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Synchronization of delayed coupled and stochastically perturbed systems with delayed nonlinear feedback is
studied, using as an example circular chains of three and four delayed coupled Ikeda oscillators. It is proved
that in the case of multiplicative noise the exact synchronization in the mean occurs for sufficiently large
coupling, and an analytic estimate of the sufficient coupling is given. The sufficiency condition is compared
with numerical computations, and typical effects of noise on the exact and some generalized types of synchro-

nization are illustrated.
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I. INTRODUCTION

Dynamical synchronization has been an important re-
search topic for a long time (an overview and an extensive
list of references can be found in Ref. [1]). Our goal in this
paper is to study stability of synchronization with respect to
random perturbations in an important class of models that
correspond to a system of coupled feedback loops with some
special properties. In order to have models of such systems
which are relevant in real applications it is often necessary to
take into account time-lags in the feedback and a finite du-
ration of the transmission of information between each feed-
back unit. It is also natural to assume that many features of
real systems have been neglected in making the model, but
that they can be retaken into the consideration as different
types of random perturbations of the deterministic model. We
thus arrive at a model given by a stochastic dynamical sys-
tem with two different characteristic time delays.

Two properties of delay-differential systems make the
study of the influence of noise on such systems interesting
from the theoretical point of view and nontrivial. First, a
deterministic delay-differential system has a nonzero
memory, i.e., it does not satisfy the Markov property, and
addition of stochastic perturbations is not going to turn the
dynamics into that of a Markov process. Consequently, some
of the well-established methods which are valid for Markov
processes, like Foker-Planck equations, cannot be used [2].
Second, a single nonlinear scalar deterministic delay-
differential equation (DDE) with a single fixed time-lag 7
gives an infinite dimensional dynamical system on the phase
space C(-7,0) of continuous functions on the interval
(=7,0) [3]. Large 7usually implies high-dimensional chaotic
attractor, first studied in Ref. [4]. In fact, dynamical systems
generated by a scalar DDE are hyperchaotic, i.e., they pos-
sess a chaotic attractor, such that there are more than one
positive Lyapunov exponents for the restriction of the system
on the attractor. Thus deterministic DDE can have quite
chaotic dynamics, and it is not intuitively clear if a small
noise will have any significant effect on such hyperchaotic
evolution.
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In this paper we shall report results of our study of the
influence of different types of noise on a particularly impor-
tant property of collective dynamics in a collection of bidi-
rectionally coupled hyperchaotic feedback systems, i.e., on
the stability of exact synchronization in such systems. Our
aim is to use a well-known example of a hyperchaotic sys-
tem generated by DDE in order to illustrate some analytical
methods that can be used to study, and to present numerical
indications of some interesting phenomena related to, the
influence of noise on the synchronization. Thus, the choice
of multiplicative or additive noise, and bidirectional or uni-
directional coupling is not motivated and justified by a par-
ticular physical application of the model but by abstract in-
terest in different possibilities.

DDE’s with hyperchaotic dynamics often appear in appli-
cations, for example in biology [5], dynamics of lasers [6],
and/or secure communication [7,8]. In this paper, we shall
use, as the single deterministic feedback unit, the well-
known example of scalar DDE’s, the Ikeda model [9,10], for
such values of the parameters and the feedback time lag that
the single system is hyperchaotic. The Ikeda model

x(t) = = x(t) + p sin[x(¢ - 7)], (1)

is one of the first systems used to study the multidimensional
chaos. It was originally introduced as a model of nonlinear
optical resonators, but has also been used to model semicon-
ductor laser with electro-optical feedback [8,11]. Our choice
of the Ikeda model as the representative of hyperchaotic
feedback units is motivated by the fact that various aspects
of synchronization between Ikeda systems have been thor-
oughly studied. The total system is given by a system of Itd
stochastic delay differential equations of the following form:

dx' = fi(x',(x) ) dt + g(x)dW; + c[— 2x' + (x*1)™2
+ (X NY2dr, i=1,2,....N, x"=xV, M=yl
(2)
where
x7(1) = x(t-17), (3)
and f; is the Tkeda system (1). We shall always assume that

dW; are stochastic increments of Wiener processes &() with
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zero mean and correlations (&(1)é,(t'))=6; ;0(t—t'), which
are added to the deterministic system either additively, in
which case g; are constants, or multiplicatively in which case
we shall suppose that g; are of the form g;=const X x;.

