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Finite-size scaling in asymmetric systems of percolating sticks
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We investigate finite-size scaling in percolating widthless stick systems with variable aspect ratios in an
extensive Monte Carlo simulation study. A generalized scaling function is introduced to describe the scaling
behavior of the percolation distribution moments and probability at the percolation threshold. We show that the
prefactors in the generalized scaling function depend on the system aspect ratio and exhibit features that are
generic to the whole class of the percolating systems. In particular, we demonstrate the existence of a characteristic
aspect ratio for which percolation probability at the threshold is scale invariant and definite parity of the prefactors
in the generalized scaling function for the first two percolation probability moments.
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I. INTRODUCTION

Recently there has been an increasing interest in the
randomly distributed stick (rodlike) particles [1–5], due to
promising developments in the area of the conducting rod-
like nanoparticle networks, such as carbon nanotubes and
silicon, copper, and silver nanowires, with applications in
electronics [5–7], optoelectronics [8], and sensors [9,10]. On
the theoretical side, most of the work done until now in the
field of percolation of random networks has been done for
lattice percolation [11–18]. The random stick networks are an
important representative of continuum percolation [19–22].
Random stick percolation and lattice percolation fall into the
same universality class having the same critical exponents
[21]. Previous studies established that all systems fall on
the same scaling function if dimensionality of the system,
percolation rule, boundary conditions, and aspect ratio are
fixed [15]. In applications, the aspect ratio of the rectangular
system is the only variable parameter, e.g., the geometry of
the transistor gate channel in the carbon nanotube transistors
[4,5]. The objective of the present paper is to describe in
a consistent way finite-size scaling of average percolation
density and standard deviation for the asymmetric rectangular
stick systems with free boundaries. From general scaling
arguments one would expect that for all finite-size systems
their convergence is governed by an exponent −1/ν [18]. For
two-dimensional (2D) systems ν = 4/3 [18]. Following Ziff’s
initial publication [13], Hovi and Aharony [14,15] argued
that the irrelevant scaling variables in the renormalization-
group treatment of percolation imply a slower leading-order
convergence of percolation probability to its infinite-system
value, characterized by an exponent −1/ν − θ , whose value
was deducted from the Monte Carlo work of Stauffer to
be θ ≈ 0.85 [11]. Further it was shown that for lattice
percolation on the square system the leading exponent of
the average concentration at which percolation first occurs
is −1/ν − θ , where θ ≈ 0.9 [17]. All the previous studies
were performed for symmetric systems. We show that only
in the symmetric case the exponent of average density is
−1/ν − θ . In asymmetric systems, we observe a leading −1/ν

exponent. Another quantity, the percolation probability at the
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percolation threshold in symmetric bond percolating systems,
is size independent, i.e., scale invariant [23]. Until now, this
behavior has not been observed in other types of random
percolating systems. We will demonstrate that asymmetric
systems can exhibit scale-invariant behavior.

In this paper, we investigate finite-size scaling of the
asymmetric rectangular stick systems with free boundaries.
Both from renormalization group considerations and in the
simulations, we find that the aspect ratio strongly influences
scaling behavior of the percolation probability distribution
function moments, i.e., average density of sticks at which
percolation first occurs and variance of the percolation prob-
ability distribution function. A generalized scaling function
is introduced, with aspect-ratio-dependent prefactors and
constant exponents of the expansion. Finally, it is shown that
the percolation probability of the asymmetric infinite stick
system at the critical threshold density agrees with Cardy’s
analytic formula [12].

II. NUMERICAL METHOD FOR CALCULATION
OF PERCOLATION PROBABILITY

Monte Carlo simulations, coupled with an efficient cluster
analysis algorithm and implemented on a grid platform,
are used to investigate the stick percolation [24–27]. We
consider two-dimensional (2D) systems with isotropically
placed widthless sticks. The sticks of unit length are randomly
positioned and oriented inside the rectangular system of width
Lx and height Ly . Two sticks lie in the same cluster if they
intersect. The system percolates if two opposite boundaries are
connected with the same cluster. The aspect ratio r is defined as
the length of the rectangular system in the percolating direction
divided by the length in the perpendicular direction. We define
the normalized system size as a square root of the rectangular
area L = √

