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on a triangular lattice
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The properties of the anisotropic random sequential adsorption (RSA) of objects of various shapes on a
two-dimensional triangular lattice are studied numerically by means of Monte Carlo simulations. The depositing
objects are formed by self-avoiding lattice steps, whereby the first step determines the orientation of the object.
Anisotropy is introduced by positing unequal probabilities for orientation of depositing objects along different
directions of the lattice. This probability is equal p or (1 − p)/2, depending on whether the randomly chosen
orientation is horizontal or not, respectively. Approach of the coverage θ (t) to the jamming limit θjam is found to
be exponential θjam − θ (t) ∝ exp(−t/σ ), for all probabilities p. It was shown that the relaxation time σ increases
with the degree of anisotropy in the case of elongated and asymmetrical shapes. However, for rounded and
symmetrical shapes, values of σ and θjam are not affected by the presence of anisotropy. We finally analyze the
properties of the anisotropic RSA of polydisperse mixtures of k-mers. Strong dependencies of the parameter σ

and the jamming coverage θjam on the degree of anisotropy are obtained. It is found that anisotropic constraints
lead to the increased contribution of the longer k-mers in the total coverage fraction of the mixture.
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I. INTRODUCTION

Deposition, or adsorption, of extended objects at differ-
ent surfaces is of considerable interest for a wide range
of applications in biology, nanotechnology, device physics,
physical chemistry, and materials science [1,2]. Typically,
such objects range in size from submicrometer scale down to
nanometers, and, depending on the application in question, the
objects could be polymers, globular proteins, nanotubes, DNA
segments, oligonucleotides, or general geometrical shapes
such as discs, polygons, etc. Early studies have focused on
deposition of regular shapes on spatially homogeneous, regular
substrates [3], but recent interest has shifted to deposition of
irregular objects on prepatterned or otherwise structured or
inhomogeneous surfaces [4–7]. In real experimental situations
these include minerals, pigments, biological membranes,
wafers, and other substrates that are inherently heterogeneous.
When the patterning scale is comparable to the object size, the
underlying pattern alters surface-object interaction, thus im-
posing modified morphology and dynamics of the deposition
process. For instance, patterning of substrates can be used to
promote more stable and regular adsorption at desired substrate
sites, as in, e.g., DNA arrays [8,9]. Thus, understanding the
impact of surface topography and/or heterogeneity is essential
for controlling the adsorption process.

Theoretically, several models have been developed to
capture the basic physics of this situation, and by far the most
studied is that of random sequential adsorption (RSA) [3]. In
this model particles (objects) are sequentially deposited on the
randomly chosen site of the substrate. When deposited, such
objects are irreversibly attached to the site. If the chosen site
is already occupied, the deposition is rejected, the particle is
discarded, and the deposition is next attempted at a different
randomly chosen site. Note that, in this process, particle-
particle and particle-substrate interactions are modeled solely
by geometrical and other features included in the deposition
procedure. Excluded volume, or particle-particle interaction,

is incorporated by rejection of deposition overlap, while the
particle-substrate interaction is modeled by the irreversibility
of deposition. In real RSA simulations, the substrate is usually
modeled by some two-dimensional (2D) regular lattice (array
of points) [10]. The kinetic properties of a deposition process
are described by the time evolution of the coverage θ (t),
which is the fraction of the substrate area occupied by the
adsorbed particles. With this setup, one is typically interested
in long-term behavior of the coverage fraction. Specifically,
after a sufficiently long time, the deposited layer will reach
“jamming limit” when no further deposition of particles is
possible. Approach to the jamming coverage with time is
known to be asymptotically algebraic for continuum systems
[11–14] and exponential for lattice models [15–18]. For the
latter case the approach of the coverage fraction to its jamming
limit is given by the time dependence:

θ (t) ∼ θjam − �θ exp(−t/σ ), (1)

where parameters θjam, �θ , and σ depend on the shape and
orientational freedom of depositing objects [17,18].

In order to account for inhomogeneous surfaces in our
RSA model, we have introduced anisotropy in the deposition
procedure. Namely, even when the deposition at a randomly
chosen site is allowed, the probability for deposition is
different along different directions of the underlying lattice (in
this work we consider a triangular lattice as a substrate). This
simple modification introduces preferential direction in the
deposition process and, depending on the shape of deposited
objects, imposes this specific “patterning” on the deposited
layer. This is particularly striking in the case when the mixture
of objects (which we also study) is deposited; anisotropy may
favor deposition of one kind over the other.

