer, respectively, and we
omitted the Gaussian factors. This is suggestive of the exci-
ton binding;13 any electron coordinate is also zero of the WF
for any other electron coordinate—the correlation hole is just
opposite to electron. This exciton description can be a view-
point of the phenomenon of superfluidity found in these
systems2,3 and is closely connected to the concept of com-
posite bosons �CBs� �Ref. 14� that can be used as natural
quantum Hall quasiparticles in this system. When d� lB we
have the case of the decoupled layers and the GS is a product
of single-layer filling factor 1/2 WFs; each describes a
Fermi-liquid-like state,15

�1/2�w� = P�Fs�w,w̄��
i�j

�wi↑ − wj↑�2� , �2�

where Fs is the Slater determinant of free waves of nonin-
teracting particles in zero magnetic field and P represents
projection to LLL. Underlying quasiparticles are composite
fermions �CFs�, the usual quasiparticles of the single layer
quantum Hall physics.

B. Two families—universality classes of wave functions

To answer the question of intermediate distances we may
try to, classically speaking, divide electrons into two groups,
one in which electrons correlate as CBs and the other as
CFs.16 The ratio between the numbers of CBs and CFs would
be determined by the distance between layers. The WF con-
structed in this way would need an overall antisymmetriza-
tion in the end, but also intercorrelations among the groups
as each electron of the system sees the same number of flux
quanta through the system �equal to the number of elec-
trons�. This requires that the highest power of any electron
coordinate is the same as the number of electrons in the
thermodynamic limit. If we denote by a line the Laughlin-
Jastrow factor �A,B�zA−zB� between two groups of electrons,
A and B �A ,B=CB ,CF�, the possibilities for the QHB
GSWFs can be summarized as in Fig. 1.

If we ignore the possibility of pairing between CFs �Ref.
17� denoted by wriggly lines in Figs. 1�c� and 1�d� we have
two basic families of the GSWFs depicted in Figs. 1�a� and
1�b�. The requirement that each electron sees the same num-
ber of flux quanta through the system equal to the number of
electrons �we are at �=1� very much reduces the number of
possible states—wave functions in the mixed CB-CF ap-
proach. We can consider, for example, the possibility �a�
depicted in Fig. 1 which stands for the following wave func-
tion in the LLL:

�1 = PA↑A↓��
i�j

�zi↑ − zj↑��
k�l

�zk↓ − zl↓��
p,q

�zp↑ − zq↓�

� Fs�w↑,w̄↑��
i�j

�wi↑ − wj↑�2

�Fs�w↓,w̄↓��
k�l

�wk↓ − wl↓�2

��
i,j

�zi↑ − wj↑��
k,l

�zk↑ − wl↓�

��
p,q

�zp,↓ − wq,↑��
m,n

�zm↓ − wn↓�� , �3�

FIG. 1. Universality classes of wave functions.
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where A↑ and A↓ denote the overall antisymmetrizations. In
the thermodynamic limit, the relation between the number of
particles and flux quanta reads

N	
b = Nb↑ + Nb↓ + Nf↑ + Nf↓,

N	
f↑ = 2Nf↑ + Nb↑ + Nb↓,

N	
f↓ = 2Nf↓ + Nb↑ + Nb↓, �4�

where we denoted by N	
b and N	

f
 separately the number of
flux quanta that electrons that correlate as CBs and CFs see,
respectively, and Nb
 and Nf
 are the number of CBs and
CFs inside the layer 
, respectively �
= ↑ ,↓ is the layer
index�. The requirement constrains N	=N	

b =N	
f
, where N	

is the number of flux quanta through the system. �This leads
to the additional requirement Nf↑=Nf↓ which leaves Nb↑
−Nb↓ unconstrained, connected with the Bose condensation
phenomenon that the wave function should be part of.4,13,18�

The only additional way to count the flux quanta that
electrons see, with the �symmetric under ↑↔↓ reversal� ap-
plication of the Jastrow-Laughlin factors that we need to
have, is

N	
b↑ = Nb↑ + Nb↓ + 2Nf↑,

N	
b↓ = Nb↑ + Nb↓ + 2Nf↓,

N	
f↑ = 2Nf↑ + 2Nb↑,

N	
f↓ = 2Nf↓ + 2Nb↓, �5�

which leads to the possibility �b� �with constraints Nb↑=Nb↓
and Nf↑=Nf↓�. The intercorrelations in the first family in Fig.
1�a� are in the spirit of �111 correlations, and those in the
second family in Fig. 1�b� are in the spirit of the decoupled
state, �1/2��1/2, where we correlate exclusively inside each
layer.

