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We study random sequential adsorption of polydisperse mixtures of extended objects both on a triangular
and on a square lattice. The depositing objects are formed by self-avoiding random walks on two-dimensional
lattices. Numerical simulations were performed to determine the influence of the number of mixture compo-
nents and length of the shapes making the mixture on the kinetics of the deposition process. We find that the
late stage deposition kinetics follows an exponential law ��t���jam−A exp�−t /�� not only for the whole
mixture, but also for the individual components. We discuss in detail how the quantities such as jamming
coverage �jam and the relaxation time � depend on the mixture composition. Our results suggest that the order
of symmetry axis of the shape may exert a decisive influence on adsorption kinetics of each mixture
component.
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I. INTRODUCTION

Random sequential adsorption �RSA� is a classical model
of irreversible adsorption on substrates. A number of pro-
cesses in physics, chemistry, and biology, where the micro-
scopic events occur essentially irreversibly on the time scales
of the experiment, can be studied as random sequential ad-
sorption on a lattice. For example, the adsorption of large
particles such as colloids, proteins, or latexes on substrates is
often a highly irreversible process.

Random sequential adsorption, or irreversible deposition,
is a process in which the objects of a specified shape are
randomly and sequentially deposited onto a substrate. We
shall focus our attention on the monolayer deposition where
depositing objects are not allowed to overlap. The adsorbed
particles are permanently fixed at their spatial positions.
Once an object is placed it affects the geometry of all later
placements, so the dominant effect in RSA is the blocking of
the available substrate area. The deposition process ceases
when all unoccupied spaces are smaller than the size of an
adsorbed particle. The system is then jammed in a nonequi-
librium disordered state for which the limiting �jamming�
coverage �jam is less than the corresponding density of clos-
est packing. The kinetic properties of a deposition process
are described by the time evolution of the coverage ��t�,
which is the fraction of the substrate area occupied by the
adsorbed particles. For a review of RSA models see Refs.
�1–4�.

Exact solutions for RSA models are available for only two
limiting cases: deposition of k-mer particles on the linear
lattice in one dimension �5–7� and quasi-one-dimensional
systems �8,9�. The placing of an object on a line divides the
line into two independent systems that can be treated sepa-
rately. This is an essential property that has made analytic
progress possible and it does not exist for two-dimensional
lattices. Two-dimensional problems are most likely intrac-
table and Monte Carlo simulations remain one of the primary

tools for investigating deposition problems �10–15�.
The most interesting property of the RSA process is the

time dependence of the approach to the jammed state at large
times. Depending on the system of interest modeled by RSA,
substrate can be continuum or discrete. Approach to the jam-
ming coverage is known to be asymptotically algebraic for
continuum systems �16–19� and exponential for lattice mod-
els �10,11,20–22�. For the latter case the approach of the
coverage fraction to its jamming limit is given by the time
dependence

��t� = �jam − Ae−t/�, �1�

where A and � are parameters that depend on the shape, on
the orientational freedom of the objects, on the type of de-
positing particles—monodisperse or mixtures, etc.

There are numerous studies concerning the role of poly-
dispersity in irreversible deposition. Examples include binary
mixtures �23–25� and mixtures of particles obeying various
�uniform, Gaussian, power-law� size distributions �24,26,27�.
The deposition of two-component mixtures of line segments
on a square lattice is discussed in Ref. �28�. It is concluded
by numerical simulations that the mixtures cover the lattice
more efficiently than either of the species separately. Theo-
retical works were restricted only to binary mixtures of par-
ticles with very large size differences �6,29,30� and mixtures
with power-law size distribution of particles �27,31�. How-
ever, very little attention has been given to the similar mono-
layer growth by more than two species of different shape
and/or size �11,22�, despite the fact that the polydisperse case
is much closer to many real physical situations. In this paper
we focus our attention on the RSA of polydisperse mixtures
containing depositing objects of various shapes and sizes.

The results are obtained by Monte Carlo simulations. The
depositing objects are made by directed self-avoiding ran-
dom walks on a two-dimensional �2D� triangular lattice. On
a triangular lattice objects with a symmetry axis of first, sec-
ond, third, and sixth order can be formed. Rotational sym-
metry of order ns, also called ns-fold rotational symmetry,
with respect to a particular axis perpendicular to the triangu-
lar lattice, means that rotation by an angle of 2� /ns does not*vrhovac@scl.rs; URL: http://www.phy.bg.ac.yu/~vrhovac/
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change the object. For RSA of monodisperse particles �11�
and for the deposition of two-component mixtures �14� it has
been shown that the kinetics of the process depends mainly
on the symmetry properties of the objects.