To the best of our knowledge, there are no reports on the
anisotropic RSA of shapes other than dimers on a square
lattice. Oliveira et al. [19] have studied anisotropic RSA
of dimers on a square lattice by Monte Carlo simulation
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and the time-series expansion. Interestingly, they reported
that the jamming coverage has a discontinuity at vanishing
probability of choosing vertical bonds to place a dimer.
Recently, percolation and jamming phenomena have been
investigated for anisotropic sequential deposition of dimers
on a square lattice [20]. In particular, this model is useful for
description of isolator-(semi)conductor phase transition upon
aligned deposition of the prolate objects on a substrate [21].

Considerable numerical studies have been devoted to the
2D deposition of randomly oriented anisotropic (elliptical
and rectangular) particles with both position and orientation
sampled from a random distribution [16,22–26]. In these
systems, the deposition process evolves in two regimes. During
the first stage objects can fall at random, and nearly every
adsorption attempt is successful. Thereafter only particles of
orientation similar to that of the already deposited particles
will successfully adsorb, which slows down the kinetics. This
produces an ordering effect and better packing since parallel
objects tend to cluster, forming large oriented domains in the
jamming limit [16,27].

The effect of size polydispersity on the growth of deposition
structures was mainly studied to obtain their jamming limits
and their late-time kinetics. Studies include binary mixtures
[28–31] and mixtures of particles obeying various (uniform,
Gaussian, power-law) size distributions [29,32–34]. Theoreti-
cal works were restricted only to binary mixtures of particles
with very large size differences [35–37] and mixtures with
power-law size distribution of particles [33,38]. It is concluded
that the mixtures cover the lattice more efficiently than either
of the species separately [36,39]. Recently, more attention has
been given to the monolayer growth by several species of
different shape and/or size [18,31].

The main goal of the present study is to investigate
the interplay between the anisotropy of deposition and the
symmetry properties of deposited shapes. This work discusses
the rapidity of the approach to the jamming state and the values
of the jamming coverages for various degrees of anisotropy
of the deposition process. Here we focus our interest on the
influence of the order of symmetry axis of the shape on
the kinetics of the deposition processes under anisotropic
conditions. This work provides for the first time a closer
insight into the deposition process of polydisperse mixtures
in anisotropic conditions.

The paper is organized as follows. Section II describes the
details of the model and simulations. We give the simulation
results and discussions for the one-component deposition in
Sec. III and for the mixture in Sec. IV. Finally, Sec. V contains
some additional comments and final remarks.

II. DEFINITION OF THE MODEL AND THE
SIMULATION METHOD

The depositing shapes are modeled by directed self-
avoiding walks on a triangular lattice. A self-avoiding shape of
length � is a sequence of distinct vertices (ω0, . . . ,ωl) such that
each vertex is a nearest neighbor of its predecessor; i.e., a walk
of length � covers � + 1 lattice sites. Examples of such walks
for � = 1,2, and 6 are shown in Table I. On a triangular lattice
objects with a symmetry axis of first, second, third, and sixth
order can be formed. Rotational symmetry of order ns , also

TABLE I. Various shapes (x) of length � on a triangular lattice.
ns denotes the order of the symmetry axis of the shape.

(x) Shape ns �

A 2 1
B 2

C 1 2

D 3

E 6 6

called n-fold rotational symmetry, with respect to a particular
axis perpendicular to the triangular lattice, means that rotation
by an angle of 2π/ns does not change the object.

At each Monte Carlo step we randomly select a lattice site
and try to deposit the shape of length �. If the selected site
is occupied by a deposited object, the adsorption attempt is
rejected. If the selected site is unoccupied, we fix the beginning
of the walk that makes the chosen shape at this site. Anisotropy
is introduced by positing unequal rates for deposition of objects
in the three possible directions. The choice of the horizontal
direction occurs with probability p and for each of the other
two directions with probability (1 − p)/2. Hence, the value
of p = 1

3 corresponds to the isotropic case. We randomly
pick one of the six possible orientations with a corresponding
probability, start the �-step walk in that direction, and search
whether all successive � sites are unoccupied. If so, we
occupy these � + 1 sites and deposit the object; otherwise,
the deposition attempt is rejected. During the simulation of
irreversible deposition we record the number of inaccessible
sites in the lattice. A site is inaccessible if it is occupied or it
cannot be the beginning of the shape. The jamming limit θjam

is reached when the number of inaccessible sites is equal to
the total number of lattice sites.