C. Discussion

We can imagine a mixture of both intercorrelations �of
Fig. 1�a� and Fig. 1�b�� in a single wave function but these
mixed states, by their basic response,18 fall into one of the
universality classes depicted in Fig. 1. In Ref. 18 explicitly
such a mixture and possibility under name “generalized vor-
tex metal” was considered, in the scope of a Chern-Simons
�CS� theory, and it was proved that it does not support a
Goldstone �gapless� mode which was found to exist for the
state depicted in Fig. 1�a�. These generalized states belong to
the universality class of the state depicted in Fig. 1�b� for
which in the scope of the same theory we find in the low-
energy spectrum only a gapped collective mode.18

The Chern-Simons theory we mentioned neglects the
overall antisymmetrization built in the classes of Fig. 1. We
can justify this neglect �1� by taking a point of view that
stems from similar situations with quantum Hall states like
hierarchy and Jain’s constructions that in the low-energy sec-
tor can be considered as multicomponent systems19 �we will
argue later that the state of Eq. �3� can be mapped to a

hierarchy construction�, or �2� a posteriori because the re-
sults of the effective description of the classes in Fig. 1 are
quite sensible and are expected for the states we are familiar
with from numerics �the state in our Fig. 1�a� as analyzed in
Ref. 16�. �We do not ask this type of theory for detailed
answers anyway.� In this way it was found by us �Refs. 18
and 20�, examining the basic response in the pseudospin
channel in the random-phase approximation �RPA� of these
Chern-Simons theories that the states in Figs. 1�a� and 1�c�
represent superfluids, and the states in Figs. 1�b� and 1�d�
represent disordered superfluids, compressible and incom-
pressible, respectively. �Later, in a more complete study, we
will find that the states of Fig. 1�d� are also compressible in
the neutral channel.�

The two basic possibilities of connecting two extremes as
depicted in Fig. 1, i.e., without and with pairing of CFs, must
correspond to the two possible ways or paradigms that we
know of disordering a superfluid. We will substantiate this
claim further by examining the two superfluid constructions
�Figs. 1�a� and 1�c�� in more detail.

III. NEUTRAL FERMIONS AND BKT DISORDERING

A. Dual picture of the first family of wave functions with
neutral fermions

Let us write out the unprojected in the LLL version of the
construction in Fig. 1�a� �Eq. �3�� in the following way:

�1 = A↑A↓��111�z↑,z↓��1/2�w↑��1/2�w↓�

��
i,j

�zi↑ − wj↑��
k,l

�zk↑ − wl↓�

��
p,q

�zi↓ − wq↑��
m,n

�zm↓ − wn↓�� , �6�

where, as before, z
’s and w
’s denote coordinates of elec-
trons belonging to the layer with index 
 and A↑ and A↓, as
before, stand for the antisymmetrizations. Using S↑ and S↓
symmetrizers inside each layer, the same function, �1, can
be written as

�1 = S↑S↓��k�l
�wk↑ − wl↑��p�q

�wp↓ − wq↓�

�i,j
�wi↑ − wj↓�

�Fs�w↑�Fs�w↓���111, �7�

where �111 denotes the Vandermonde determinant �Slater
determinant in the LLL� of all coordinates in which all
groups equally participate.

By using the expressions for the densities of electrons in
each layer, �
���=	i


2��−zi

�, here now z
’s denote all

electrons of the layer 
, we can rewrite the wave function in
the following way:
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�1 =
 d2�1↑¯
 d2�n↓

�
�k�l

��k↑ − �l↑��p�q
��p↓ − �q↓�

�i,j
��i↑ − � j↓�

Fs��↑�

�Fs��↓��↑��1↑� ¯ �↓��n↓��111�z↑,z↓� , �8�

where n is the total number of electrons that correlate as CFs.
The equality is exact; any time we have in the product of �’s
the same layer electron coordinate more than once, the
Laughlin-Jastrow factors of �’s in the same layer force the
wave function to become zero. The expression in Eq. �8�
reminds us of a dual picture in terms of some quasiparticles
with � coordinates as in Ref. 21. Certainly we are not de-
scribing the incompressible physics of a Laughlin state
where quasihole operators of coherent states span the basis
of low-energy physics and allow the description in terms of
wave functions of quasiholes �dual picture�.21 Nevertheless
we will argue that we can delineate a sector �find a subspace�
to which constructions �Eq. �8� where n is arbitrary� belong,
which is spanned by a quasiparticle basis of some neutral
fermionic quasiparticles.

To find those quasiparticles we will rewrite Eq. �8� as

�1 =
 d2�1↑¯
 d2�n↓

�
�k�l

��k↑ − �l↑��p�q
��p↓ − �q↓�

�i,j
��i↑ − � j↓�

Fs��↑�Fs��↓�

��exp�i	��1↑ ¯ �n↓�
�↑��1↑� ¯ �↓��n↓��111�z↑,z↓�
 ,

�9�

where exp�i	���
 factor denotes the phase part of the
Laughlin-Jastrow factors in front of the Fermi seas in Eq.
�8�. With respect to Eq. �8� we are allowed to take for defi-
niteness that the phase factor always vanishes when any of
two �’s �or more� from the same layer coincide.

Our first question may be why states as

�↑��1↑� ¯ �↓��n↓��111 � �b��1↑, . . . ,�n↓� �10�

would not make a bosonic basis. We look for the following
overlap:


 dz1↑¯
 dzN↓�b��1↑� , . . . ,�n↓� ��b��1↑, . . . ,�n↓� .

