
Adsorption, desorption, and diffusion of k-mers on a one-dimensional lattice

I. Lončarević and Lj. Budinski-Petković
Faculty of Engineering, Trg D. Obradovića 6, Novi Sad 21000, Serbia

S. B. Vrhovac* and A. Belić
Institute of Physics, P.O. Box 68, Zemun, 11080 Belgrade, Serbia

�Received 28 March 2009; published 20 August 2009�

Kinetics of the deposition process of k-mers in the presence of desorption or/and diffusional relaxation of
particles is studied by Monte Carlo method on a one-dimensional lattice. For reversible deposition of k-mers,
we find that after the initial “jamming,” a stretched exponential growth of the coverage ��t� toward the
steady-state value �eq occurs, i.e., �eq−��t��exp�−�t /����. The characteristic time scale � is found to decrease
with desorption probability Pdes according to a power law, �� Pdes

−� , with the same exponent �=1.22�0.04 for
all k-mers. For irreversible deposition with diffusional relaxation, the growth of the coverage ��t� above the
jamming limit to the closest packing limit �CPL� �CPL is described by the pattern �CPL−��t��E��−�t /����,
where E� denotes the Mittag-Leffler function of order �� �0,1�. Similarly to the reversible case, we found that
the dependence of the relaxation time � on the diffusion probability Pdif is consistent again with a simple
power-law, i.e., �� Pdif

−� . When adsorption, desorption, and diffusion occur simultaneously, coverage always
reaches an equilibrium value �eq, which depends only on the desorption/adsorption probability ratio. The
presence of diffusion only hastens the approach to the equilibrium state, so that the stretched exponential
function gives a very accurate description of the deposition kinetics of these processes in the whole range
above the jamming limit.
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I. INTRODUCTION

The process of random sequential adsorption �RSA� mod-
els a large variety of physical, chemical, and biological pro-
cesses where events occur essentially irreversibly, and where
equilibration due to spatial diffusion is slow compared to the
time scales of interest �1–3�. Learning about the mechanisms
and kinetics of these phenomena is of a fundamental impor-
tance in a large field of applications which include the depo-
sition of colloidal particles, polymer chains and proteins on a
surface �4–7�.

In the RSA model, particles are added randomly and se-
quentially onto a substrate without overlapping each other.
RSA model assumes that deposited particles can neither dif-
fuse along, nor desorb from the surface. The kinetic proper-
ties of a deposition process are described by the time evolu-
tion of the coverage ��t�, which is the fraction of the
substrate area covered by the adsorbed particles. Within a
monolayer deposit, each adsorbed particle affects the geom-
etry of all later placements. Due to the blocking of the sub-
strate area by the already randomly adsorbed particles, at
large times the coverage approaches the jammed-state value
� jam, where only gaps too small to fit new particles are left in
the monolayer. The resulting state is less dense than the fully
ordered close packed coverage.

Depending on the system of interest, the substrate can be
continuum or discrete. Asymptotic approach of the coverage
fraction ��t� to its jamming limit � jam=��t→	� is known to
be given by an algebraic time dependence for continuum
systems �8–12�. For lattice RSA models the approach to the
jamming coverage is exponential �13–18�,

��t� = � jam − Ae−t/
, �1.1�

where A and 
 are parameters that depend on the details of
the model, such as shape and orientational freedom of depos-
iting objects.

However, in many real physical situations it is necessary
to consider the possibility of desorption or diffusion of de-
posited particles �19–22�. Allowing desorption makes the
process reversible and the system ultimately reaches an equi-
librium state. The density of particles in the steady state is a
function only of the desorption to adsorption rate ratio
�23,24�. Approach of the coverage to its equilibrium value
was found to be exponential for the adsorption-desorption
processes on a line �23�. However, a power-law time depen-
dence of the coverage followed by an exponential relaxation
to equilibrium was suggested for the reversible RSA of
k-mers on a one-dimensional �1D� lattice �25�. Results of the
numerical simulations of reversible RSA on a triangular lat-
tice obtained for a wide variety of object shapes �26� showed
an excellent agreement of the relaxation dynamics with the
Mittag-Leffler function which is a natural generalization of
the exponential function. Much attention has been paid to the
adsorption-desorption processes on continuum substrates,
but there are very few studies concerning the adsorption-
desorption processes even on one-dimensional lattices.