Mixtures of n line segments of various lengths are made
of n k-mers starting from k = 2 to k = n + 1. The number of
components is always increased by adding an object of a size
greater for a lattice constant. For example, the two-component
mixture of line segments consists of the line segments of
length � = 1 and � = 2, the three-component mixture is made
by adding a line segment of length � = 3, and so on. An
n-component mixture contains line segments of length � =
1,2, . . . ,n. The irreversible RSA process for an n-component
mixture is as follows. At each Monte Carlo step one of the n

mixture components is chosen at random and one lattice site
is selected at random. Then we try to deposit the k-mer with
the beginning at the selected site in one of the six orientations
chosen with a given probability. Again this probability is equal
p or (1 − p)/2, depending on whether the randomly chosen
direction is horizontal or not, respectively. We search whether
the k consecutive sites in a chosen direction are unoccupied.
If so, we occupy these k sites and place the k-mer. If not, the
attempt is abandoned. Then a new site and a new depositing
object from the mixture are selected at random, and so on. The
jamming limit of the mixture θjam is reached when neither of
the objects can be placed in any position on the lattice.

The Monte Carlo simulations are performed on a 2D
triangular lattice of size L = 128. The time is counted by

051601-2



SIMULATION STUDY OF ANISOTROPIC RANDOM . . . PHYSICAL REVIEW E 84, 051601 (2011)

the number of attempts to select a lattice site and scaled by
the total number of lattice sites. Periodic boundary conditions
are used in all directions. The data are averaged over 1000
independent runs for each depositing object as well as for the
mixture. The finite-size effects, which are generally weak, can
be neglected for object sizes < L/8 [16,40].

III. RESULTS AND DISCUSSION FOR
SINGLE-COMPONENT SYSTEMS

First, we report and discuss the numerical results regarding
the effects of anisotropy on deposition of k-mers on a 2D
triangular lattice. The simulations have been performed for
line segments of lengths � = 1,2, . . . ,10. For all investigated
k-mers and for all probabilities p of deposition in horizontal
direction, plots of ln[θjam − θ (t)] versus t are straight lines for
the late stages of deposition. These results are in agreement
with the exponential approach to the jamming limit of the form
(1) [15–18]. Furthermore, for a given probability p these plots
are parallel lines in the late stages of the deposition process
for k-mers of all lengths. This means that for a given degree
of anisotropy, rapidity of the approach to the jamming state
is not affected by the length of the k-mer. On the other hand,
the degree of anisotropy has an essential influence in the late
times of the deposition process.

Figure 1 shows the plots of ln[θjam − θ (t)] versus t for
various values of the probability p for three k-mers of different
lengths: (a) k = 2, (b) k = 4, and (c) k = 10. It can be seen
that the slope of these lines in the late times of the process
depends on probability p. It is observed that the slope of the
line for a given probability p ∈ (0, 1

3 ] is equal to the slope of
the line corresponding to the probability p′ = 1 − 2p ∈ [ 1

3 ,1).
For example, the lines in Fig. 1 for probabilities 0.12 and
0.28 (p < 1/3) have the same slopes as lines corresponding to
probabilities 0.76 and 0.44, respectively. Consequently, for an
arbitrary value of probability 0 < p < 1 for deposition in the
horizontal direction, rapidity of the approach to the jamming
state is determined by the value p0 = min{p,(1 − p/2)}, i.e.,
by the smallest value of probability for deposition in all three
directions.

Our results suggest that the more prominent the anisotropy
is, approach to the jamming limit is slower. To confirm this
notion, we have calculated the values of the parameter σ from
the slopes of the ln[θjam − θ (t)] versus t curves in the late times
of the process. Parameter σ determines how fast the lattice is
filled up to the jamming coverage θjam. The dependence of σ

on the probability p is given in Fig. 2 for k = 2, 3, 4, 6, 8,
and 10. When p approaches unity or zero value, the value of
parameter p0 = min{p,(1 − p/2)} becomes very small, and
the adsorption process slows down dramatically. In that case,
large times are needed for filling of small isolated empty
targets, left in the very late stages of deposition, if it can
be filled by k-mers oriented only in direction corresponding to
small probability p0. Reducing the probability p0, time needed
to reach the jamming state may become arbitrarily large; i.e.,
relaxation time σ diverges to infinity when p0 gets smaller.
Numerical calculation of the parameter σ for cases of high
anisotropy is difficult because it must be performed in vicinity
of the vertical asymptote of the σ (p) curve. Consequently,
we have observed that the fluctuations of relaxation time σ
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FIG. 1. (Color online) Plots of ln(θjam − θ (t)) versus t for various
probabilities p and for three different k-mers: (a) k = 2, (b) k = 4
and, (c) k = 10.