�11�

In the expansion of the density sums we may get


2��1� − z1
↑�
2��2� − z1

↑�
2��1 − z1
↑�
2��2 − z2

↑� ¯ , �12�

which would lead to the following contribution after z inte-
gration:


2��1� − �2��

2��1 − �1����1 − �2�2exp�−

1

2
���1�2 + ��2�2��

�
1

��1 − �2�2
exp�1

2
���1�2 + ��2�2��¯ . �13�

The last term, before the dots, comes after the integration
over z’s that do not participate in the delta functions. As
usual21 the term is the result of the screening of plasma
which we find in the plasma analogy of �111 state in its
charge channel. The term exactly cancels the preceding one
�it is equal to its inverse� and the same cancellation will
happen for any pair of �’s �in the place of . . .� that in remain-
ing z integration have the role of impurities �of charge one�
in the plasma of remaining z’s. This is very good because of
our goal to find basis states and leaves us to consider only
delta functions in the contribution. But we can see immedi-
ately in Eq. �13� that 
��1�−�2�� spoils our goal that the states
mimic a Fock basis of bosonic particles. Therefore as candi-
dates for basis states we should consider fermionic states,

��1↑ ¯ �n↓� =
1

�n ! �N

n
� exp�i	��1↑ ¯ �n↓�


� �↑��1↑� ¯ �↓��n↓���111� �14�

for which we cannot get contributions of the type in Eq. �13�
because the phase part does not allow two �or more� quasi-
particles to coincide. �Eq. �14� represents a fermionic state
for � quasiparticles because of the phase part introduced in
Eq. �9� which is antisymmetric under the exchange of �’s.�
Therefore we should consider fermionic states in Eq. �14�
because of the previously found nondesirable terms in the
bosonic case �we are looking for quasiparticles and their ba-
sis states that would have features of the Fock space basis�:
the terms like the one with 
��1�−�2�� in Eq. �13� lead to the
absence of orthogonality of these states, which we would
like to represent coordinate basis states in the bosonic case
and that can be mended by taking fermions—then these
terms are absent. By a similar analysis which lead to Eq.
�13�, considering various possibilities for delta function con-
tributions of density operators we can find that the leading
most singular and coherent behavior of the states defined in
Eq. �14� is

��1↑� ,�2↑� ¯ �n↓� ��1↑,�2↑ ¯ �n↓� → 
2��1↑� − �1↑�

�
2��2↑� − �2↑� ¯ 
2��n↓� − �n↓� − 
2��1↑� − �2↑�

�
2��2↑� − �1↑� ¯ 
2��n↓� − �n↓� + ¯ . �15�

The rest of contribution constitute incoherent phase factors
with fewer number ��n� of delta functions but of the same
kind as in the leading behavior. We cannot prove that the
states make exactly a Fock space of neutral fermionic quasi-
particles, i.e., we do not have an exact equality in Eq. �15�,
but they stand fairly close to that status. In other words we
do not have the exact equality in Eq. �15�, i.e., equality to
delta functions only �appropriately antisymmetrized�, but we
have in addition some finite contributions which cannot
change the fact that the overlap is singular—at its maximum
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when ��’s and �’s coincide. Therefore quasiparticles are not
pointlike fermionic quasiparticles �one certainly cannot ex-
pect that from quasiparticles in a strongly correlated system�;
they are extended, but clearly the overlap has the singular
contribution of antisymmetrized delta functions which points
out that we are fairly �to a good extent� close to the fermionic
Fock basis description. Even in the Laughlin case we cannot
prove the exact LLL delta function overlaps of coherent
states of quasiholes. The quasiparticles are neutral because in
the construction of the states there is no net magnetic flux
through the system. See Eq. �14� and the definition of the
phase factor in Eq. �9� with Eq. �8�.

Now that we know basis states just by looking at Eq. �9�
we can read out the GSWF in the dual picture in terms of
neutral fermions,

�dual��� =
�k�l

��k↑ − �l↑��p�q
��p↓ − �q↓�

�i,j
��i↑ − � j↓�

Fs��↑�Fs��↓� .

�16�

This is a wave function of a 2D Coulomb fermionic plasma.
In the literature 2D Coulomb fermionic plasma with same
charge particles is fairly known and explored.22,23 It is a dy-
namical system of fermionic particles in 2D that interact with
the long-range ��−ln�r
� interaction. As shown in Ref. 22
the Jastrow factor of the type �i�j�zi−zj�� �� proportional to
the interaction coupling constant�, together with multiplying
Slater determinant of free waves, describes the ground-state
function in the long-distance limit. In our case we have a
generalization of such a system to the one with opposite
charges. Assuming that the concentration of particles is not
large, which is the case of interest to us, we then expect the
dipole configurations of particles that the wave function in
Eq. �16� describes.

B. Discussion

Merons are true elementary vorticity quasiparticles of the
translatory invariant QHB system at least for small distances
between layers as shown in Ref. 4 and carry both charge and
vorticity. Therefore the neutral fermion basis that we de-
scribed can be a complete basis for the ground-state evolu-
tion of the QHB in the nontranslatory invariant case in which
merons by their charges are bound to impurities.