In the case of polydisperse mixtures we investigate the
dependence of the deposition kinetics on the number of com-
ponents in the mixture and on the length of the walks making
the mixture, the influence of the symmetry properties of de-
positing objects, and we give the results not only for the
whole mixture, but also for the individual components. In
this paper we also report the results of numerical simulations
concerning adsorption of polydisperse mixtures of extended
objects on a square lattice. Section II describes the details of
the simulations. We give the simulation results and discus-
sions in Sec. III. Finally, Sec. IV contains some additional
comments and final remarks.

II. DEFINITION OF THE MODEL AND THE SIMULATION
METHOD

The polydisperse mixtures of extended objects on a two-
dimensional triangular lattice used in our simulations are
shown in Tables I–IV. Linear segments �k-mers� and angled
objects that constitute the ten-component mixtures of objects
of various sizes are presented in Tables I and II, respectively.
Triangles that constitute the five-component mixture are
shown in Table III. In Table IV three different shapes that
can be made by the self-avoiding walks of length l=2 are
shown. It should be noted that the size s of an object is taken
as the greatest projection of the walk that makes the object
on one of the six directions. Thus the size of a dot is s=0, the
size of a one-step walk is s=1, and for example, the size of
the first object in Table II is s=1.5 in lattice spacing.

The Monte Carlo simulations are performed on a 2D tri-
angular lattice of size L=128. Periodic boundary conditions
are used in all directions. The finite-size effects, which are
generally weak, can be neglected for object sizes �L /8 �10�.

At each Monte Carlo step a lattice site is selected at ran-
dom and one of the objects making the mixture is selected at

random. If the selected site is unoccupied deposition of the
selected object is tried in one of the six orientations. We fix
the beginning of the walk that makes the shape at the se-
lected site and search whether all successive l sites are un-
occupied. If so, we occupy these l+1 sites and place the
object. If the attempt fails, a new site and a new depositing
object from the mixture are selected at random. The jamming
limit is reached when neither of the objects can be placed in
any position on the lattice. This scheme is usually called
conventional or standard model of RSA. The other strategy
to perform an RSA, where we check all possible directions
from the selected site, is named the end-on model �11�.

Simulations were also performed for mixtures of self-
avoiding random walk chains of various lengths on a square
lattice of size L=128. Chains are modeled by self-avoiding
random walks of length l on a square lattice. A chain of
length l is a sequence of distinct vertices ��0 , . . . ,�l� such
that each vertex is a nearest neighbor of its predecessor, i.e.,
a chain of length l covers l+1 lattice sites. In the case of an

TABLE III. The partial jamming coverages �jam and the relax-
ation times � for the triangles of size s making a five-component
mixture as well as the total jamming coverage and the relaxation
time for the mixture. Each object occupies all comprised sites on
lattice.

Shape �jam �

s=1 0.3358�6� 9.80�15�

s=2 0.1635�4� 1.74�5�
… s=3 0.1260�5� 0.664�10�
… s=4 0.1131�8� 0.230�6�
… s=5 0.1108�7� 0.119�4�

Mixture 0.8492�2� 9.80�15�
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TABLE I. The partial jamming coverages �jam and the relax-
ation times � for the line segments of length l making a ten-
component mixture as well as the total jamming coverage and the
relaxation time for the mixture.

Shape �jam �

l=1 0.2960�3� 30.1�7�
l=2 0.1505�4� 9.78�20�

… l=3 0.1041�2� 5.05�10�
… l=4 0.0799�3� 2.62�7�
… l=5 0.0665�4� 1.43�4�
… l=6 0.0580�4� 1.04�4�
… l=7 0.0509�3� 0.84�3�
… l=8 0.0467�3� 0.62�2�
… l=9 0.0427�4� 0.41�1�
… l=10 0.0397�3� 0.30�1�

Mixture 0.9350�1� 30.1�7�

�
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�

�. ........................................................... � �

TABLE II. The partial jamming coverages �jam and the relax-
ation times � for the ten-component mixture of the angled objects
of size s, as well as the total jamming coverage and the relaxation
time for the mixture. Larger objects are made by repeating each step
of the basic object corresponding number of times.