Adsorption processes with diffusional relaxation are
widely studied �27–29� because of their relevance to various
systems where diffusional rearrangement of deposited par-
ticles is observable on the time scales of the deposition pro-
cess. At very early times of the process, when the coverage is
small, the adsorption process is dominant. With the growth
of the coverage, diffusion becomes more important and at the
late times additional adsorption events are possible only on*slobodan.vrhovac@scl.rs; http://www.phy.bg.ac.rs/~vrhovac/
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the holes formed by the diffusion of the adsorbed objects. On
a one-dimensional lattice RSA with diffusional relaxation fi-
nally leads to a fully covered lattice. In two dimensions such
processes lead to formation of large clusters of covered sites.
After long enough times only few frozen defects, whose di-
mensions are less than the dimensions of the depositing ob-
jects, remain unoccupied �30�. For irreversible deposition
with diffusional relaxation most of the authors propose a
power-law time dependence of the coverage at the late stages
of deposition �27–29�.

Despite of the relative simplicity of one-dimensional
problems, there are no exact results for adsorption-
desorption processes, nor for irreversible deposition with dif-
fusional relaxation on the 1D lattice. Here we present the
results of extensive numerical simulations of the reversible
RSA and of the deposition with diffusional relaxation of
k-mers on the 1D lattice. We also study the case where all
three processes, adsorption, desorption, and diffusion, are
present simultaneously. We focus our attention on the
intermediate- to long-time behavior of the coverage fraction
��t�. In particular, we try to find a universal functional type
that describes the growth of the coverage ��t� in the whole
range above the jamming limit � jam in the best way.

The paper is organized as follows. Section II describes the
details of the simulations. Approach of the coverage fraction
��t� to the equilibrium coverage in the case of adsorption-
desorption processes is discussed in Sec. III. Results of the
simulations of the adsorption processes with diffusional re-
laxation are analyzed in Sec. IV, and the results for the case
where all three processes—adsorption, desorption, and diffu-
sion are present simultaneously are given in Sec. V. Finally,
Sec. VI contains some additional comments and final re-
marks.

II. SIMULATION METHOD

The Monte Carlo simulations of adsorption-desorption
processes, adsorption processes with diffusional relaxation
and processes where adsorption, desorption, and diffusion
are present simultaneously are performed on a one-
dimensional lattice of size L=105 with a periodic boundary
condition. The adsorbing objects are k-mers covering k=2, 4,
6, 8, and 10 sites. Adsorption, desorption and diffusion at-
tempts are statistically independent and they perform sequen-
tially with corresponding probabilities. The time t is counted
by the number of adsorption attempts and scaled by the total
number of lattice sites L. The data are averaged over 100
independent runs for each of the investigated processes and
for each choice of k-mer.

At each Monte Carlo step adsorption is attempted with
probability Pa and desorption with probability Pdes. In the
case of adsorption-desorption processes the kinetics is gov-
erned by the ratio of desorption to adsorption probability
Pdes / Pa �20,26�. Since we are interested in the ratio Pdes / Pa,
in order to save computer time, it is convenient to take the
adsorption probability to be Pa=1. For each of these pro-
cesses a lattice site is selected at random. In the case of
adsorption, we try to place the k-mer with the beginning at
the selected site, i.e., we search whether k consecutive sites

in a randomly chosen direction are unoccupied. If so, we
place the object. Otherwise, we reject the deposition trial.
When the attempted process is desorption, and if a beginning
of a deposited k-mer is at the selected site, the object is
removed from the layer.

In the simulations of adsorption processes with diffusional
relaxation only the ratio of diffusion to adsorption probabil-
ity is relevant. At each Monte Carlo step adsorption is tried
with probability Pa=1 and diffusion with probability Pdif. In
the case of adsorption a lattice site is selected at random and
deposition of a k-mer with the beginning at the selected site
is tried. When the attempted process is diffusion and if there
is a beginning of the deposited object at the randomly se-
lected site, we choose one of the two possible directions at
random and try to move the selected k-mer for a lattice con-
stant in that direction. The object is moved if it does not
overlap with any of the deposited objects. On the contrary,
the attempt is abandoned.