Synchronization of two instantaneously coupled deter-
ministic hyperchaotic systems in a master-slave configura-
tion has been studied for the first time in Ref. [12]. In this
paper, the hypechaotic dynamics of each unit is produced by
a delayed feedback loop. Since then, the synchronization of
hyperchaotic Ikeda systems has been studied by many. For
example, Voss [13] has observed that in the master-slave
configuration there is a type of synchronization such that the
slaved system anticipates the state of the driver. Later, Shah-
verdiev [14], applied the same methods to two Ikeda systems
in the master-slave configuration with a particular form of
the unidirectional delayed coupling, and studied lag and an-
ticipating synchronization. Anticipating synchronization was
also studied numerically in (master-slave) two Lang-
Kobayashi laser in Refs. [15,16]. Synchronization of three
hyperchaotic bidirectionally delayed coupled Ikeda systems
was studied in Ref. [17]. Zero lag synchronization has re-
cently been demonstrated experimentally and numerically in
a chain of three semiconductor lasers with long coupling
delays [18]. Patterns of exact synchronization in a chain of
arbitrary number of bidirectionally delayed coupled Ikeda
systems were studied in Ref. [19]. Physically motivated
sources of noise in the Ikeda system as a model of nonlinear
optical media was discussed in Ref. [20]. The influence of
additive or multiplicative noise on the bifurcation sequence
leading to the hyperchaotic behavior of a single DDE system
was also studied in Ref. [20]. The phenomenon of coherence
resonance in optical feedback systems modelled by DDE,
was studied for example in Refs. [21,22]. Stability of antici-
pating synchronization on the additive noise in unidirection-
ally coupled DDE models of semiconductor lasers was dem-
onstrated numerically, for example, in Ref. [15].

Stability of synchronization in systems with noise involv-
ing DDE which are not necessarily hyperchaotic was studied
analytically, for example, in the context of coupled realistic
and formal neural networks. Liao and Mao [23] have initi-
ated the study of stability in stochastic neural networks, and
this was extended to stochastic neural networks with discrete
time delays in Refs. [24,25]. Some analytical techniques rel-
evant for delayed systems with noise have also been used in
the study of coupled bistable systems with delays [2], and in
noisy oscillators with delayed feedback [26].

The paper is organized as follows. In the next section we
illustrate an analytical technique that can be applied to prove
possibility of global asymptotic stability in the mean of the
exact synchronization. Using a generalization of the
Lyapunov-Krasovskii method to the SDDE’s we prove that
the exact synchronization in the system (4) is asymptotically
stable in the mean if the coupling is sufficiently strong, and
we provide a criterion for the sufficient value of the cou-
pling. In Sec. III we present a selection of numerical results
that illustrate the effects of multiplicative and additive noise
on the synchronization properties for the chains with N=3
and N=4 units. We first numerically analyze and comment
on the degree of overestimation of the sufficiency criterion
for the global asymptotic stability in the mean of the exact
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synchronization. Then we present an analyses of the influ-
ence of noise in the situation that occurs for smaller values of
the coupling, when the deterministic system with N=3 is
bistable and has two attractors, one corresponding to the ex-
act and the other to some generalized type of synchroniza-
tion. Finally we shall present some numerical results con-
cerning the influence of noise in the case of the chain with
four units. The deterministic system with N=4 can have, for
some fixed values of the parameters, the globally stable exact
synchronization between ith and i+2 units, and some gener-
alized type of synchronization between i and i+ 1. We shall
illustrate the fact that in this case the exact of noise on the
different types of synchronization between the nearest and
next to the nearest neighbors is quite different. Finally, in
Sec. IV we summarize and discuss the presented results, and
indicate some directions for future research.

II. MEAN EXPONENTIAL STABILITY OF EXACT
SYNCHRONIZATION

In this section we show that the exact synchronization in
the mean between stochastically perturbed Ikeda systems
with delayed diffusive interaction is possible, and globally
asymptotically stable, for sufficiently large coupling con-
stant. As relevant but sufficiently simple example, we shall
consider a system consisting of three Ikeda units.

In this section we consider the case when each unit is
influenced by the same multiplicative noise. We shall first
analyze the systems with bidirectional coupling, and then
briefly comment on the system in a master-slave configura-
tion. Thus, the system is described by the following set of
stochastic delay differential equations (SDDE):

dx'(1) = {= x'(t) + wsin[x'(t — 7))]
+c[x Nt = ) + XNt = ) = 2x (1) |}dr

+.Xi(t)\"%dw, i= 1’2’3’ 0_—.3 4 1

x=x’, x"=x,

where dW, formally written as dW=§£(¢)dt, is the stochastic
increment dW of the Wiener process &(r) for which

E(§)=0,

E[&nér")]=ot-1"), (5)

where E( ) denotes the mean with respect to the stochastic
process. The increments satisfy

E(dW)=0, dWdW =d. (6)

To study the stability of the exact synchronization be-
tween the ith and the jth unit (,j=1,2,3) it is convenient to
analyze the dynamics of the difference

AY(1) =X (1) = ¥/ (2). (7)

In fact only A2 and A%3 are important, and the dynamics of
each of these two functions is given by a scalar SDDE of the
same form
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dA ={—(1+2c)A(1) — cA(t — 1) + o(t)sin[ A(r — 7,)/2]}dt
+ A()\2Daw, (®)

where  A=A'2 AM=AY2(1—7),A"=A"2(1-7) or A
=A%3 A=A%3(t—7)),A2=A>3(t—1,). In the two cases the
time dependent parameter o(z) is given by

7 2\7
GO

o(t) =2u cos
2\7y 3\7
—opcos )T ©)
2
Although, the time dependence of o(z) could be quite com-
plicated, its absolute value is always bounded by 2 u.