LxLy (geometric average), which represent the
length of the square system with the same area. The behavior of
stick percolation is studied in terms of the number stick density
n = N/L2. The percolation threshold of the infinite system
is defined by the critical density nc ≈ 5.63726 [27]. Monte
Carlo simulations are performed for a wide range of the aspect
ratios, 0.1 � r � 10. In order to ensure the same precision for
small and large systems we collected more than NMC = 109

Monte Carlo realizations for small systems L < 10, down to
NMC = 107 for the largest system L = 320. Using appropriate
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functions for fitting data and the least-squares fitting methods
excellent fits were obtained (R2 > 0.9999) for all analyzed
systems with L � 16. Statistical errors for the calculations
are estimated in conventional fashion using standard deviation
[24].

Percolation probability function RN,L,r is the probability
that the system with N sticks, size L, and aspect ratio r

percolates. It is convenient to pass from the discrete percolation
probability function RN,L,r for N sticks to a probability
function for arbitrary stick density n [27],

Rn,L,r =
∞∑

N=0

(nL2)Ne−nL2

N !
RN,L,r , (1)

with the percolation probability distribution function defined
as Pn,L,r = ∂Rn,L,r/∂n. The average stick percolation density
at which, for the first time, a percolating cluster connects
boundaries of the system is

〈n〉L,r =
∫ ∞

0
nPn,L,rdn = 1

L2

∞∑
N=0

(1 − RN,L,r ), (2)

where the last equality follows from integrating by parts.
Another important parameter of the probability distribution
function, Pn,L,r , is variance �2

L,r = 〈n2〉L,r − 〈n〉2
L,r , where

〈n2〉L,r is calculated as

〈n2〉L,r =
∫ ∞

0
n2Pn,L,rdn= 2

L4

∞∑
N=0

(N+1)(1−RN,L,r ). (3)

Equations (2) and (3) allow calculations of the first two mo-
ments directly from discrete percolation probability function
RN,L,r . This is computationally more efficient since it avoids
calculation of function Rn,L,r with high resolution.

III. GENERALIZED SCALING FUNCTIONS
FOR MOMENTS

The percolation probability function is related to the
universal scaling function [15]

Rn,L,r = F (x̂,{ŷi},ẑ). (4)

The arguments of the universal scaling function F are x̂ =
A(n − nc)L1/ν , ŷi = BiωiL

−θi , and ẑ = C ln(r), where A,
{Bi}, and C are the nonuniversal metric factors, {ωi} are the
irrelevant variables, and {θi} are the corrections to scaling
exponents, (i = 1,2, . . .). Using free boundary conditions
and considering two complementary systems—the sticks and
empty space around the sticks—we can conclude that either the
sticks percolate in one direction or the empty space percolates
in the opposite direction:

F (x̂,{ŷi},ẑ) + F (−x̂,{−ŷi}, − ẑ) = 1. (5)

Taking the derivative with respect to x̂, ŷi , and ẑ and evalu-
ating the derivatives at x̂ = ŷi = ẑ = 0, (i.e., at n = nc,L →
∞,r = 1), we conclude that ∂mF/∂x̂j ∂ŷ

k1
1 . . . ∂ẑl|0 = 0, for

m even. Expanding the percolation probability function near
the critical point we find that

F (x̂,{ŷi},ẑ)=F (0,{0},0)+f0(x̂,ẑ)+
∞∑
i=1

fi(x̂,ẑ)ŷi + . . . , (6)

where the functions f0(x̂,ẑ) and fi(x̂,ẑ) are defined by

f0(x̂,ẑ) =
∞∑

j,l=0

1

j !l!

∂j+lF

∂x̂j ∂ẑl

∣∣∣∣
0

x̂j ẑl , for j + l odd, (7)

and

fi(x̂,ẑ) =
∞∑

j,l=0

1

j !l!

∂j+l+1F

∂x̂j ∂ŷi∂ẑl

∣∣∣∣
0

x̂j ẑl , for j + l even. (8)

Since the percolation probability distribution function Pn,L,r =
∂Rn,L,r/∂n gives the probability distribution for a system of
size L and aspect ratio r to percolate for the first time at stick
density n, we can define the moments of this distribution:

μk =
∫ ∞

0
(n − nc)k

∂Rn,L,r

∂n
dn

= A−kL−k/ν

∫ ∞

−AncL1/ν

x̂k ∂F

∂x̂
dx̂. (9)

Substituting Eqs. (6)–(8) in Eq. (9) the kth moment scales as

μk({ŷi},ẑ) = L−k/ν

(
g0(ẑ) +

∞∑
i=1

gi(ẑ)ŷi + · · ·
)

, (10)

where we introduce general functions g. For odd k, g0(ẑ) is an
odd function and gi(ẑ) are even functions of ẑ. For even k, g0(ẑ)
is even and gi(ẑ) are odd functions. Therefore, the observed
parity of prefactors in respect to ẑ should be independent of
the type of the system.