Shape �jam �

s=1.5 0.3888�3� 57.3�9�

s=3 0.1343�4� 26.1�7�

… s=4.5 0.0771�3� 15.8�4�
… s=6 0.0532�3� 10.9�3�
… s=7.5 0.0408�4� 8.55�20�
… s=9 0.0330�4� 7.37�15�
… s=10.5 0.0291�4� 6.32�15�
… s=12 0.0254�4� 5.07�10�
… s=13.5 0.0230�5� 4.04�10�
… s=15 0.0207�2� 3.27�10�

Mixture 0.8255�3� 57.3�9�
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n-component mixture, n chains of fixed length l are made at
the beginning of each independent simulation. These chains
are deposited onto the lattice with equal probability. At each
deposition attempt one of the chains is selected at random, a
lattice site is selected at random and deposition of the chain
is tried in one of the four possible orientations. The jamming
limit for a specified mixture is reached when neither of the
chains making the mixture can be deposited in any position.

In all the simulations the time is counted by the number of
attempts to select a lattice site and scaled by the total number
of lattice sites. The data is averaged over 1000 independent
runs for each mixture of depositing objects.

III. RESULTS AND DISCUSSION

Example results for the time dependence of ln��jam
−��t�� are shown in Fig. 1, both for the five-component mix-
ture of line segments of lengths l=1,2 , . . . ,5 from Table I
and for the five-component mixture of triangles of various
sizes s=1,2 , . . . ,5 from Table III. We can see that for the
late stages of the process these plots are straight lines not
only for the mixtures, but also for each of the components.
Similar results are obtained for the deposition of mixture of
angled objects from Table II. This suggests that the approach
to the jamming limit is exponential of the form �1� both for
the mixture and for the components making the mixture.

The values of the partial jamming coverages �jam for the
components making the ten-component mixture of line seg-
ments of lengths l=1,2 , . . . ,10 are given in Table I, together
with the total jamming coverage for the mixture. The results
for the partial and total jamming coverages for the ten-
component mixture of angled objects are given in Table II,
and the results for the five-component mixture of triangles
are given in Table III. The values of the parameter � are
determined from the slopes of the plots of ln��jam−��t�� vs t
and they are given in the last column of each table. Param-
eter � determines how fast the lattice is filled up to the jam-
ming coverage �jam. All these results are also shown in Figs.
2 and 3. In Tables I–IV, the numbers in parentheses are the
numerical values of the standard uncertainty of �jam and �
referred to the last digits of the quoted value.

From Fig. 2 we can see that the partial jamming cover-
ages decrease very rapidly with the size of the objects. No-
ticeable drop in the partial coverage fraction is thus a clear
consequence of the enhanced frustration of the spatial ad-

sorption. At the beginning of the deposition process, when
the lattice is empty, the largest objects are deposited with
equal adsorption rate as the smallest ones. However, when
the lattice is partially filled with objects of various sizes, it is
much easier to place the smaller objects at random so that the
adsorption of large objects is suppressed. Moreover, the de-
crease of the partial jamming coverage with the size of the
objects is faster for the mixtures of asymmetric objects than
for the mixtures of more regular and symmetric shapes. In-
deed, if one examines the snapshots of patterns formed dur-
ing the deposition process, it can be observed that the growth
of domains precipitated during the early growth is very effi-
cient for the cases of line segments and triangles but is frus-
trated in the case of angled objects. The sizes of these do-
mains have significant influence on the kinetics of RSA in
the late phase of adsorption, resulting in smaller values of the
partial jamming coverage fraction in the case of less sym-
metric objects.

Moreover, the values of the parameter � are generally
greater for the mixtures of less symmetric objects �see Fig.
3�. This is in agreement with the results for monodisperse
deposition �11,14� according to which the rapidity of the ap-
proach to the jamming limit is slower for less symmetric
objects. The symmetry properties of the shapes have an es-
sential influence in the late times of the deposition process.
Namely, a shape with a symmetry axis of higher order has a
greater number of possible orientations for deposition into

TABLE IV. The partial and the total jamming coverages �jam

and the relaxation times � for the three-component mixture of vari-
ous objects of different rotational symmetries ns, but of the same
number of segments �=2.

Shape �jam �

ns=2 0.2877�3� 8.40�20�

ns=1 0.2958�5� 18.1�4�

ns=3 0.2935�5� 6.15�10�

Mixture 0.8770�2� 17.9�4�
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FIG. 1. �Color online� Plots of ln��jam−��t�� vs t for the five-
component mixture of �a� line segments of lengths l=1,2 , . . . ,5
�Table I� and �b� triangles of various sizes s=1,2 , . . . ,5 �Table III�.
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small isolated locations on the lattice and, therefore, an en-
hanced probability for deposition. The relaxation time � de-
creases rapidly with the size of the component making the
mixture, so that in the late times the kinetics of the deposi-
tion is determined mostly by the smallest objects in the mix-
ture. The reasons for these results are intuitively clear. Due to
the fact that the densification kinetics is dictated by geomet-
ric exclusion effects, in the competition for the deposition
between two objects of different number of segments the
smaller shape wins.