The wave function in Eq. �16� describes the superfluid
state in Fig. 1�a�. It encodes dipole positioning of opposite
vorticity �layer index� neutral fermions. With increasing dis-
tance there are more dipoles of neutral fermions and they are
expected to be less tightly bound as in the description of a
BKT disordering of a 2D system with increasing tempera-
ture. Therefore we do not find quantum fluctuations in this
case. This will be explicitly shown by calculations in the
following section �see also Appendix A�.

In the superfluid phase, with respect to merons, a neutral
fermion dipole should be in essence a superposition of qua-
drupolar combinations of merons—two dipoles which come
in pairs but at arbitrary distance as illustrated in Fig. 2. In
this way, as special configurations of dipoles, neutral fermi-

ons, we expect, constitute the lowest lying states of the
QHB—�pseudo�spin or phonon waves.2,14

If neutral fermions may be considered as eigenstates they
must lie very high in spectrum; like electrons in fractional
quantum Hall states they constitute the physics of �1 but
their wave function Eq. �16� describes a highly correlated
state.

The dual expression of Eq. �16� was derived under as-
sumption of the screening properties in the charge channel of
the particles participating in the plasma analogy based on
�111 state. As the distance is increased there are less of them
and the breakdown of the description in terms of dipoles of
neutral fermions at smaller distances becomes a possibility.
We expect that due to impurities there will be patches �is-
lands� of dissociated neutral fermions.24

IV. QUANTUM FLUCTUATIONS AND QUANTUM
DISORDERING

A. Introduction

The two paradigms-models of superfluid disordering as
applied to our 2+1 dimensional system mean that the time
evolution is such that �1� meron-antimeron pairs are locked
on impurities or �2� created and annihilated at some later
time and therefore making a loop in time. The loops in time
signify the presence of quantum disordering.7 We will dis-
cuss and detect the presence of quantum disordering in the
WFs of class �c� in Fig. 1 by examining how they relate to
and incorporate ordinary �not quantum disordering that in-
volves merons-vortices� quantum fluctuation phonon contri-
bution in this case.6,8 We will find that the WFs of class �a�
in Fig. 1 do not have this contribution.

B. Quantum fluctuations due to phonons and quantum
disordering

The usual14 CS field theory approach8 in the RPA to the
bilayer problem at �=1 �which in the neutral channel reduces
just to the problem of ordinary superfluid with only phonon
description and contribution� finds the following correction
to the �111 state:

�PH = exp�−
1

2	
k

�V−�k�
�E

k
�k

−�−k
− ��111, �17�

where �k
−=�k

↑−�k
↓, V−�k�=

V↑↑�k�−V↑↓�k�
2 , V↑↑= 2�

k , V↑↓= 2�
k exp�

−kd
, i.e., V−�k� is the interaction in the neutral channel, �E

FIG. 2. The quadrupolar configurations of merons that make
neutral fermion pair. Compare the same configuration of Laughlin
quasiparticles as a description of “magnetophonon” branch in the
Laughlin case in Ref. 14.
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= �̄
m , where m is the electron mass and �̄ is the uniform total

density. In the small d limit V−�k�=�d and we can expand
the expression �PH as

�PH = �111 − �	
k

c�d

k
�−k

− �k
−��111 + ¯ , �18�

where c is a positive constant. The terms after the first one
represent corrections, in the order of importance, to the �111
ansatz as d increases.

On the other hand the WFs of Fig. 1�c� are more general
as they suggest the form of the correction terms of wider
class than the one used in the expansion �Eq. �18�� with only
exception that the class demands equal number of �k

↑’s and
�k

↓’s because in writing down the classes of Fig. 1 we explic-
itly distinguished ↑’s from ↓’s and fixed the number of ↑’s
and ↓’s.

We can start comparing and relating the first phonon cor-
rection, i.e.,

�	
k

1

k
�−k

↑ �k
↓ �19�

to a wave function of two neutral fermions �↑ from ↓�, i.e.,
density operators as in Eq. �8� but with a pairing between
them as in class Fig. 1�c�.

Without pairing we would have


 d2�1↑
 d2�2↓
1

��1↑ − �2↓�
�↑��1↑��↓��2↓� , �20�

which is identical to zero �no correction� as can be found out
in Appendix A. This is an important result and shows that
there are no quantum fluctuations in the first family of WFs
discussed in Sec. III. Besides this analytical proof, our state-
ment is further corroborated by the fact that the computer-
generated two neutral fermion state also does not exist—see
Ref. 16.

Therefore we continue by considering


 d2�1↑
 d2�2↓
1

��1↑ − �2↓��
�↑��1↑��↓��2↓� , �21�

where �=1 if we take g�z�=� z
z� for the pairing function or

�=2 if g�z�= 1
z� For �=1 the expression in Eq. �20� reduces

to the form of the first phonon contribution in the long-
distance limit with the 1

k singularity �see Appendix A� and
for �=2 this singularity softens to �−ln�klB
 where lB is the
magnetic length �see Appendix A�. We will consider only
these most weakly pairing cases; the case g�z�= 1

z does not
produce correction as can be seen in Appendix A.