In the case of the deterministic DDE global asymptotic
stability of A(r)=0 implies that the global attractor of the
deterministic part of (4) satisfies x' =x?>=x>. Sufficient condi-
tion for the global asymptotic stability of A=0 in the case of
DDE’s can be found by applying a generalization of the
Lyapunov first method, on the phase space given by continu-
ous functions A defined on the interval [—7,0], where 7
=max{r|, 7}, with the norm [|A|[>=[° A%(6)d6. Krasovskii
[27] has found the general form of the Lyapunov functional
for systems of deterministic DDE’s with multiple delays, and
Pyragas [12] was the first to applied the Krasovskii-

xt-m)+x2(t-7)
2

% = ZA(t)[— A(D)+2u cos(

PHYSICAL REVIEW E 75, 026209 (2007)

Lyapunov functional to study the stability of synchroniza-
tion. He studied a pair of Ikeda systems with unidirectional
instantaneous coupling. Since then, the Lyapunov-Krasovskii
functional has been applied by many to prove the possibility
of synchronization in various systems of deterministic
DDE’s. A slight improvement of the sufficient condition usu-
ally obtained by the Lyapunov-Krasovskii functional, but a
significant simplification of its derivation, is provided by us-
ing Razumikhin-type theorems and a Lyapunov functional of
a simpler form [3]. In the case of SDDE’s the global expo-
nential stability is replaced by the analogous stability in the
mean value with respect to the distribution given by the sto-
chastic process. In what follows we shall first provide an
argument, based on heuristic generalization of the
Razumikhin-type theorems on a stochastically perturbed
DDE, which suggests the sufficient condition that can be
used to prove the exponential stability in the mean of A%(f)
for Eq. (8). Then we prove that this condition indeed guar-
antees the exponential stability in the mean of A%(z).
Applying the It6 derivative on

LIA(n)] =A%), (10)

and using the formal notation dL/dt for convenience, the
derivative of (10) along an orbit for which |A(7)]
=|A(t- )|, k=1,2 satisfies

)sin[A(t - 71)/2]} +2cA(0)[= At — ) — 2A(1)] + 2A2(1)V2DE(r) + A2(r)2D

= —2A%0) + 2uA(0)A(t = 7)) = 2cA(DA(t = 7)) — 4cA% (1) + 2A%(7) V"Eg(t) +A%(0)2D
=2[-1-2c+D+ \"Ef(t)]Az(t) +2u|A@)||A(E = 7)) + 2c|A(D)||A(f = 7))

= —2[1+2c—D - \2D&1) - - cJAXq),

where we used |A(¢)| =|A(t—7)|, k=1,2.

Because of (6) the mean of the expression in the last line
of (11) is equal to 2u+2D—2—-2c¢ and the previous argument
suggests that if this expression is negative the system (8)
should be stable in the mean. Indeed we now prove the fol-
lowing theorem.

Theorem 1. If the constants u,D, and ¢ satisfy

u+D-1-1c<0 (12)

then the system (8) is exponentially stable in the mean value
of A%(1) (i.e., exponentially stable in mean square). Proof:
See the Appendix.

Notice that the exponential stability in mean square im-
plies exponential stability in mean (i.e., E[A(z)] [28]).

Finally, let us point out that the same method could be
applied to SDDE that describe the model studied by Pyragas
[12] with added multiplicative noise,

dx'(£) = {= x'(¢) + g sin[x'(z — 7)) [t + x' ()N2DaW,

(1

dx?(t) = {= x*(t) + w sin[x*(1 — 7)) ] + c[x' () = x*(1) ]}dt
+x4(1)\2Daw, (13)

or to the system with the term c[x'(f)—x?(¢)] replaced by
c[x'(t-=7)-x*(1)].

The equations (13) describe two stochastically perturbed
Ikeda systems with instantaneous (or delayed) coupling in
the master-slave configuration. It is easily checked that the
application of Razumikhin theorem with the functional (10)
in this case gives the same estimate (12) as for the system
(2).

A few remarks concerning Theorem 1, and especially the
estimate (12), are in order.