about the mean value increase with decreasing parameter p0,
especially for large k-mers. It is numerically very expensive to
sufficiently diminished statistical fluctuations associated with
highly anisotropic conditions. Therefore, the relaxation times
reported here are averages of 1000 independent simulations
for each value of probability p. When p gets closer to

051601-3
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FIG. 2. Dependence of the parameter σ [Eq. (1)] on probability
p for various k-mers. The vertical line indicates the value of p = 1

3 .

the value for the isotropic deposition (p = 1
3 ), parameter σ

decreases and reaches the value σ � 3.0 for the isotropic
case. In the case when adsorption is allowed only in one
direction (p = 1), the process reduces to the one-dimensional
case, and the corresponding value of parameter σ � 1.0 is
obtained [15,41]. When adsorption performs in two directions
with equal probabilities (p = 0), dynamics is slower than for
the one-dimensional case, but faster than even for the isotropic
case, with σ � 2.0.

Jamming coverage θjam also depends on the degree of
anisotropy. From Fig. 3 we can see that this dependence differs
for k-mers of various lengths. For p = 1 the one-dimensional
results are obtained for all k-mers [42]. The RSA problem
in one dimension is exactly solvable [3,41]. For k-mers, the
jamming limit θjam(k) is given by [43]

θjam(k) =
∫ k

0
du exp

[
−2

∫ u

0
dv

1 − (1 − v/k)k−1

v

]
. (2)

From Eq. (2), a systematic derivation of the 1/k-Taylor
expansion for the jamming coverage, θjam(k) = A0 + A1/k +
A2/k2 + · · ·, is possible. Bartelt et al. [43] gave the explicit ex-
pressions and numerical values for the first three coefficients:
A0 = 0.747598 . . ., A1 = 0.216181 . . ., A2 = 0.0362556 . . ..
From Fig. 3, we clearly observe that values of the jamming
coverages θjam(k) calculated using Eq. (2) agree very well with
the simulation results in one dimension (p = 1).

For all objects, the jamming coverage θjam exhibits a local
minimum near p = 1

3 , i.e., for isotropic condition. For k � 4
this minimum is lower than the value of jamming coverage
for deposition of k-mers in one dimension. However, the most
striking feature is that a very small change in the probability
p away from 0 or 1 brings an abrupt jump in the value of the
jamming coverage θjam for the k-mers of small length (k � 3);
e.g., when p changes from 0.96 to 1, the value of θjam for dimers
drops from 0.92 to 0.86. The jump near p = 0 is smaller in
magnitude. We now briefly explain the physical mechanism
that underlies this behavior of jamming coverage. For p close
to unity, when the adsorption in horizontal direction is much
more efficient than in the other two, the configuration formed in
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FIG. 3. Dependence of the jamming coverage θjam on probability
p for various k-mers. The curves from top to bottom correspond to
increasing values of k = 2,3,4,6,8,10. The vertical line indicates the
value of p = 1

3 . The horizontal arrows indicate values of the jamming
coverages θjam(k) calculated using Eq. (2) for k = 2,3,4,6,8,10, from
top to bottom.

the long-time regime is made up of a large number of domains.
In the case of the deposition of line segments, any such domain
contains a large number of objects all close to each other and
parallel. In the asymptotic regime, most new additions are
inside the domains only, and a small number of additions
take place if newly arriving objects are to be positioned in the
interdomain spaces. Unlike the longer k-mers, for short k-mers
there is an enhanced possibility for deposition into interdomain
spaces when adsorption is allowed with a small probability in
directions other than the privileged one. That is the reason
why the jamming coverage of small line segments increases
when p gets slightly lower than unity. When the depositing k-
mers are longer, the possibility of adsorption in more different
directions interferes with the tendency of their alignment, and
the resulting jamming coverage has lower values. The same
mechanism is responsible for the abrupt change of the jamming
coverage at very low values of p, when the adsorption in
horizontal direction is less favored than in the other two.