Next we consider more than two density operator con-
structions, i.e., more than two neutral fermions constructions
as in Eq. �8� but instead of the two decoupled Fermi seas we
have a pairing between neutral fermions,

�2
n =
 d2�1↑¯
 d2�n↓

�
�k�l

��k↑ − �l↑��p�q
��p↓ − �q↓�

�i,j
��i↑ − � j↓�

�Det�g��↑ − �↓�
�↑��1↑� ¯ �↓��n↓��111�z↑,z↓� ,

=
 d2�1↑¯
 d2�n↓Det� 1

�↑ − �↓
�

�Det���↑ − �↓

�↑
� − �↓

�� � �↑��1↑� ¯ �↓��n↓��111�z↑,z↓� ,

�22�

where in the second expression we used the Cauchy deter-
minant identity, i.e.,

�k�l
��k↑ − �l↑��p�q

��p↓ − �q↓�

�i,j
��i↑ − � j↓�

= Det� 1

�↑ − �↓
�

�23�

and substituted the pairing function that has lead us to the
first phonon correction for two paired neutral fermions. Im-
mediately we can see that the diagonal terms in which pairs
of the two determinants are the same would make further
phononlike corrections, i.e., their superposition with appro-
priate coefficients would lead to

exp�− 	
k

cd

k
�−k

↑ �k
↓��111. �24�

The other nondiagonal terms would lead to more compli-
cated constructions of four and more neutral fermions that
should participate in the description of quantum disordering,
i.e., describe the physics beyond phonon contribution �24�.
Although in some sense we are talking just about a class �a
pool� of wave functions that should describe quantum disor-
dering we can fix general form, at least for small d, of the
superposition that should completely model the ground state
at fixed d

�0 = 	
n=0,2,. . .

�2
ncn. �25�

In the long-distance limit �25� should tend to Eq. �24�. In
other words nondiagonal terms in Eq. �22� should be sub-
leading to the leading behavior in Eq. �24�. That this is true
from the physical point of view we expect that it is enough to
prove the subleading behavior in the case of four neutral
fermions ��2

4� and that can be found in Appendix B. The
proof is based on the smallness of higher-order terms that
may appear inside the brackets in Eq. �24�. This is assumed
in the RPA approach and expected in the small d limit.

Therefore the quantum Hall physics besides g�z�=� z
z�

pairing possibility brings or allows the possibility of g�z�
= 1

z� pairing that introduces nontrivial quantum corrections,
i.e., brings another kind of quantum disordering. The g�z�
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=� z
z� accommodates the usual �on the level of RPA� super-

fluid description in which we may expect that the disordered
phase will break translation symmetry. Indeed, the bosonic
CS field theories that are not based on quantum Hall WFs
give this scenario of the disordered phase as a charge-density
wave.8 It seems, therefore, there are two possible scenarios
for superfluid disordering not in the BKT class for the bilayer
in the translation symmetry invariant case �without impuri-
ties�. In the following we will discuss the second possibility
with g�z�= 1

z� kind of pairing.

C. Weak pairing g(z)È 1
z� case and conformal field theory

considerations

We expect, if the translational symmetry of the ground
state remains unbroken, that also in the case of pairing g�z�
= 1

z� the translatory invariant system smoothly evolves with
the increase in d into the class of wave functions in Fig. 1�d�.
We would like to know more about this class—whether it
represents a distinct phase. If we take the choice g�z�= 1

z� and
examine the final form of the state of Fig. 1�d� when there
are no CBs, we are lead to its following forms:

�2 = Det� 1

zi↑
� − zj↓

� ��
i�j

�zi↑ − zj↑�2�
k�l

�zk↓ − zl↓�2

= Det� 1

zi↑
� − zj↓

� �Det� 1

zk↑ − zl↓
��111, �26�

where to get the last line we used the Cauchy determinant
identity. The neutral part of �2 �not carrying a net flux
through the system as �111 does� that consists of the two
determinants can be viewed as a correlator of vertex opera-
tors of a single nonchiral bosonic field. According to25 con-
formal field theory �CFT� correlators not only describe quan-
tum Hall system WFs but also can be used to find out about
excitation spectrum and connect to its edge and bulk theo-
ries. In this way motivated neutral excitations are vertex op-
erators that correspond to single-valued WF expressions that
multiply �2,

exp�i
1	�w,w��
 →
�i

�zi↑ − w�2
1

�i
�zi↓ − w�2
1

, �27�

exp�i
2��w,w��
 →
�i

�zi↑ − w�
2

�i
�zi↑

� − w��
2

�i
�zi↓

� − w��
2

�i
�zi↓ − w�
2

,

�28�

where 	�w ,w��=	�w�+	�w��, ��w ,w��=	�w�−	�w��, and
	�w� and 	�w�� are holomorphic and antiholomorfic parts of
the bosonic field, respectively. 
2 must be 1

2 because of the
requirement of single-valuedness. For detailed explanations
of the bosonic CFT analogies see Appendix C.