First, the method of the proof can be applied to prove the
possibility of exact synchronization in the mean whenever
the equation for the differences A(r) can be approximately
expressed in a closed form. Furthermore, the method could
be extended to the cases when the equation for the differ-
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ences A(f) contains terms that depend on x;(¢) and for which
there is no explicate bound. In this case, to prove the
exitances of the exact synchronization for sufficiently large
coupling, one must prove that x;() remain bounded all the
time. Of course, in this case one does not get an explicit
sufficiency condition.

Second, it is well known even in the case of deterministic
DDE, that although the exitances of the Lyapunov-
Krasovskii functional proves the possibility of synchroniza-
tion, the estimate of the sufficiency condition that one gets
by applying the method largely overestimates the numerical
results. As we shall see in the next section, the situation
appears to be the same with the estimate for the SDDE. In
this sense, Theorem 1 should be understood more like a
claim of possibility of exact synchronization in the mean,
rather than an accurate estimate of the sufficiency conditions.
We shall say more about this in the next section.

Third, the Theorem 1 does not say anything about a single
realization or a path of the stochastic process given by (8). It
claims that on the average the square of the difference A
converges to zero exponentially fast. This implies exponen-
tial convergence to zero on the average of A but possibly
with slower rate. Related to this is a question of possible
extensions of the method, applied in the proof, to the study
of possible synchronization between x,(¢) and x,(¢') for dif-
ferent moments of time ¢ and #'. It is an interesting phenom-
enon that in the case of master-slave deterministic DDE, the
slave x,(f) can synchronize with the master at an advanced
time x,(t+ 7). Then, the relevant difference A(r)=x,(t)—x,(t
+7) is not a nonanticipating function, and it is not clear to us
how to apply the Ito calculus in this case.

III. EFFECTS OF NOISE ON THE LOCAL STABILITY
OF SYNCHRONOUS SOLUTIONS

Local stability of the synchronous solutions for bidirec-
tionally delayed coupled deterministic systems was studied
numerically in Refs. [17,19]. In this section we report the
major effects of the noise on the typical properties of syn-
chronization in the deterministic case. In Ref. [17], only the
system with N=3 Ikeda equations was analyzed, and in Ref.
[19] the case with arbitrary N distributed on a discrete chain
was studied. In the first case different types of synchroniza-
tion have been analyzed, and in the latter case the main in-
terest was in the possible spatial patterns of exact synchro-
nization.

In order to discuss the influence of the noise we need to
recapitulate briefly the typical properties of synchronization
in the deterministic case. Numerical calculations showed that
the exactly synchronous solutions could be locally stable for
the values of the coupling constant ¢ smaller than that which
implies global stability. For such ¢ there could be several
coexisting local low-dimensional attractors that describe
various types of generalized synchronization. The dynamics
on this locally stable synchronization manifold could be low-
dimensional chaotic, quasiperiodic or periodic. In the case of
arbitrary odd N it was observed that the only spatial pattern
of exact synchronization was that between all units, i.e., be-
tween the nearest neighbors. For arbitrary even N, and mod-
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erate values of c, it is possible to have exact synchronization
between the next to the nearest units with some more com-
plicated type of synchronization between the nearest neigh-
bors. However, sufficiently large ¢ implies the exact synchro-
nization between all units also in the case of even N.
Dependence of the local synchronization threshold value of ¢
on the number of units N was also studied, and in general
this threshold increases with N. The synchronization was de-
tected wusing simple observations, largest transverse
Lyapunov exponent [12,17,19] and the statistical correlations
between units given by the so-called lag function [29,17,19].

In what follows we shall concentrate on the numerical
study of the bidirectionally coupled system with N=3 and
the multiplicative noise. For the system with additive noise
and/or with more units we shall only briefly indicate some
interesting phenomena that we have observed and that de-
serve further study. In our numerical computations we have
used the package XPPAUT for numerical integration and
analyses of dynamical systems [30]. The calculated mean
values of the differences A for different integration time
steps At in the interval 0.005-0.05 are qualitatively the same,
and all presented results have been obtained with Ar=0.01.

A. Numerical illustration of the sufficiency criterion

We shall first compare the predictions of the sufficiency
criterion (12) for global exponential stability in the mean of
the exact synchronization with numerical calculations. After
that, we shall consider the situation when the coupling is not
large enough to imply the global stability of the exact syn-
chronization, but, on the other hand, is large enough to ren-
der local stability of exact synchronization for the determin-
istic system. In this case, the deterministic system has two
attractors, one corresponding to the exact synchronization
and the other corresponding to some generalized synchroni-
zation. We shall analyze the influence of multiplicative noise
on these two attractors.