We also study the anisotropic irreversible deposition of
objects of various shapes that can be made by self-avoiding
random walks on a triangular lattice. At least two repre-
sentative shapes of each order of symmetry ns ∈ {1,2,3,6}
are investigated. In the case of isotropic deposition (p = 1

3 ),
according to parameter σ (Eq. (1)), all extended shapes can be
divided into four groups:

(a) Shapes with a symmetry axis of first order, ns = 1, with
σ � 5.9

(b) Shapes with a symmetry axis of second order, ns = 2,
with σ � 3.0

(c) Shapes with a symmetry axis of third order, ns = 3, with
σ � 2.0

(d) Shapes with a symmetry axis of sixth order, ns = 6, with
σ � 0.99.

This means that at late enough times, the rotational
symmetries associated with specific shapes have a substantial
influence on the adsorption rate of the objects. More symmetric
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shapes reach their jamming coverage faster; i.e., the relaxation
time σ is smaller for more symmetric objects. At large times,
adsorption events take place on the islands of unoccupied
sites. The individual islands act as selective targets for specific
deposition events. In other words, there is only a restricted
number of possible orientations in which an object can reach
a vacant location, provided the location is small enough. For
a shape of a higher order of symmetry ns , there is a greater
number of possible orientations for deposition into a selective
target on the lattice. Hence, the increase of the order of
symmetry of the shape enhances the rate of single-particle
adsorption. This is reflected in the fact that the adsorption
of asymmetric shapes is slower than the adsorption of more
regular and symmetric shapes.

In the case of anisotropic deposition (p �= 1
3 ), for all

investigated shapes and all probabilities of adsorption in
a horizontal direction, plots of ln[θjam − θ (t)] versus t are
straight lines in the late times of the process. Analyzing the
results for a large number of various shapes, we can see that
the kinetics of anisotropic deposition is determined mainly by
the symmetry properties of the object. In order to illustrate how
the deposition of various shapes is affected by the presence
of anisotropy, we present the results of the simulations for
one representative object of each order of symmetry, i.e., for
3-mer B, angled shape C, triangle D, and hexagon E shown in
Table I. For these objects, dependence of the parameter σ on
the probability p is given in Fig. 4. For the k-mer B covering
three lattice sites and for the angled object C, rapidity of the
approach to the jamming limit is affected by the presence
of anisotropy. The dependence of the parameter σ on the
probability p is more prominent for the less symmetric object
C. For the values of p close to zero, the deposition process is
very slow. The relaxation time σ decreases with p, reaches a
minimum for the isotropic case, and increases for higher values
of p. For the less symmetric object C, σ � 4.0 for p = 0, and
σ � 2.0 for p = 1. For p = 1

3 , the expected result that σ � 6.0
is obtained. Values of σ for the objects with symmetry axis of
first order are twice higher than the corresponding values for
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FIG. 4. Dependence of the parameter σ [Eq. (1)] on probability
p for shapes B, C, D, and E from Table I. The vertical line indicates
the value of p = 1

3 .
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FIG. 5. Dependence of the jamming coverage θjam on probability
p for shapes B, C, D, and E from Table I. The vertical line indicates
the value of p = 1

3 .

the objects with symmetry axis of second order for each value
of the probability p. Deposition of the objects with symmetry
axis of third and sixth order is not affected by the presence of
anisotropy. No matter what the value of the probability p is,
σ � 2.0 for the objects with symmetry axis of third order, and
σ � 1.0 for the objects with symmetry axis of sixth order.

As one can see from Fig. 5, the jamming coverage depends
on the probability p for the shapes with symmetry axis of
first and second order. On the contrary, for the objects with
symmetry axis of third and sixth order, the values of θjam do not
depend on p, and the isotropic values of jamming coverages are
obtained [31]. At very early times of the process the depositing
objects do not “feel” the presence of the already deposited
ones and are placed randomly onto the lattice. However, in the
late stages of deposition the objects must fit into small empty
regions that favors the formation of clusters. Line segments and
angled shapes deposited in the late stages of deposition must
deposit parallel to the already deposited ones in order to avoid
an intersection. This is reflected in the relatively high local
packing of nearly parallel adsorbed objects in the vicinity of
given object in the case of line segments and angled objects as
compared to the triangles and hexagons. Such a different object
view is the cause of the enhanced growth of very compact
domains in the case of elongated shapes as compared to those
in the case of more round (symmetric) shapes, resulting in a
higher value of the jamming coverage fraction in the former
case.