When adsorption, desorption, and diffusion perform si-
multaneously, the kinetics of the process is determined by the
ratios of both desorption/adsorption and diffusion/adsorption
probabilities �31�. At each Monte Carlo step adsorption is
attempted with probability Pa=1, desorption with probability
Pdes and diffusion with probability Pdif. For each of these
processes a lattice site is selected at random. In the case of
adsorption, we try to place the k-mer with the beginning at
the selected site. When the attempted process is desorption,
and provided that the selected site is a beginning of a depos-
ited k-mer, the object is removed from the layer. If the at-
tempted process is diffusion, and if there is a beginning of a
previously deposited object at the randomly selected site, we
choose one of the two possible directions at random and try
to move the k-mer for a lattice constant in that direction.

III. ADSORPTION-DESORPTION PROCESSES ON A
ONE-DIMENSIONAL LATTICE

Adsorption-desorption processes on one-dimensional sub-
strates display a surprisingly complex kinetics �21,25�. Here
we consider the case of rapid adsorption and slow desorption
�Pdes / Pa�1�. Then there exist two time scales controlling
the evolution of the coverage ��t�. The first stage of the
process is dominated by adsorption events and the kinetics
displays an RSA-like behavior. With the growth of the cov-
erage the desorption process becomes more and more impor-
tant. Increasing the coverage over the jamming limit is pos-
sible only due to the collective rearrangement of the
adsorbed particles in order to open a hole large enough for
the adsorption of an additional particle. We are interested in
the approach to the equilibrium coverage in this later, post-
jamming time range.

Simulations of the adsorption-desorption processes of
k-mers were performed for a wide range of desorption prob-
abilities and for all k�10. On the basis of these results we
have examined different functional forms looking for a func-
tion that gives the best fit to our simulation results. We find
that the stretched exponential relaxation of the form

��t� = �eq − 
� exp�− �t/���� �3.1�

describes the approach to the equilibrium state in a very pre-
cise manner. The values of the equilibrium coverage �eq, the
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parameter 
� and the relaxation time � depend on the length
of the k-mer and on the desorption probability.

In order to gain an additional confirmation of the
stretched exponential behavior in the case of adsorption-
desorption processes, we can make the analysis that follows.
Function �3.1� can be written as

���t� = 
� exp�− �t/���� , �3.2�

where ��=�eq−��t�. Differentiation of Eq. �3.2� gives

d���t�
dt

= − 
� exp�− �t/����
�

�
� t

�
��−1

, �3.3�

i.e.,

−
1

���t�
d���t�

dt
=

�

�� t�−1. �3.4�

From Eq. �3.4� it follows

−
d

dt
�ln����t��� =

�

�� t�−1, �3.5�

which means that a double logarithmic plot of the derivative
of ln����t�� vs t is a straight line in the case of the stretched
exponential function �3.1�.

The derivatives of ln����t�� are calculated numerically for
the data obtained by Monte Carlo simulations of adsorption-
desorption processes. The double logarithmic plots of
−d�ln����t��� /dt are straight lines for all the k-mers and for
all values of desorption probabilities. Representative ex-
amples of such plots are shown in Fig. 1 for k=2, 4, 8 and
Pdes=0.005. This suggests that the relaxation to the equilib-
rium state in the case of adsorption-desorption processes on
the one-dimensional lattice is well described by the stretched
exponential function of the form �3.1�. Values of the fitting
parameters � and � are determined from the slopes of these

lines. The fitting values of the parameter 
� are obtained for
each pair �� ,�� by using the least-squares method.

In Figs. 2 and 3 results of the numerical simulations are
shown together with the stretched exponential fitting func-
tions where the corresponding parameters �, �, and 
� are
obtained as described above. The plots of the simulation data
and the corresponding stretched exponential functions are
given in Fig. 2 for three different k-mers for Pdes=0.01 and
in Fig. 3 for three different desorption probabilities for k=6.
We can see that the stretched exponential fitting function
shows an excellent agreement with the simulation results in
the region above the jamming coverage.