From Eq. (10) the scaling behavior of the 〈n〉L,r can be
described with the generalized moment scaling function with
aspect-ratio-dependent coefficients

〈n〉L,r = nc + L−1/ν

∞∑
i=0

ai(r)L−θi , (11)

where {θi} are the corrections to scaling exponents. The zeroth-
order correction to exponent θ0 should be zero [18]. In analogy
to 〈n〉L,r , for variance �2

L,r we introduce expansion

�2
L,r = L−2/ν

∞∑
i=0

bi(r)L−θi . (12)

From Eq. (10) and the parity of g0(ẑ) and gi(ẑ), for the
zeroth-order and the first-order prefactors for 〈n〉L,r and �2

L,r

near ln(r) = 0 (i.e., ẑ = 0), we obtain approximate expressions
for a0(r) ≈ a0,0 ln(r) + a0,1 ln3(r), a1(r) ≈ a1,0 + a1,1 ln2(r),
b0(r) ≈ b0,0 + b1,0 ln2(r), b1(r) ≈ b1,0 ln(r) + b1,1 ln3(r).

IV. RESULTS AND DISCUSSION

The results for percolation probability Rn,L,r and distribu-
tion Pn,L,r function are shown in Fig. 1. One observes that
the slope of percolation probability function increases with
the increase of the system size. The percolation probabil-
ity function curves intersect approximately at nc. The fine
behavior of percolation probability at nc will be discussed
bellow. With the increasing system size, the standard deviation
of probability distribution function decreases to zero. Also,
average stick percolation density 〈n〉L,r , which corresponds
roughly to maximum of probability distribution function
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FIG. 1. (Color online) Percolation probability function Rn,L,r

[(a), (b), (c)] and probability distribution function Pn,L,r [(d), (e),
(f)] for stick percolation on rectangular systems with free boundary
conditions and increasing system size from L = 20 to 200 for three
aspect ratios r = 0.5,1, and 2. The direction of the increase of L is
indicated on graphs. The vertical dashed lines denote the value for
the percolation threshold nc, while the horizontal dashed lines [(a),
(b), (c)] denote the percolation probability on the infinite systems at
the threshold Rnc,L→∞,r .

Pn,L,r , approaches to percolation threshold nc. For r < 1,
〈n〉L,r converges to nc from below with increase of the system
size L. The reason for this is that narrow finite systems will be
spanned already at lower densities than nc. For r > 1, 〈n〉L,r

converges from above, while for symmetric systems (r = 1) is
roughly centered at nc; see Fig 1. From Fig. 2, one can see that
average stick percolation density 〈n〉L,r for aspect ratio higher
than one is a monotonically decreasing function of the system
size L. Somewhat surprising, for aspect ratios lower than one,
〈n〉L,r is not a monotonic function and has a local minimum;
i.e., for small systems 〈n〉L,r is a decreasing function, which
passes through nc, reaches a minimum, and after that converges
to nc from below. In the inset of Fig. 2, one can see that for large
system sizes all the curves show power-law convergence to the
percolation threshold nc with exponent −1/ν, except in the
symmetric case, i.e., r = 1, where the exponent is −1/ν − θ1.
Absolute values of the leading-order prefactors are the same
for aspect ratios r and 1/r . The higher exponent of symmetric
systems comes from the basic physics of percolation, that is,
connectedness. We can illustrate this using a simplified image
of site percolation by introducing the quantity R(p) as the
probability that the sites with occupancy p form a spanning
path. The percolation probability R(p) and occupancy p are
equivalent to the percolation probability function Rn,L,r and
stick density n, respectively. In this image, a cell coming
out of the renormalization (coarse graining) transformation
is occupied only if it contains a set of sites that span this
cell. The universal scaling function in the previous section
reflects the fact that the probability of the spanning system
at the percolation threshold R(pc) remains unaltered under
this transformation [18]. Therefore the fixed point of this
system, i.e., the critical percolation threshold, pc is satisfying
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FIG. 2. (Color online) The dependence of the average stick
percolation density 〈n〉L,r on the system size L and aspect ratio
r . The values are obtained from Monte Carlo simulations and
calculated using Eq. (2). The values are given for aspect ratios
r = 0.7,0.8,0.9,0.95,0.98,1 (solid lines) and their inverse values
r = 1/0.7,1/0.8,1/0.9,1/0.95,1/0.98 (dashed lines). The horizontal
bold line denotes the expected value for the percolation threshold nc.
Inset: The same data is shown in logarithmic scale to demonstrate the
same power-law convergence of the r and 1/r pairs.