In Fig. 6 we compare the geometric status of the repre-
sentative snapshots of patterns formed during the RSA of
k-mers (k = 10) and hexagons E for the isotropic case (p = 1

3 ).
The mesh structure of the open spaces look very different for
adsorbing k-mers or hexagons E. The jamming configuration
for k-mers consists of domains of parallel lines and large
clusters of blocked sites [44]. If the depositing objects are
highly symmetrical there are also clusters of blocked sites
in the jamming configurations, but their sizes are smaller.
It must be stressed that for highly symmetric objects, the
presence of anisotropic conditions do not influence both the
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(b)

(a)

FIG. 6. (Color online) Snapshots of patterns formed during the
RSA of (a) k-mer (k = 10), and (b) hexagon E correspond to jamming
state for the isotropic case, p = 1

3 .

value of relaxation time σ and the value of jamming coverage
θjam. For regular objects, such as hexagon E, all islands of
unoccupied sites on lattice can be treated as nonselective
targets for deposition events. Indeed, if a highly symmetric
object is placed on vacant locations, it can be freely rotated
about its symmetry axis, regardless of the size and shape of a
given target. Therefore, the presence of a privileged direction
for deposition has no influence on the placement of highly
symmetric objects on the lattice. That this is so can be seen
from Fig. 7, which shows typical jamming configurations for
the deposition of k-mers (k = 10) and hexagons E in the
presence of anisotropy (p = 0.92). Evidently, patterns formed
during the anisotropic RSA of k-mers show a deposition-
induced horizontal alignment. This geometry admits of a high
coverage limit. However, if we compare the two snapshots
of patterns formed during the isotropic [Fig. 6(b)] and
anisotropic [Fig. 7(b)] deposition of hexagons, the structure of
clusters of blocked sites does not appear too different for the
eye.

(b)

(a)

FIG. 7. (Color online) Snapshots of patterns formed during the
RSA of (a) k-mer (k = 10), and (b) hexagon E correspond to jamming
state for the case of p = 0.92.

IV. DEPOSITION OF POLYDISPERSE MIXTURES
IN ANISOTROPIC CONDITIONS

As an example of a polydisperse mixture, a 10-component
mixture of line segments of lengths � = 1,2, . . . ,10 is studied.
Kinetics of the irreversible deposition of this mixture is
illustrated in Fig. 8, where the plots of ln[θjam − θ (t)] versus
t are given for the various probabilities p of deposition in
horizontal direction. It was found that for all probabilities p,
these plots are straight lines for the late stages of the deposition
process, not only for the mixtures, but also for each of the
components (not shown here). This means that the exponential
temporal evolution (1) of the coverage θ (t) is valid for all
p both for the mixture and for the components making the
mixture. As for the pure lattice shapes, the late-stage deposition
kinetics is strongly influenced by the presence of anisotropy.

The dependence of the relaxation time σ on the probability
p for the 10-component mixture of k-mers is given in Fig. 9.
For the values of p close to zero or unity, the deposition process
is very slow. The parameter σ reaches a local minimum for the
isotropic case. For p = 1 the one-dimensional result for the
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FIG. 8. (Color online) Plots of ln[θjam − θ (t)] versus t for the
10-component mixture of k-mers (k = 2,3, . . . ,11) for various
probabilities p.

10-component mixture is obtained [34]. Comparing the results
from Fig. 2 and Fig. 9, we can see that for a given degree of
anisotropy, the parameter σ for a mixture is always greater
than either of the relaxation times for the k-mers of length
� = 1,2, . . . ,10.

Values of the total jamming coverage θjam for the 10-
component mixture of k-mers are given in Fig. 10 for various
values of probability p. It is important to note that arbitrary
mixtures cover the lattice more efficiently than either of the
components. The reason for this property of polydisperse
mixtures has been discussed in detail in previous papers
[18,34]. The minimal value obtained for the isotropic case is
lower than the values for p = 0 and 1. The jamming coverage
increases when the degree of anisotropy increases, because the
alignment of long components of the mixture in the early stage
of the process leads to more efficient densification afterward.