If the low-lying spectrum were consisting only of 
1= 1
2

and 
2= 1
2 quasiparticle excitations our system would be de-

scribed by so-called BF Chern-Simons theory or the theory
of 2D superconductor.26 The mutual statistics of

quasiparticles-quasiparticles and vortices in this theory is
semionic �due to the fact that vortices carry half-flux � h

�2e�c �
quantum� and that this is also the case with our excitations
can be easily checked via CFT correlators—see Appendix C.
Combining the analysis with the charge part ��111� in which
only charge 1 excitations are allowed �half-flux quantum ex-
citations are strongly confined27� we may come to the con-
clusion that the degeneracy of the system GSs on the torus
must be 4 �Refs. 26 and 28� But the expression for the first
kind of excitations �Eq. �27�� allows a real continuum for the
value of 
1 exponent including 
1=0, and therefore we ex-
pect a compressible �gapless� behavior of the system despite
the incompressibility of the charge channel and seemingly
topological phase behavior in the neutral sector. Nevertheless
we expect that in our case BF CS theory is a part of the
description of the pairing phase in a Lagrangian in which
there is a quadratic nonderivative term in one of the two
gauge fields; this allows a branch of gapless excitations—see
Appendix C for details.

The question may come why we did not do an analysis
with the projection to the LLL. Certainly the analysis is more
involved where “reversed flux part,” i.e., complex conju-
gated determinant becomes an operator that acts on the rest
of wave function. Nevertheless, an analysis of the edge ex-
citation spectrum29 suggests that it cannot conform to any
description of simple free CFT theories, i.e., cannot belong
to a totally incompressible class, and it is very likely that the
system is, as it follows from our unprojected analysis, com-
pressible in the neutral channel. Therefore it is very hard to
distinguish the physics of the states in Figs. 1�c� and 1�d� in
the translatory invariant system that involve pairing of the
type g�z�= 1

z� .
While we were finishing the writing a numerical study �of

homogenous WFs in the translatory invariant case�
appeared30 that agrees with and complements our conclu-
sions on the nature of pairing.

V. CONCLUSIONS

In conclusion, we presented two families of wave func-
tions that describe two possible ways of homogeneous disor-
dering of the quantum Hall superfluid with their detailed
description on the basis of the dual �quasiparticle� picture of
the quantum Hall effect. We also presented detailed analysis
of the disordering in the translation invariant system on the
basis of insights into the pairing function of quasiparticles-
neutral fermions. A class of candidate wave functions was
clearly connected with the formalism that we find in other
�Chern-Simons� theories, and the pairing function g�z�� 1

z�

was extracted as a clear choice that incorporates quantum
disordering and that will describe the system if it does not
transform into a CDW �charge-density wave� inhomoge-
neous solution.
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APPENDIX A

We want to prove


 d2�1↑
 d2�2↓
1

��1↑ − �2↓�
�↑��1↑��↓��2↓� = 0. �A1�

After switching to the Fourier space, �
���=	k�k

 exp�ik��� 
,

the left-hand side �l.h.s.� becomes

2�	
k

 d2�

1

�
exp�ik��� 
�k

↑�−k
↓ . �A2�

The angle part of the integration with the help of the table
integral31



0

�

exp�i� cos x
cos�nx
 = in�Jn��� �A3�

yields


 d2�
1

�
exp�ik��� 
 = 


0

�

dr�i�J1�kr� − i�J1�− kr��

= �− �
i�

k



0

�

dr�dJ0�kr�
dr

+
dJ0�− kr�

dr
�

= i
2�

k
, �A4�

where we used notation �k��=k and in the last line the identity
for the Bessel functions: J0�=−J1. On the other hand


 d2�
1

�
exp�− ik��� 
 = − i

2�

k
, �A5�

and therefore Eq. �A2� can be written as

�	
k
�
 d2�

1

�
exp�ik��� 
�k

↑�−k
↓ � +
 d2�

1

�
exp�− ik��� 
�−k

↑ �k
↓

= i2�2	
k

1

�k��
��k

↑�−k
↓ − �−k

↑ �k
↓� = 0 QED. �A6�

Next we want to evaluate


 d2�1↑
 d2�2↓
1

��1↑ − �2↓��
�↑��1↑��↓��2↓� . �A7�

Again this reduces in the Fourier space to

2�	
k

 d2�

1

����
exp�ik��� 
�k

↑�−k
↓ . �A8�

In the case of �=1 as usual for the real Coulomb interaction
in 2D the integral is


 d2�
1

���
exp�ik�r�
 = 2�


0

�

drJ0�kr� =
2�

k
. �A9�

In the case of �=2 we have


 d2�
1

���2
exp�ik�r�
 = 2�


0

�

dr
J0�kr�

r
. �A10�

The integral needs a cutoff at small distances �otherwise di-
verges� which should be included in our effective description
and as usual can be taken to be lB �magnetic length distance�.
Therefore, instead of Eq. �A10� we have