Figure 1 illustrates the application of the sufficiency cri-
terion (12). The value of ¢=0.31 is such that the determinis-
tic system has globally stable attractor corresponding to the
exact synchronization. It is also just above the critical value
cp=0.3, below which there are two stable attractors of the
deterministic system, so that the exact synchronization is
then only locally stable. In Figs. 1(a) and 1(b) we show
E[A, (1)] [Fig. 1(a)] and E[Aiz(t)] [Fig. 1(b)] over some
sufficiently late interval of time #, where the expectations are
calculated as averages over 100 paths with the same initial
condition. The paths from the same initial condition far away
from A=0 are used. The expectations E(A ) and E(A%,z) are
shown for the value of the stochasticity parameter D=0.31
=c and for two values of the coupling ¢=0.31 and ¢=2.36.
The second one satisfies the criterion (12) and, as is clear
from the figures, leads to exact synchronization in the mean.
The same results have been obtained using other initial con-
ditions, other values of D, and other values of the time lags.

Numerical computations show that samples paths of the
process converge into a small neighborhood of the exact syn-
chronization manifold for much smaller values of ¢ than
those required by the condition (12). Like in the determinis-
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: FIG. 1. The expectations
E(A)(¢) (a) and E(A?)(¢) (b) aver-
aged over 100 realizations of the
process from the same initial con-
ditions. The parameters are u
=3,7,=30,7,=20 and in both fig-
ures D=0.31; the thick line is for
¢=2.32 and the condition (12) is
satisfied, and the dotted line corre-

sponds to ¢=0.31.

2,
Ea) EA), b
T a |
0.10- 0.154
0.10+ '
005" -
-0.104 0.00
3860 3880 3900 3860

tic case, it is expected that the condition (12) grossly over-
estimates the necessary values of ¢ that imply synchroniza-
tion in the mean. Because of a large parameter space
c,D, 7,7, 1, and because the space of initial conditions is
in fact infinite, it is difficult to give a complete quantitative
comparison of the condition (12) and numerical calculations.
However, in the view of the fact that parameter D enters in
(12) in a simple way, one is tempted to use (12) as a guid-
ance to make a heuristic prediction of the sufficient ¢ which
could agree much better with the numerics. Namely, let us
denote numerical estimate of the sufficient value of ¢ in the
noiseless case, i.e., for D=0, by ¢¢(w, ), 7). For, example
the formula (12) predicts for D=0 and =3 the sufficient
value of c=2. However, numerically obtained ¢, depends on
71, and is much smaller than 2 for any 7, ,. For example, for
71=30, 7,=20, =3 the numerical ¢, is ¢y=0.3. Substitut-
ing the numerical estimate ¢ in the noiseless case, instead of
u—1 in the formula (12) gives a simple heuristic estimate for
the case D #0,

C2C0+D, (14)

of the value of ¢ which guarantees the exact synchronization
of the noisy system. Because of the mentioned difficulties
and because the results seem to be negative as far as
asymptotic stability in the mean is concerned, we shall con-
centrate on numerical illustrations of the condition (14) for
just one combination of parameter values and initial condi-
tions. The results for ¢=0.64 and D=0.31 are illustrated in
Fig. 2. The numerically calculated expectations E(A?) [Fig.

3880 3900

2(b)] and E(A) [Fig. 2(a)] converge as the number of aver-
aged sample paths is increased, which is not the case for ¢
=0.31;D=0.31 (Fig. 1). However, the averages are close to
but different from zero. The distance from zero remain as
illustrated for averages taken along much later segments of
the paths. The same behavior of the expectations E(A?) and
E(A) are obtained using different initial conditions, some
quite far away from the exact synchronization manifold.
Thus, numerical evidence suggests that, there is some type of
stability in the mean of the exact synchronization, but the
exponential stability in the mean is not satisfied for ¢=0.64
and D=0.31. We should say that the same qualitative con-
clusion is suggested by numerical computations for other
initial conditions and different values of ¢ close to D+c, but
we cannot make any more precise and quantitative
conclusions.

B. Influence of noise on different types of synchronization

Theorem 1, and the numerical computations, show that,
for any value of the multiplicative noise there is sufficiently
large ¢ such that the exact synchronization is asymptotically
globally stable on the average. In this sense the exact syn-
chronization is more stable than any other type of locally
stable synchronization that occurs for some values of ¢ and
D and some 7, 7,. However, it is interesting to study the
case when the coupling ¢ is such that there are two locally
stable types of synchronization in the deterministic system.
Thus, when D=0 and c is smaller than ¢ it is possible to
have two attractors (for certain 7;, 7,), one corresponds to the

FIG. 2. The expectations
E(A)(1) (a) and E(A%)(¢) (b) aver-
aged over 100 realizations of
the process from the same
initial conditions. The parameters
are D=0.31, ¢=0.63>D+cy,
=3, 7,=30, m=20.