Figure 11 gives an additional insight into the kinetics of the
mixture components. Values of the relaxation times σ for the
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 0  0.2  0.4  0.6  0.8  1

σ

p

FIG. 9. Dependence of the parameter σ [Eq. (1)] on probability
p for the 10-component mixture of k-mers (k = 2,3, . . . ,11). The
vertical line indicates the value of p = 1

3 .
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FIG. 10. Dependence of the total jamming coverage θjam on prob-
ability p for the 10-component mixture of k-mers (k = 2,3, . . . ,11).
The vertical line indicates the value of p = 1

3 .

line segments of length � = 1, . . . ,10 making a 10-component
mixture are shown for p = 0.84 and for the isotropic case,
p = 1

3 . In both cases, the relaxation time σ decreases rapidly
with the length of the components making the mixture. It
is intuitively clear that in the late times the kinetics of the
deposition is determined mostly by the smallest objects in
the mixture. Every occupation by the smaller object creates
an exclusion zone for further adsorption of larger objects. At
large times, adsorption events take place on small domains of
unoccupied sites, and in the competition for the deposition
between two objects of a different number of segments
the smaller object wins. Furthermore, in the presence of
anisotropy, adsorption of shorter k-mers slows in comparison
to the isotropic case. In other words, presence of anisotropy
favors the adsorption of longer objects. This conclusion is
consistent with the numerical results plotted in Fig. 12. For
all probabilities p, partial jamming coverage decreases with

 0
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FIG. 11. Values of the parameter σ [Eq. (1)] for the k-mers, k =
2,3, . . . ,11, making a 10-component mixture for the case of p = 0.84
and for the isotropic case, p = 1

3 .
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FIG. 12. Dependence of partial jamming coverages θjam on proba-
bility p for k-mers making a 10-component mixture. The curves from
top to bottom correspond to increasing values of k = 2,3, . . . ,11. The
vertical line indicates the value of p = 1

3 .

the length of k-mers. These changes are most pronounced for
the case of isotropic deposition. For short k-mers (k � 4),
partial jamming coverages increase with p, reach a maximum
for the isotropic condition, and decrease for higher values
of p. However, partial jamming coverages of longer k-mers
(k � 5) exhibit a shallow minimum near p = 1

3 . Hence, our
results suggest that anisotropic constraints lead to decreased
(increased) contribution of the short (long) k-mers in the total
coverage fraction.

V. CONCLUDING REMARKS

We have investigated numerically the effect of anisotropy
on the RSA of extended objects on a planar triangular lattice. A
systematic approach is made by using the objects of different
number of segments and rotational symmetries. We have
also presented the numerical results of anisotropic RSA for
multicomponent mixtures of k-mers.

It was shown that the growth of the coverage θ (t) to the
jamming limit θjam occurs via the exponential law (1), for
all the shapes and mixtures considered and for all values
of probability p of deposition in a preferential direction.
The simulations have shown that the kinetics of anisotropic
deposition is determined mainly by the symmetry properties
of the object. In the case of elongated and asymmetrical shapes,
the relaxation time σ is found to increase with the degree of

anisotropy. However, for rounded and symmetrical shapes,
rapidity of the approach to the jamming state is not affected
by the presence of anisotropy. A similar qualitative behavior
of the jamming limit θjam in anisotropic condition is obtained;
for highly symmetric objects, no dependence of the jamming
coverage θjam on the probability p is observed within the
statistical uncertainties. Nevertheless, the jamming coverage
depends on the probability p for the shapes with lower-order
symmetry axis.

We have analyzed the polydisperse mixtures in which
the size of line segments making the mixture gradually
increases with the number of components. Also, we have
performed a detailed analysis of the contribution to the
densification kinetics coming from each mixture component.
Strong dependencies both of the value of relaxation time σ and
of the jamming coverage θjam on the degree of anisotropy are
obtained. The value of σ has larger values for a mixture than
for the pure shapes for all probabilities p, so we can generally
say that the deposition process is always slower for a mixture
than for the pure shapes making the mixture. Furthermore, the
jamming coverage for a mixture of line segments is greater than
either of the jamming coverages of the components making the
mixture, regardless of the degree of anisotropy. It is found that
anisotropic constraints lead to the increased contribution of
the longer k-mers in the total coverage fraction of the mixture.