Dependence of � on the desorption probability is shown
on a double logarithmic scale in Fig. 4. For all the k-mers
these plots are straight lines approximately parallel to each
other, indicating that the relaxation time � is a simple power-
law of the desorption probability
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FIG. 1. �Color online� Test for the presence of the stretched
exponential law �Eq. �3.1�� in the time dependence of coverage ��t�
for k=2 �red, bottom curve�, k=4 �blue, middle curve�, and k=8
�green, upper curve�. Straight line sections of the curves show
where the law holds. The dashed lines are power-law fits of Eq.
�3.5�. All the results are for Pdes=0.005.
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FIG. 2. �Color online� Temporal behavior of the coverage ��t�
for k=2 ���, k=4 ���, and k=8 ��� in the case of reversible RSA.
The continuous curves are the stretched exponential fits of Eq.
�3.1�, with the parameters � and � given in Figs. 4 and 5, respec-
tively. All the results are for Pdes=0.01.
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FIG. 3. �Color online� Temporal behavior of the coverage ��t�
for Pdes=0.001 ���, Pdes=0.01 ���, and Pdes=0.02 ���. The con-
tinuous curves are the stretched exponential fits of Eq. �3.1�, with
the parameters � and � given in Figs. 4 and 5, respectively. All the
results are for k=6.

ADSORPTION, DESORPTION, AND DIFFUSION OF k-… PHYSICAL REVIEW E 80, 021115 �2009�

021115-3



� = APdes
−� , �3.6�

with the same exponent �=1.22�0.04 for all k-mers. The
parameter A depends on the length of the k-mer.

As seen in Figs. 2 and 4, the shorter k-mers have larger
values of the relaxation time �. This means that the deposi-
tion dynamics gets drastically slower when k decreases, es-
pecially for low values of Pdes. A qualitative interpretation of
these results can be attained by exploiting the mechanism of
collective events for governing the late-time changes in the
coverage fraction. In the initial stages of the process, desorp-
tion events are negligible compared to adsorption. When a
value of � jam is reached, the rare desorption events are gen-
erally followed by immediate readsorption. The total number
of particles is not changed by these single-particle events.
However, when one badly sited object desorbs and two par-
ticles adsorb in the opened good locations, then the number
of particles is increased by one. On the contrary, if two well
sited objects desorb and a single object adsorbs in their stead,
the number of particles is decreased by one. These collective
events are responsible for the density growth above � jam
�20,32�. The length of the k-mers have a crucial influence on
the filling of small isolated targets on the lattice that are left
for deposition in the late times of the process. Indeed, for the
shorter k-mer there is a greater number of possible isolated
locations for deposition and an enhanced probability for
readsorption. Hence, the decrease of the length of the k-mer
enhances the rate of single-particle readsorption. This ex-
tends the mean waiting time between consecutive two-
particle events responsible for the coverage growth and
causes a slowing down of the densification.

Dependence of the fitting parameter � on the desorption
probability is shown in Fig. 5 for k=2,4 ,6 ,8 ,10. We can see
that the stretching exponent � depends on the ratio Pdes / Pa.
For small values of Pdes / Pa the coverage fraction does not
significantly change near the jamming limit � jam and the evo-
lution takes place on a much wider time scale. In other
words, the smaller are the values of Pdes / Pa, the longer the

system remains around the jamming limit. This dynamical
behavior is characterized by the small values of the stretch-
ing exponent � and can be associated with the competition of
single and multiparticle events. Indeed, the single-particle
events are capable of bringing the system to its jamming
limit � jam in a given time t. If t was small enough compared
to the two-particle transition rate, the system would stay at
��t��� jam until the two-particle events contributed to the
dynamics. This results in the plateau in the time evolution of
the coverage fraction near the jamming limit. This is illus-
trated in Fig. 3, which shows the ending of plateau in cov-
erage ��t� just above the jamming limit � jam=0.7794 for
Pdes=0.001. The length of this plateau is controlled by the
ratio Pdes / Pa and the object size, as these quantities deter-
mine the transition rates both for two “well-placed” particles
to one “not well-placed” particle and one not well-placed
particle to two well-placed particles �20,25�. It is obvious
that this relaxation behavior disappears in the regime of
strong desorption, Pdes→1, when the stretching exponent
�→1.