relation pc = R(pc). We can expand the percolation proba-
bility around the percolation threshold pc, |R(p) − R(pc)| ≈
dR/dp|pc

|p − pc|. Also, if we renormalize the lattice by a
length factor b, close to pc, the characteristic length changes
as ξ/b. Since ξ ∼ |p − pc|−γ , we can write another relation,
|R(p) − R(pc)|−γ ≈ |p − pc|−γ /b, connecting characteristic
lengths before and after renormalization. From these two
relations one can conclude that the critical exponent should
be

−1/γ ≈ ln dR/dp|pc

ln 1/b
. (13)

From Fig. 1, one can see that probability density Pnc,L,r which
is derivative of Rn,L,r at nc is always larger for symmetric
systems then for asymmetric systems of the same size.
Therefore, from Eq. (13), one expects higher absolute value of
the exponent in symmetric compared to asymmetric systems.
Another conclusion one can draw from this analysis is that the
observed exponents are a result of the interplay of the charac-
teristic length and the system shape. Usually, such behavior is
attributed to a competition between two dimensional and three
dimensional (or one dimensional and two dimensional), e.g.,
in the Ising model for slab geometries; cf. Ref. [28]. In this
system we observe that there is sharp transition in the nature
of scaling when we pass from the symmetric to asymmetric
system, and a competition between exponents characteristic
for symmetric and asymmetric systems.

From Monte Carlo simulation data we have obtained the
two leading-order terms of 〈n〉L,r in Eq. (11) by interpolation;
cf. Ref. [29]. The results of the analysis are shown in
Fig. 3. The zeroth-order prefactor is zero for symmetric
system r = 1, and it is an odd function on a logarithmic
scale, i.e., a0(r) = −a0(1/r). We have verified the obtained
results by interpolation through symmetrizing data points
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FIG. 3. (Color online) Prefactors (a) and exponents (b) are shown
for the two leading-order terms of generalized scaling function for
average stick percolation density 〈n〉L,r , Eq. (11). The zeroth-order
prefactor is an odd function on a logarithmic scale, i.e., a0(r) =
−a0(1/r), and the zeroth-order exponent is −1/ν (solid lines). The
first-order prefactor is an even function, i.e., a1(r) = a1(1/r), and
the first-order correction to the scaling exponent is θ1 = 0.83(2) for
r = 1 (dashed lines).

(〈n〉L,r + 〈n〉L,1/r )/2. The fitting coefficients for prefactors
ai,j are calculated using the least-squares fitting methods and
given in Table I; cf. Fig. 3. The influence of higher order terms
was comparable to or smaller than the simulation data error
and we could not extract them with sufficient precision. For
the first-order correction, we obtain θ1 = 0.83(2) for r = 1; cf.
Ref. [11,13]. The residual aspect ratio dependence of θ1 cannot
be further analyzed without provision of retaining the first two
terms in Eq. (11). The system size where the average density
reaches minimum is Lmin ≈ [−a1(r)/a0(r)(1 + νθ1)]1/θ1 ; cf.
Eq. (11). For narrow systems, r < 1, Lmin diverges as 1/ ln(r)
as r approaches one. For L < Lmin the first-order term is
dominant.