Recently we have performed extensive numerical simu-
lation of the RSA on triangular lattice using polydisperse
mixtures in which the size of extended shapes making the
mixture gradually increases with number of components n

[18]. We showed that for the mixtures of more symmetric
shapes, such as line segments and triangles, jamming coverage
increases with n, contrary to the mixture of angled shapes
where jamming coverage decreases. These results suggest
that the order of symmetry axis of the shape may exert a
decisive influence on the adsorption efficiency of polydisperse
mixture in isotropic conditions. The presented numerical
analysis could be a first step toward studying more complex
systems, such as the case of anisotropic RSA of polydisperse
mixtures of extended objects and mixtures of arbitrarily chosen
self-avoiding random-walk chains.
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[39] N. A. M. Araújo and A. Cadilhe, Phys. Rev. E 73, 051602

(2006).
[40] M. Nakamura, Phys. Rev. A 36, 2384 (1987).
[41] M. C. Bartelt and V. Privman, Int. J. Mod. Phys. B 5, 2883

(1991).
[42] G. J. Rodgers, Phys. Rev. E 48, 4271 (1993).
[43] M. C. Bartelt, J. W. Evans, and M. L. Glasser, J. Chem. Phys.

99, 1438 (1993).
[44] R. M. Ziff and R. D. Vigil, J. Phys. A: Math. Gen. 23, 5103

(1990).

051601-9

http://dx.doi.org/10.1093/nar/29.22.4744
http://dx.doi.org/10.1093/nar/29.22.4744
http://dx.doi.org/10.1007/s10955-006-9224-6
http://dx.doi.org/10.1016/0022-5193(80)90358-6
http://dx.doi.org/10.1103/PhysRevA.24.504
http://dx.doi.org/10.1088/0305-4470/13/6/006
http://dx.doi.org/10.1103/PhysRevE.64.066111
http://dx.doi.org/10.1063/1.458952
http://dx.doi.org/10.1088/0305-4470/24/12/003
http://dx.doi.org/10.1103/PhysRevE.56.6904
http://dx.doi.org/10.1103/PhysRevE.56.6904
http://dx.doi.org/10.1103/PhysRevE.78.061603
http://dx.doi.org/10.1103/PhysRevE.78.061603
http://dx.doi.org/10.1103/PhysRevA.46.6294
http://dx.doi.org/10.1103/PhysRevA.46.6294
http://dx.doi.org/10.1140/epjb/e2010-00089-2
http://dx.doi.org/10.1103/PhysRevB.72.121404
http://dx.doi.org/10.1103/PhysRevB.72.121404
http://dx.doi.org/10.1088/0305-4470/23/13/021
http://dx.doi.org/10.1103/PhysRevA.43.631
http://dx.doi.org/10.1103/PhysRevA.43.631
http://dx.doi.org/10.1063/1.463820
http://dx.doi.org/10.1063/1.463820
http://dx.doi.org/10.1063/1.472409
http://dx.doi.org/10.1016/S0927-7757(99)00409-4
http://dx.doi.org/10.1016/S0927-7757(99)00409-4
http://dx.doi.org/10.1063/1.457021
http://dx.doi.org/10.1080/00268978800100121
http://dx.doi.org/10.1103/PhysRevA.46.2029
http://dx.doi.org/10.1051/jp1:1992150
http://dx.doi.org/10.1051/jp1:1992150
http://dx.doi.org/10.1140/epje/i2007-10206-4
http://dx.doi.org/10.1140/epje/i2007-10206-4
http://dx.doi.org/10.1006/jcis.1996.4540
http://dx.doi.org/10.1006/jcis.1996.4540
http://dx.doi.org/10.1103/PhysRevLett.76.4058
http://dx.doi.org/10.1088/1742-5468/2010/02/P02022
http://dx.doi.org/10.1103/PhysRevA.40.422
http://dx.doi.org/10.1103/PhysRevA.44.R2227
http://dx.doi.org/10.1103/PhysRevA.44.R2227
http://dx.doi.org/10.1103/PhysRevA.45.4162
http://dx.doi.org/10.1007/BF01053786
http://dx.doi.org/10.1103/PhysRevE.73.051602
http://dx.doi.org/10.1103/PhysRevE.73.051602
http://dx.doi.org/10.1103/PhysRevA.36.2384
http://dx.doi.org/10.1142/S0217979291001127
http://dx.doi.org/10.1142/S0217979291001127
http://dx.doi.org/10.1103/PhysRevE.48.4271
http://dx.doi.org/10.1063/1.465338
http://dx.doi.org/10.1063/1.465338
http://dx.doi.org/10.1088/0305-4470/23/21/044
http://dx.doi.org/10.1088/0305-4470/23/21/044