Dependence of the kinetics of the deposition process on
the number of components in the mixture is also studied. The
results for the jamming coverage �jam are shown for the mix-
ture of line segments in Fig. 4�a�, for the angled objects in
Fig. 4�b�, and for the triangles in Fig. 4�c�. For example, the
two-component mixture of line segments consists of the lines
of length l=1 and l=2, the three-component mixture is made
by adding a line segment of length l=3, and so on. An
n-component mixture contains lines of length l=1,2 , . . . ,n,
and all of them are adsorbed with equal probability. Mixtures
of the other two shapes, i.e., angled objects and triangles, are
made in a similar way.

As can be seen from Fig. 4, larger values of the total
jamming coverage fraction are reached by the deposition
process involving the line segments �k-mers� compared to a
similar process involving the angled objects. The pattern
formed during the deposition is made up of a large number
of domains. In the case of the deposition of line segments,
any such domain contains a large number of objects all close
to each other and parallel. However, the growth of domains
is substantially frustrated in the case of the angled objects.
This is reflected in the relatively low local packing of ad-
sorbed objects in the vicinity of a given object in the case of
the angled objects, as compared to the more symmetric line
segments, resulting in a smaller value of the jamming cover-
age fraction in the former case.

Figure 4 also shows that for the line segments and for the
triangles jamming coverages increase with n, in spite of the
fact that the number of components is always increased by
adding an object of a greater size. On the contrary, for the
angled objects there is a greater probability for blocking the
neighboring sites and the jamming coverage decreases with
the number of components in the mixture. For each n, the
plots of ln��jam−��t�� vs t are straight lines and the values of
the parameter � are obtained from the slopes of these lines.
These results are shown in Fig. 5. It is interesting that the
relaxation time � grows linearly with the number of compo-
nents in the mixture. As expected, this growth is slower for
more symmetric objects.
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FIG. 2. Dependence of the partial jamming coverages �jam on
the size s of the objects for �a� ten-component mixture of line seg-
ments �Table I�, �b� ten-component mixture of angled objects �Table
II�, and �c� five-component mixture of triangles �Table III�. For �jam

the error bars are smaller than the symbol size.
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FIG. 3. Dependence of the parameter � on the size s of the
objects for the ten-component mixture of angled objects �Table II�,
the ten-component mixture of line segments �Table I�, and the five-
component mixture of triangles �Table III�. For � the error bars are
smaller than the symbol size.
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A three-component mixture of various shapes is shown in
Table IV. These shapes are made by self-avoiding walks of
the same length l=2, but they differ in their symmetry prop-
erties. Plots of ln��jam−��t�� vs t for these objects are shown
in Fig. 6. The corresponding values of the partial and total
jamming coverages �jam and the values of the parameter �
are given in Table IV. The presented results suggest that at
late enough times, when the coverage fraction is sufficient to
make the geometry of the unoccupied lattice sites complex,
the rotational symmetries associated with specific shapes
have a substantial influence on the adsorption rate of the

mixture components. Indeed, more symmetric objects reach
their partial jamming coverage faster, i.e., the relaxation time
� is smaller for more symmetric components in the mixture.
Consequently, in the late stage of the process the kinetics of
the mixture deposition is determined practically by the depo-
sition of the least symmetric object in the mixture. At large
times, adsorption events take place on islands of unoccupied
sites. The individual islands act as selective targets for spe-
cific deposition events. In other words, there is only a re-
stricted number of possible orientations in which an object
can reach a vacant location, provided the location is small
enough. For a shape of a higher order of symmetry ns, there
is a greater number of possible orientations for deposition
into a selective target on the lattice. Hence, the increase of
the order of symmetry of the shape enhances the rate of
single particle adsorption. This is reflected in the fact that the
adsorption of asymmetric shapes is slower than the adsorp-
tion of more regular and symmetric shapes.