IV. RSA WITH DIFFUSIONAL RELAXATION

In this section we report the numerical studies of the ef-
fects of diffusion on RSA in 1D. Looking for a function that
gives the best fit to the coverage fraction ��t� in the case of
irreversible deposition with diffusional relaxation, we have
tried the wide set of phenomenological fitting functions for
relaxation processes in many complex disordered systems
�33�. The best agreement with our simulation data was ob-
tained by the Mittag-Leffler function. The fitting function we
have used is of the form

��t� = �CPL − 
�E��− �t/���� , �4.1�

where �CPL, 
�, �, and � are the fitting parameters. Param-
eter � determines the characteristic time of the coverage evo-
lution and � measures the rate of deposition process on this
time scale. When the deposited k-mers are subject to diffu-
sion, the coverage fraction approaches the closest packing
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FIG. 4. Parameter � of the stretched exponential fit �Eq. �3.1�� vs
desorption probability Pdes for the cases of k=2,4 ,6 ,8 ,10. The
dashed lines are the power-law fits of Eq. �3.6�, with the same
exponent �=1.22�0.04 for all the k-mers.
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FIG. 5. Parameter � of the stretched exponential fit �Eq. �3.1��
vs desorption probability Pdes for the cases of k=2,4 ,6 ,8 ,10.
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limit �CPL for large times, t→	; in the case of 1D lattice,
�CPL=1 �27,29�. In Eq. �4.1�, E� denotes the Mittag-Leffler
function of order � �34�. It is defined through the inverse
Laplace transform L

E��− �t/���� = L��u + �−�u1−��−1� , �4.2�

from which the series expansion

E��− �t/���� = 	
n=0

	
�− �t/����n

��1 + �n�
, �4.3�

can be deduced; in particular, E1�−t /��=exp�−t /��. The
Mittag-Leffler function interpolates between the initial
stretched exponential form

E��− �t/���� 
 exp�−
1

��1 + ��
�t/����, t � � , �4.4�

and the long-time power-law behavior

E��− �t/���� 

1

��1 − ��
�t/��−�, t � � . �4.5�

Using Eqs. �4.1�, �4.4�, and �4.5� one obtains that the time
dependence of the coverage behaves as

��t� 
 �CPL − 
� exp�−
1

��1 + ��
�t/����, t � � , �4.6�

and

��t� 
 �CPL − 
�
1

��1 − ��
�t/��−�, t � � . �4.7�

The Mittag-Leffler fits of the coverage fraction ��t� are
shown in Fig. 6 for three different k-mers �k=2,4 ,8� and
for Pdif =0.7. Furthermore, in Fig. 7 we also present the
fits to Eq. �4.1� in the case of 4-mers for three values of

Pdif =0.1,0.5,1.0. We can see that the Mittag-Leffler func-
tion gives an excellent agreement with the simulation data
forcoverages above the � jam. Also included in Fig. 7 are the
comparisons of the Mittag-Leffler fits �Eq. �4.1�� and the
power-law fits of the form

��t� = �CPL − 
�t−�, �4.8�

where 
� and � denote the fitting parameters that depend on
the length of k-mer and on the diffusion probability Pdif. As
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FIG. 6. �Color online� Temporal behavior of the coverage ��t�
for k=2 ���, k=4 ���, and k=8 ��� in the case of irreversible
deposition with diffusional relaxation. The continuous curves are
the Mittag-Leffler fits of Eq. �4.1�. All the results are for Pdif =0.7.
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FIG. 7. �Color online� Temporal behavior of the coverage ��t�
�circles� for k=4 and for: �a� Pdif =0.1, �b� Pdif =0.5, and �c� Pdif

=1.0. The continuous curves are the Mittag-Leffler fits of Eq. �4.1�,
and the dashed curves are the power-law fits of Eq. �4.8�.
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it can be seen, at the late times of the deposition process the
coverage fraction ��t� approaches the closest packing limit
according to a power law �Eq. �4.8�� which is in agreement
with the previous results �27–29�. In 1D, the power-law be-
havior is related to the coverage growth at large times by the
process of hopping and recombination of small empty re-
gions �27�. The values for parameter � obtained by least-
square fits of the coverage ��t� for large t are roughly con-
sistent with the mean-field relation 1−��t-“ large”�� t1/�k−1�

for k�3 �27,35�. Our simulation results for � exceed the
mean-field values about 6% in the whole range of diffusion
probability Pdif considered. For the deposition of dimers �k
=2� we find that the closest packing limit �CPL=1 is ap-
proached according to the 
1 /
t power-law �27,35�.