P IR i AP A g ot NI A

E(A) E(AZ)

oi04 @& b}
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0.054
0.10-
0.054

-0.054

0.104 0.00

3860 , 3880 ' 3900 3860
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FIG. 3. Illustrates possible re-
alizations of the process with in-
creasing the multiplicative noise
in the case when the deterministic

Xy a) X, b)
3.04 3.04
2.54
2.54

2.04
2.0

1.54
] 1.5

1.0+
0.54 1.04

1.0 1.5 2.0 2.5 3.0
X1

)(2 c) X2

304 2.8

2.4+
2.5

2.04
2.04

1.6
1.5

1.2+
1.0

0.8+

system has two coexisting attrac-
tors. In all figures u=3,7=30,
7=15, and ¢=0.2. In (a) D=0;
(b) D=0.05, and (c) D=0.1.In (d)
the full line represents a part of
the boundary of the exact syn-
chrony domain for D=0, the
dashed line for D=0.005 and the
dotted line for D=0.01.

exact and the other to some type of the generalized synchro-
nization [Fig. 3(a)]. We have studied the influence of noise in
this case, and in particular have tried to estimate numerically
how the stability domains change as the noise is increased
for a fixed c. The results are illustrated in Figs. 3. Figure 3(a)
represents the two attractors in the stochastic case. Figures
3(b) and 3(c) show quite long segments of two typical paths
that could occur when noise is D=0.05 [Fig. 3(b)] and D
=0.1 [Fig. 3(c)]. Thus, different realizations of the stochastic
process from the same initial conditions could end up in a
neighborhood of either of the two attractors. When the noise
is small the average over many paths, and the attractor of
each path, largely depend on the initial condition, but as the
noise is increased this dependence is lost. Inother words, a
path that started from an initial condition close to one of the
attractors almost certainly remains in a neighborhood of this
attractor if the noise is small, but as the noise is increased the
path can spend most of the time in a neighborhood of either
of the attractors. Nevertheless, all calculated paths spent
most of the time close to one or the other of the attractors for
values of noise up to D=0.2=c. We were led to the same
conclusions by calculations for many initial conditions and
different values of ¢ or 7,7, for which there are two attrac-
tors in the deterministic system.

Finally, in Fig. 3(d), we illustrate, for different noise in-
tensities, the domain of points that with large probability
remain forever in a neighborhood of the exact synchroniza-
tion. The points (x;,x,) within the full line correspond to
D=0. They represent orbits that at =0 go through (x;,x,,0)
and are attracted to the attractor of exact synchronization.
The points (x;,x,) within the dashed line correspond to D

L LI N L L L A
12 14 18 18 20 22 24 28 28

4

=0.005. They represent the points such that 90 out of 100
paths with the same initial condition (x;,x,,0) remain close
to the attractor of exact synchronization. The dotted line cor-
responds to paths chosen by the same criterion but for D
=0.01. Thus, as the noise is increased the probability that an
initial state will converge to the almost exact synchronization
is diminishing, however as numerical calculations repre-
sented in Figs. 3(b) and 3(c) indicate, it never gets small or
zero. This qualitative conclusion summarizes results of our
study in the case of two coexisting attractors, and with this
we finish the description of the effects of multiplicative noise
in the N=3 case.

We would like now to report briefly a couple of observa-
tions that resulted from a preliminary numerical study of the
influence of additive noise in the case N=3, and of the mul-
tiplicative or additive noise in larger chains. The first remark
concerns an interesting phenomenon, which can be thought
of as an instance of generalized stochastic coherence, that
occurs in the situation treated in the preceding paragraph but
in the case of additive noise with different intensities at dif-
ferent sites. We have observed that there are such initial con-
ditions that small intensities of inhomogeneous additive
noise imply that a majority of sample paths (in our compu-
tation about 70 out of 100) are attracted to a neighborhood of
the manifold of generalized synchronization. On the other
hand, larger additive noise implied that majority (60 out of
100) paths converged into a small neighborhood of the mani-
fold of exact synchronization. Qualitatively the same effect
was observed with initial points that are, in the deterministic
system, attracted to one or the other of the two attractors.

Our final observation concerns the influence of noise on
different types of synchronization that occur for chains with
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even N=2n. It has been reported before [19], that in such
chains the state of full exact synchronization x;(¢)
=x,(1)" - - x,,(7) is preceded, for weaker coupling ¢, by a state
in which the next to the nearest neighbors are exactly syn-
chronized x,(f)=x;,,(¢) but the nearest neighbors only satisfy
some condition of generalized synchronization x;(r)
=f[x;41(¢)]. Our numerical computations show that the influ-
ence of multiplicative versus additive noise on these two
types of synchronization is quite clearly qualitatively differ-
ent. In Fig. 4, we illustrate what happens using the chain
with N=4 units. Figures 4(a) and 4(b) correspond to deter-
ministic system and illustrate the attractors of generalized
and exact synchronization between x; and x, and between x;
and x3, respectively. Both types of synchronization are glo-
bally stable for the shown values of ¢=0.5,7,=30,7n,
=15, v=3. Figures 4(c) and 4(d) show the influence of small
multiplicative noise D=0.005. Figures 4(e) and 4(f) illustrate
what happens with the additive noise with noise parameters
at each site equal to D;=0.01, D,=D3=0.004, and D,
=0.006. Notice that we illustrate the case when x, and x5 are
directly influenced by the same amount of noise D,=D;,
wile the noise at x; and x5 is of different intensity D; # D;
#D,, but the observed effects occurs also with all D,
different.