Some additional simulations have been performed for
mixtures of self-avoiding random walk chains of various
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FIG. 4. Dependence of the jamming coverage �jam on the num-
ber of components in the mixture for the mixtures of �a� line seg-
ments, �b� angled objects, �c� triangles. The number of components
n is always increased by adding an object of a greater size. Here the
error bars do not exceed the size of the symbols.
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ponents in the mixture for the mixtures of angled objects, line seg-
ments, and triangles. The number of components n is always in-
creased by adding an object of a greater size. The straight lines are
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�from bottom to top lines, respectively�. Here the error bars do not
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FIG. 6. �Color online� Plots of ln��jam−��t�� vs t for the three-
component mixture shown in Table IV.
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lengths on a square lattice. At the beginning of each indepen-
dent run which starts with an empty lattice, a mixture of n
randomly made chains was specified. Dependence of the to-
tal jamming coverage �jam on the length of the chains l is
shown in Fig. 7 for a ten-component mixture. The jamming
coverage �jam is found to decrease with the chain length l
according to an exponential law. The dashed line in Fig. 7
represents the exponential fit of the form

�jam = �0 + �1e−l/r, �3�

with parameters �0=0.4315, �1=0.5513, and r=10.73.
In the case of square lattice, the plots of ln��jam−��t�� vs

t are also straight lines in the late times of the deposition
process for all the mixtures. The dependence of the relax-
ation time � on the length l of the chains making the ten-
component mixture is shown in Fig. 8. As expected, the pa-
rameter � increases with the chain length.

Dependence of the jamming coverage �jam and the depen-
dence of the parameter � on the number of components mak-
ing the polydisperse mixture on a square lattice are shown in
Figs. 9 and 10, respectively. The number of components n is
always increased by adding a chain made by a walk of a
greater length, from n=1 and l=1 to n=12 and l
=1,2 , . . . ,12. From Fig. 9, it seems that the jamming cover-
ages fluctuate around �0.92. We find that the relaxation time
� grows logarithmically with the number of components n,
i.e., �� ln�kn�.

IV. CONCLUDING REMARKS

We have performed extensive numerical simulations of
the irreversible RSA using polydisperse mixtures composed
of extended objects on 2D lattices. The role that the polydis-
persity, size, and the symmetry properties of the shapes play
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domly chosen chains in a mixture. The number of components n is
always increased by adding a chain made by a walk of a greater
length. The dashed line represents the logarithmic fit of the form
�=A ln�kn�, with A=4.76�0.04 and k=1.41�0.05. The statistical
error bars do not exceed the size of the symbols.
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in the deposition process of a mixture have been studied. We
have performed a detailed analysis of the contribution to the
densification kinetics coming from each mixture component.
Approach to the jamming limit in the case of mixtures is
found to be exponential of the form �1�. Components also
reach their contribution to the jamming limit exponentially
with characteristic relaxation time � that depends on the
symmetry properties and size of the objects. Both the partial
jamming coverages and the corresponding relaxation times �
decrease very rapidly with the size of the objects making the
mixture. Hence, the asymptotic behavior of the coverage,
reaching eventually the jamming limit, is dominated by the
small particles. For the mixtures of lattice objects of different
rotational symmetries but of the same number of segments
the relaxation time � is smaller for more symmetric compo-
nents in the mixture.

Special attention is paid to the dependence of the densifi-
cation kinetics on the number of components n in the mix-
ture. We have analyzed the polydisperse mixtures in which
the size of shapes making the mixture gradually increases
with n. A strong dependence of the jamming limit �jam of
n-component mixtures on the shape of the adsorbed species
is obtained. We showed that for the mixtures of more sym-
metric shapes, such as line segments and triangles, jamming
coverage increases with n, contrary to the mixture of less

compact �angled� shapes where jamming coverage decreases.
It has been shown that the relaxation time � is linearly re-
lated to the number of components in the mixture. The slope
of � vs n lines decreases with the increase of the order of
rotational symmetry of the basic shape making the mixture.

We have also presented the numerical results of RSA for
mixtures of arbitrarily chosen self-avoiding random walk
chains on a square lattice. It is found that the total jamming
coverage decreases exponentially with the length of chains
making the mixture. We have observed a slow �logarithmic�
growth of the relaxation time � with the number of randomly
chosen components making a polydisperse mixture.

Recently, we have performed extensive numerical simula-
tions of the reversible RSA using binary mixtures composed
of the shapes of different number of segments and rotational
symmetries on a triangular lattice �32�. The presented nu-
merical analysis could be a first step toward dealing with
more complex situations, such as the case of reversible ad-
sorption of polydisperse mixtures of extended objects onto
2D lattices.
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