It is obvious that the Mittag-Leffler fit �Eq. �4.1�� pre-
cisely describes the adsorption process with diffusional re-
laxation on a wider time scale than the power law �Eq. �4.8��.
It must be stressed that the Mittag-Leffler pattern �Eq. �4.1��
is consistent with the power-law behavior for large times.
Indeed, according to �Eq. �4.7�� the Mittag-Leffler function
behaves as the power-law function for the late times of the
process.

A double logarithmic plot of the relaxation time � vs the
diffusion probability Pdif shown in Fig. 8 for k=4 suggests a
simple power-law dependence of � on Pdif,

� = APdif
−� . �4.9�

Similar plots are obtained for all k-mers, but with different
slopes. The values of the parameter � obtained from these
slopes are �=1.46�0.02, 1.76�0.03, 3.13�0.03,
3.64�0.04, and 3.58�0.05 for k=2, 4, 6, 8, and 10, respec-
tively.

V. ADSORPTION-DESORPTION PROCESSES WITH
DIFFUSIONAL RELAXATION

Here we consider the general case of reversible RSA
of k-mers on 1D lattice in the presence of diffusion. The

simulations are performed for a wide range of desorption and
diffusion probabilities. When adsorption, desorption, and dif-
fusion perform simultaneously, system always reaches an
equilibrium state. The equilibrium coverage �eq depends only
on the desorption/adsorption probability ratio �31,36� and the
presence of diffusion only hastens the approach to the equi-
librium state. This is illustrated in Fig. 9 where the time
dependence of the coverage ��t� in the case of reversible
deposition of 4-mers is shown for various values of diffusion
probabilities, Pdif =0.1, 0.2, 0.5, and 1.0. As can be seen at
coverages above � jam, the rearrangement of the k-mers on the
lattice is more rapid and the equilibrium is reached more
quickly for greater diffusion probabilities.

We could say that the nature of the time behavior of the
coverage in the adsorption-desorption processes with diffu-
sional relaxation is predominantly determined by the pres-
ence of desorption. The system always reaches a steady state
in which the adsorption flux is exactly balanced by the de-
sorption flux. The stretched exponential function, used as the
fitting function for the adsorption-desorption processes �Eq.
�3.1��, gives a very accurate description of the deposition
kinetics of these processes. The values of the fitting param-
eters � and � are obtained using the double logarithmic plots
of derivatives of ln����t��, as in the case of the adsorption-
desorption processes �see Eq. �3.5��. Results of the simula-
tions and the corresponding fitting functions are given in Fig.
10 for three different combinations of desorption and diffu-
sion probabilities.

Dependence of the relaxation time � on the diffusion
probability is shown in Fig. 11 for a few fixed desorption
probabilities in the case of 4-mers. Similar dependence is
obtained for other k-mers. The linear fits through the data
points suggest that in the presence of desorption the relax-
ation time shows a simple power-law dependence on the dif-
fusion probability, of the same form �4.9� as in the case of
irreversible deposition with diffusional relaxation. For fixed
diffusion probabilities � decreases with desorption probabil-
ity as shown in Fig. 12 for k=4.
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FIG. 8. Parameter � of the Mittag-Leffler fit �4.1� vs diffusion
probability Pdif for k=4. The dashed curve is the power-law fit of
Eq. �4.9�, with �=1.76�0.03 and A=0.25�0.01.
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FIG. 9. �Color online� Temporal behavior of the coverage ��t�
for k=4 and for Pdif =0.1 �red, solid�, Pdif =0.2 �green, long
dashed�, Pdif =0.5 �blue, short dashed�, and Pdif =1.0 �violet, dot-
ted�. All the results are for Pdes=0.005.
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VI. CONCLUSIONS

We have investigated numerically the kinetics of deposi-
tion process of k-mers on a 1D lattice in the presence of
desorption or/and diffusion of particles. We focused on the
time evolution of the coverage ��t� in the whole postjam-
ming time range ���t��� jam�. In order to obtain the best
agreement with our simulation data, a systematic approach
was made by examining a wide variety of phenomenological
fitting functions as candidates for slow relaxation processes
in our system.