Figures 4(c)—4(f) clearly illustrate that the small multipli-
cative noise has the same effect on the generalized and on
the exact synchronization. On the other hand, a small inho-
mogeneous additive noise destroys the generalized synchro-
nization between x; and x, while the dynamics of x; and x5 is
changed but is still exactly synchronous. Let us point out that
the same behavior has been obtained with all sample paths
from the same initial condition, because the coupling c is
sufficiently large compared to D or D;, and with different
initial conditions, because the attractors are globally stable in
the deterministic system. Also the same figures have been
obtained with different values of ¢ and D or Dy, D,, D5, D,.
However, due to large parameter space we cannot, at this
moment, make any quantitative estimate of ¢,D,,D,,D5,D,
that for some u, 7,7, lead to the described situation.

IV. SUMMARY AND PERSPECTIVES

We have studied influence of noise on the synchronization
between delayed coupled Ikeda systems. The Ikeda system
was chosen as a typical example of the delayed feedback
system which can have hyperchaotic dynamics, so our inter-
est was in synchronization of noisy hyperchaotic delayed
feedback systems with delayed interaction. In the analytical
investigation of the stability of synchronization we have con-
centrated on the system with multiplicative noise and bidi-
rectional coupling, but the exact synchronization of unidirec-
tionally coupled system in the master-slave configuration
was also briefly considered. Numerical computation was
used to illustrate interesting examples of the influence of
multiplicative and additive noise on the synchronization.

In the case of multiplicative noise we have proved the
exponential stability in the mean of the exact synchroniza-
tion for sufficiently strong coupling. Thus, in the case of
multiplicative noise, the exact synchronization can be made
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FIG. 4. The chain with N=4 units. For ¢=0.5;D=0 there is
generalized synchronization between x; and x, (a), and exact syn-
chronization between x; and x3 (b). Multiplicative noise D=0.03
slightly perturbs the generalized (b) as well as the exact (d) syn-
chronization. Additive noise D;=0.01,D,=0.004=D;,D,=0.006
completely destroys the generalized synchronization (e), but x; and
x3 remain almost exactly synchronous (f). In all figures the fixed
parameters are u=3, 71=30, =15, ¢=0.5.

globally asymptotically stable in the mean for any value of
the time delays or noise parameter by using the sufficiently
strong coupling. This is the main result of our study. The
estimate of the sufficient condition is based on an application
of Lyapunov-Krasovskii functional or Razumikhin theorems
for DDE’s and stochastic calculus, and could be applied in
similar situations, whenever the problem of the stability of
exact synchronization can be restated as the problem of sta-
bility of a stationary solution of the equations with coeffi-
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cients known within a bounded error. However the method
cannot be used to study the possibility of anticipating syn-
chronization in delayed master-slave configuration, due to
inherent conditions on type of functions considered in the Itd
calculus.

The estimated sufficient condition for the stability of the
exact synchronization is illustrated by numerical computa-
tions. The condition grossly overestimates the numerically
suggested values. This is no surprise, since the estimates of
the sufficient coupling provided by the Lyapunov-Krasovskii
functional or Razumikhin theorems are known to overesti-
mate the numerically obtained values also in the determinis-
tic case. The major reason for this in the case of the deter-
ministic equations is in the majorization of the time-
dependent coefficients in the deterministic part of the
equation for the difference. This is probably the main reason
for the error in the sufficiency estimate also in the case of the
noise system.

Further numerical computation are used to illustrate and
compare the influence of multiplicative and additive noise on
the exact and more general types of synchronization in the
system with N=3 units, and in the system with N=4 units.
Here we have not performed and presented a completed
study, but have just illustrated some interesting observations.
In particular, in the case of N=3, we have illustrated what
can happen when the coupling is such that the deterministic
system has two coexisting attractors, one corresponding to
the exact and the other to a generalized synchronization. In
the case of N=4 we have shown that the generalized syn-
chronization between the nearest neighbors is much less
stable on the additive noisy perturbations than the exact syn-
chronization between the next to the nearest neighbors. On
the other hand, the multiplicative noise produces qualita-
tively the same effects on both types of synchronization.