2�

0

�

dr
rJ0�kr�
r2 + lB

2 = 2�K0�lBk� . �A11�

In the small momentum limit we can approximate

K0�z� � − ln� z

2
� + o�z� �A12�

and therefore our first phononlike correction in this case of
pairing is

	
k

�− �ln�klB
�k
↑�−k

↓ . �A13�

For the case of pairing g�z�= 1
z we have


 d2�1↑
 d2�2↓
1

��1↑ − �2↓�2�↑��1↑��↓��2↓� , �A14�

which reduces to the solving of the following Fourier trans-
form


 d2�
1

�2exp�ik��� 
 . �A15�

With the help of Eq. �A3� we have for the value of the
integral



0

�

dr
1

r
�− �J2�kr� − �J2�− kr�
 . �A16�

We may use the table integral31



0

� J��ax�
x�−q dx =

�� 1
2q + 1

2�
2�−qaq−�+1��� − 1

2q + 1
2� �A17�

for −1�Req�Re�− 1
2 to find out that the value of the inte-

gral does not depend on k, i.e.,


 d2�
1

�2exp�ik�r�
 = − � . �A18�

Therefore the phononlike correction in this case is propor-
tional to

�	
k

�k
↑�k

↓��111 �A19�

and in the real �coordinate� space this becomes


 d2��↑����↓����111 = 	
i,j

 d2�
2�� − zi↑�
2�� − zj↓��111

= 	
i,j


2�zi↑ − zj↓��111 = 0, �A20�

i.e., no correction at all.
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APPENDIX B

We consider nondiagonal �nonphononlike� corrections
that come from the description of quantum disordering by
the class of WFs in Fig. 1�c� when the pairing is fixed to be
g�z�=� z

z� , i.e., nondiagonal terms of Eq. �22� with n=4. We
want to prove the subleading behavior with respect to the
diagonal terms as the one with �1↑��1, �3↑��3, �2↓��2,
and �4↑��4 in


 d2�1
 d2�3
 d2�2
 d2�4
1

��1 − �2�
1

��3 − �4�

� �↑��1��↑��3��↓��2��↓��4� = �	
k

�2��2

k
�k

↑�−k
↓ �2

�B1�

of the following nondiagonal term


 d2�1
 d2�3
 d2�2
 d2�4
1

��1 − �2�
1

��3 − �4�

����1 − �4�
��1

� − �4
��

��3 − �2�
��3

� − �2
��

�↑��1��↑��3��↓��2��↓��4� .

�B2�

The nondiagonal terms by their forms should describe differ-
ent processes from the phonon contributions, i.e., from those
as ��k1

↑ �−k1

↓ �¯ ��kn/2
↑ �−kn/2

↓ � for arbitrary k’s. In the long-
distance approximation we will argue that the nondiagonal
term �Eq. �B2�� carry less importance that the phonon con-
tribution with the same number of density operators.

Introducing �=�1−�4 , �̃=�3−�2 , �−=�1−�3 and �+
=�1+�3 we can rewrite Eq. �B2� as

	
k1,k3,k̃,k


 d2�
 d2�̃
 d2�−
 d2�+
1

��− + �̃�
1

�� − �−�

�� ��̃

���̃�
exp�i�1k�1
exp�i�3k�3


�exp�i�1

2
�� + −

1

2
�� − − �̃��k̃��

�exp�i�1

2
�� + +

1

2
�� − − ���k���k1

↑ �k3

↑ �
k̃

↓
�k

↓. �B3�

The �+ integration brings the constraint k� + k̃� +k�1+k�3=0.
Then the remaining �− integration gives the following con-
tribution:


 d2�−
1

��− + �̃�
1

�� − �−�
exp�i

�� −

2
�k�1 − k�3 − k̃� + k���

= − i
2�

�k� + k�3�

1

� + �̃
�exp�i�̃� �k�3 + k̃��
 − exp�− i�� �k�3 + k̃��
� ,

�B4�

where we used the constraint. Therefore the contribution is
proportional to

	
k3,k̃,k

1

�k� + k�3�

 d2�
 d2�̃

1

�� + �̃�
� ��̃

���̃�

��exp�i�̃� �k�3 + k̃��
 − exp�− i�� �k�3 + k̃��
�

�exp�− i�̃k̃
exp�− i�k
�
−k̃−k−k3

↑
�k3

↑ �
k̃

↓
�k

↓. �B5�

In the long-distance limit �k� +k�3�→0 but that does not cancel
the part of the 2D volume in the integration measure like in
the phonon contribution �that would damp the contribution�
but is canceled by the difference of the exponentials in the
same limit in Eq. �B5�. There is only one more factor, i.e.,

1
�+�̃ that can bring the momentum inverse contribution but

this only enforces k� k̃, i.e., ��k
↑�−k

↓ �2 without a significant
coefficient. This will only give the next order contribution
inside the brackets in Eq. �24� which for small d, and as
usual in the RPA approach, we can neglect.