First, it was shown that the stretched exponential behavior
�Eq. �3.1�� excellently describes the coverage dynamics
above the jamming limit in the case of reversible deposition
of k-mers. We have also pointed out the importance of mul-

tiparticle transitions for governing the late-time behavior of
the coverage.

The adsorption-desorption model is frequently used by
many authors to reproduce qualitatively the densification ki-
netics and other features of weakly vibrated granular materi-
als �21,22,37�. The model describes the density relaxation of
a given slice of a granular material, perpendicular to the
tapping force. As a result of a tapping event, particles leave
the layer at random �desorption events�. Compaction pro-
ceeds when particles fall back into the layer under the influ-
ence of gravity �adsorption events�. The ratio of desorption
to adsorption probability, Pdes / Pa, within the model plays a
role similar to that of the intensity of vibration in real experi-
ments. Note that the dynamics of the reversible RSA model
depends on the excluded volume and geometrical frustration,
just as in the case of granular compaction. Different laws
have been proposed for increasing packing fraction of a
granular material with the number of taps �38�. More re-
cently, Bideau and co-workers �39,40� have found experi-
mentally that the compaction dynamics is consistent with the
stretched exponential law �Eq. �3.1��. Hence, we have di-
rectly confirmed that the reversible RSA model on a 1D lat-
tice describes the slow relaxation and dynamics of compac-
tion in real granular systems in an excellent way.

We found that when diffusion is introduced in RSA pro-
cesses, the growth of the coverage ��t� above the jamming
limit � jam to the closest packing limit �CPL�1 occurs via the
Mittag-Leffler law �Eq. �4.1��, for all values of k and all
diffusion probabilities Pdif. The characteristic time scale � is
found to decrease with the diffusion probability Pdif accord-
ing to a power law �Eq. �4.9��, �� Pdif

−� . This kind of power-
law scaling was also observed in the stretched exponential
fits �Eq. �3.1�� of the coverage fraction in lattice based re-
versible RSA model �Sec. III�. We have shown that the pa-
rameter � in this model decreases algebraically with desorp-
tion probability Pdes, as in Eq. �3.6�.

In any realistic systems, adsorption, desorption, and dif-
fusional relaxations should all occur simultaneously with
nonzero probabilities. In that case, our results indicate the
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FIG. 10. �Color online� Temporal behavior of the coverage ��t�
for k=2 ���, k=4 ���, and k=8 ��� in the case of reversible RSA
with diffusional relaxation. The continuous curves are the stretched
exponential fits of Eq. �3.1�. The simulation parameters �Pdes , Pdif�
are �0.005, 0.2�, �0.01, 0.1�, and �0.002, 0.5� for k=2,4 ,8,
respectively.
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FIG. 11. Parameter � of the stretched exponential fit �Eq. �3.1��
vs diffusion probability Pdif for the cases of Pdes

=0.001,0.002,0.005,0.01,0.02. The dashed lines are the power-
law fits of Eq. �4.9�, with exponent �� �0.7–1.0�. All the results are
for k=4.
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FIG. 12. Parameter � of the stretched exponential fit �Eq. �3.1��
vs desorption probability Pdes for the cases of Pdif

=0.1,0.2,0.4,0.6,0.8,1.0. All the results are for k=4. The dashed
lines are a guide to the eyes.
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same postjamming kinetics as for Pdif =0 �see, Eq. �3.1��.
The possibility of diffusion of the objects hastens the evolu-
tion of the coverage toward the steady-state value �eq that
depends only on the desorption/adsorption probability ratio.
In the presence of diffusion, equilibrium is always reached
for shorter time than in the case of a pure adsorption-
desorption process.
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