In this paper we have concentrated on the effects of noise
on the properties of exact synchronization. Effects of noise
on more general types of synchronization should be studied
and compared with the case of the exact synchronization.
Also, the analytical methods applied here, could be used to
study synchronization between delayed coupled noisy phase
oscillators, and phase synchronization between noisy (cha-
otic) oscillators. We have illustrated the analytical methods
using the system with the simplest spatial distribution of
coupled units. However the methods could be applied for
analyses of synchronization in more complicated noisy feed-
back systems, distributed on a lattice, with more complicated
coupling matrix.
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APPENDIX
We must prove that

E[A*(1)] = CE[A*(0)]exp(=\1), =0, (A1)

where A >0 is a constant and C is independent of ¢, but could
depend on ¢, u, 7, and A.
Applying the Itd formula to A(7)%, we have

[X'(t— 7))+ X(t— 7'1)])

dA*(1) =2A() {— A(D)+2u cos( >

Xsin A(tT_T]) +c[-A(t-7) - 2A(t)]}dt

+ A2(1)2Ddt + 2A%(1)\N2DdW(s).

For U(A%(s),s)=e®**)=9A2(5), and integrating with re-
spect to s, we get

t
f d[e—(2+4c)(t—s)A2(s)]

0

= f [(aU/ds)ds + (aUIdx)dX + (1/2)(PUIx*) G?ds],
0

where X=A(s) and dX=d[A*(s)]=Fdt+GdW. Thus,
e—(2+4c)(t—t)A2(t) _ e—(2+4c)(t—0)A2(0)

t t
- J (2 + 4C)A2(S)e—(2+4c)(t—s)ds + f e—(2+4c)(z—s)
0 0

[XI(S -7) +X2(S -7)]
2

X (— 2A%(s) + 2A(s)2 1 cos

Xsin @ —2cA(s)A(s — 75) — 4cA(s)A(s)ds

+ A2(s)2Dds + 2A%(s) \%dW(s)) . (A2)

It follows that

Az(t) _ e—(2+4c)tA2(0)

t
= f (2 +4¢)A%(s5) e~ PH=9) g
0

t
+ f e~ PN () + 2uA(s)A(s — )
0

—2cA(s)A(s — 7)) — 4cA%(s)ds + A%(5)2Dds
+2A2(s)\2DdW(s)]}.
From the preceding expression we have

t
Az(t) = A2(O)e—(2+4c)t + J e[—(2+4c)(t—s)]{[(2 + 4C)A2(S)
0

= (2+4c)A%(s) + 2u|A()]|A(s = )| + 2¢|A(s)]]
X A(s = 79)| + 2DA%(5)1ds + 2A2(s)\2DdW(s)}.
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From (12), there exists some sufficiently small positive
constant \,

142¢>N>0

such that
(2+4c¢) =20 —2ue™ = 2¢e™ 2D >0, 7=max(7, 7).

(A3)
Denote by

G() = SUP(_r= = 7= y=n E[| A(O) | A(9)[Je* eV
Then, using
E( J l6[2""(2+40)(’_5)]A2(S)\'%dW(s)) =0,
0

we have

1

E[Az(t)]ez"t = e[2A—(2+4c)]tE[A2(O)] + f 62)\[—(2+4c)(t—s)
0

X {2 uE|A(s)||A(s — 7)[]eMe’ e e M=)

+ 2¢E[|A(S)||A(s = )| JeM e N5 6=m)

+2DE[A%(s)]e™ e M} ds, (Ad)
that is

t
E[Az(t)]e%t = e[2}\—(2+4c)]tE[A2(O)] + f e[2}\-(2+4())](1—s)
0

X{2ueE[|A(9)[|A(s - 71)|]eMe ™
+2ceE[|A(s)||A(s - 72)|]e)‘se)‘(’_72)
+2DE[A%(s5)]e*M}ds. (A5)

Thus, we obtain
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E[Az(t)]e“t = e[zx—(2+4c)]tE[A2(O)]

t
. f P2A-H10-5) 452 1 MG (1)
0

+2¢eMG(1) + 2DG(1)],
and
E[A%(1)]e*t = E[A*(0)] + [(2+40) 2\
X (2ue™ + +2¢e™ +2D)G(r).
Now, we get
[(2 +4c) - 2\]G(f) = (2 + 4¢c — 2\)E[A%(0)]
+ 2ue™ +2¢e™ + 2D)G(1)
and
(2+4c -2\ —2uer = 2ce’ - 2D)G(1)
= (2 +4c—-2N\)E[A%(0)]. (A6)
Further, we can write
(2 +4c -2\ —2uer—2cer - 2D)E[A(1)]e*M
= (2+4c-2N-2uer—2cer - 2D)G(1)
= (2+4c-2NE[A%0)] = (2 +4¢)E[A*(0)], (A7)
which finally gives
(2 +4¢)E[A%(0)]
2+4c—2N\) = 2ueN = 2cer - 2D

-2\t

E[A%(1)] = (

(A8)

The proof is completed.
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