APPENDIX C

We will give a more general view of the CFT analogies of
so-called32 doubled CS theories to which BF CS theory be-
longs. In the work of Freedman et al.32 BF CS theory was
classified as the low-energy theory of the deconfined phase
of Z2 gauge theory. There also SU�2�1�SU�2�1 doubled CS
theory was considered. For the detailed description of these
theories the reader should consult Refs. 26 and 32. Here we
will, by writing down relevant CFT correlators, demonstrate
the analogies between nonchiral-complete CFTs and these
doubled CS theories.

First we will consider SU�2�1�SU�2�1 case. The possible
wave function with coordinates of two species z1↑ , . . . ,zN↓,
for which there are equal number of ↑’s and ↓’s: N↑=N↓ and
N↑+N↓=N, is

� =
�k�l

�zk↑ − zl↑��p�q
�zp↓ − zq↓�

�i,j
�zi↑ − zj↓�

=
�k�l

�zk↑ − zl↑�p�q
�zp↓ − zq↓

�i,j
�zi↑ − zj↓�

�
�k�l

�zk↑
� − zl↑

� �p�q
�zp↓

� − zq↓
�

�i,j
�zi↑

� − zj↓
�

. �C1�

We use the following correlator of vertex operators of a
bosonic field 	:

�exp�i�	�z1,z1
��
exp�− i�	�z2,z2

��
� =
1

�z1 − z2�2�2 .

�C2�

If �= 1
�2

we can rewrite our wave function as

� = �exp�i�	�z1,z1
��
exp�i�	�z2,z2

��
 . . . exp�− i�	�zN,zN
� �
� ,

�C3�

and define
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	�z,z�� = 	�z� + 	�z�� , �C4�

��z,z�� = 	�z� − 	�z�� . �C5�

Inserting a neutral pair �w1 and w2� of exp�i
1	�w ,w��
 ver-
tex operators or exp�i
2	�w ,w��
 vertex operators we can
conclude that these insertions correspond to multiplying the
wave function � �Eq. �C1�� by

exp�i
1	�w,w��
 →
�i

�zi↑ − w�2
1�

�i
�zi↓ − w�2
1�

, �C6�

exp�i
2��w,w��
 →
�i

�zi↑ − w�
2�

�i
�zi↑

� − w��
2�

�i
�zi↓

� − w��
2�

�i
�zi↓ − w�
2�

.

�C7�

�The general formula for the many vertex correlator can be
found, for example, in Ref. 33.� The single-valuedness of the
WFs demands 
2= 1

�2
. If we take also 
1= 1

�2
=
2=
 then

�exp�i
	�w1,w1
��
exp�− i
	�w2,w2

��


�exp�i
��w3,w3
��
exp�− i
��w4,w4

��
�

=
1

�w1 − w2�2
2

1

�w3 − w4�2
2

�
�w1 − w3�
2

�w1
� − w3

��
2

�w2 − w4�
2

�w2
� − w4

��
2

�w1
� − w4

��
2

�w1 − w4�
2

�w2
� − w3

��
2

�w2 − w3�
2 ,

�C8�

and the mutual statistics between any of two particles of
different kinds �Eq. �13�, �14�, �23�, and �24�� is fermionic.
To see that, for example, for Eq. �13� pair we send 2 toward
4 and switch w1 and w3 coordinates.

In our case of the quantum Hall bilayer,

�� =
�k�l

�zk↑ − zl↑�2�p�q
�zp↓ − zq↓�2

�i,j
�zi↑ − zj↓�2

= Det� 1

zi↑
� − zj↓

� �Det� 1

zk↑ − zl↓
� , �C9�

The same analysis as above will fix �=1 and 
= 1
2 so that in

this case the mutual statistics is semionic just as it should be
in the BF CS field theory.

The BF CS theory of a 2D superconductor is26

1

�
����b���a� − a�j� − b� j̃�, �C10�

where a� and b�, �=0,1 ,2 are gauge fields; the first term is
the CS term and j� and j̃�, �=0,1 ,2 represent quasiparticle
and vortex density currents. The Lagrangian encodes in the 1

�
coefficient mutual semionic statistics between the two exci-
tations in 2D superconductor—any time quasiparticle en-
circles vortex it gets the Bohm-Aharonov phase � because
vortex corresponds to the half-flux quantum excitation in the
paired system. Higher order in derivatives, i.e., Maxwell
terms ����a�2 and ����b�2 are present in the description
of the ordinary �s wave� gapped 2D superconductor and can
describe the plasmon modes that are gapped—see Ref. 26. In
our case, because from CFT analogies �Eqs. �C6� and �C7��
we find that 
1 can be continuous and correspond to a branch
of gapless excitations, we expect a quadratic in one of the
gauge fields, without derivatives, term to describe such a
behavior. For example, if we add a term quadratic in b �b�b�

with the ���a�2 Maxwell term present� our classical equa-
tions of motion will be: �a=0 and ��b=0. They describe
gapless behavior �Goldstone mode� in one gauge field and
associated quasiparticle description, and incompressible be-
havior in the other.

�The SU�2�1�SU�2�1 theory can be described by the fol-
lowing Lagrangian

1

2�
����b���a� − a�j� − b� j̃�, �C11�

and we see explicitly mutual fermionic statistics.�
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