The variance prefactors and exponents for the two leading-
order terms are shown in Fig. 4. The prefactors and exponents
are obtained by fitting �2

L,r with the first two terms in Eq. (12);
cf. Ref. [30]. The fitting coefficients bi,j are given in Table I
and the obtained prefactor dependences on r are given in
Fig. 4. The zeroth-order prefactor of �2

L,r is an even function
on a logarithmic scale, i.e., b0(r) = b0(1/r), as one can
see from a coarse observation of the percolation probability
distribution function in Fig. 1. Asymmetry of the variance, i.e.,
�2

L,r �= �2
L,1/r , is the first-order effect; cf. Eq. (12).

Finally, we investigate the scaling behavior of the per-
colation probability at the percolation threshold (Rnc,L,r ),
using the generalized scaling function Rnc,L,r = Rnc,L→∞,r +

TABLE I. Results for the coefficients ai,j and bi,j , where i,j ∈
{0,1}. The results are obtained using the least-squares method.

0, 0 0, 1 1, 0 1, 1

ai,j 5.08(1) 0.352(4) 1.9(5) 1.9(6)
bi,j 14.56(5) 2.25(6) 11(2) 3(1)
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FIG. 4. (Color online) Prefactors (a) and exponents (b) are shown
for the two leading-order terms of generalized scaling function for
variance �2

L,r , Eq. (12). The zeroth-order prefactor is even function
on a logarithmic scale, i.e., b0(r) = b0(1/r), and the zeroth-order
exponent is −1/ν (solid lines). The first-order prefactor is an odd
function, i.e., b1(r) = −b1(1/r), and the first-order correction to the
scaling exponent is θ1 = 0.80(5) for r = 1 (dashed lines). Prefactor
b1(r) passes through zero for r between 1/0.9 and 1/0.8 causing higher
error bars of θ1.

c1(r)/L + c2(r)/L2; cf. Ref. [17]. The results for prefactors
c1(r) and c2(r) are shown in Fig. 5. For the two limiting cases
(r < 0.1 and r > 10), the prefactors are close to zero, which
is consistent with the behavior observed in Fig. 1. Between
these two limiting cases, one can observe that both prefactors
are close to zero for r = 2.25(5). Furthermore, at this aspect
ratio, we could not observe the existence of the higher order
terms. This means that at the percolation threshold percolation
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FIG. 5. (Color online) (a) Prefactors for finite-size scaling of the
percolation probability at the percolation threshold are shown for the
two leading-order terms. (b) Percolation probability at the threshold
for infinitely large system Rnc,L→∞,r . Points represent Monte Carlo
data for stick percolation, while the line represents results of Cardy’s
model for the lattice percolation. The error bars are much smaller
than the size of the symbols for all r .
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probability is the same for all the systems, independent of
system size L, having the value Rnc,r≈2.25 ≈ 0.135. Scale
invariance, i.e., Rnc,L,r = Rnc,∞,r , is already seen and intu-
itively understood for bond percolation in symmetric systems,
where Rpc=0.5,r=1 = 1/2 is independent of system size L; cf.
Ref. [23]. The reason for the observed system size invariance of
percolation probability at the threshold in the asymmetric stick
system is the existence of multiple zeros of at least second order
at this point in the universal scaling function. Regarding the
value of the percolation probability at the percolation threshold
of the infinite system, we find that Cardy’s analytical model
derived for the lattice percolation describes the simulation
data; cf. Fig. 5. The deviation between the analytical value
for lattice and the Monte Carlo value for stick percolation is
less than the statistical error of the simulation data, i.e., less
than 10−5. The percolation probability for the 2D stick system
therefore satisfies Rnc,L→∞,r + Rnc,L→∞,1/r = 1.

V. CONCLUSION

In summary, based on the analysis of finite-size scaling in
continuum two-dimensional systems, the generalized scaling
law is introduced for average percolation density, variance,
and percolation probability at the percolation threshold. The
presented methodology could be used to model accurately
these properties for any percolating system. We find that the
zeroth-order prefactor of average percolation density is an
odd function with respect to ln(r). This explains the faster
convergence of average percolation density for symmetric
systems than expected from general scaling arguments. We

also observe that there is a characteristic aspect ratio for
which percolation probability at the percolation threshold is
system-size independent. In addition, for the infinite system,
we find that the percolation probability at the critical threshold
density shows excellent agreement with Cardy’s prediction
for lattice percolation. The presented results confirm that
continuum percolation belongs to the same universality class
as lattice percolation in the sense that the value of percolation
probability at the threshold for infinitely large systems is
the same for lattice and continuum percolation. One should
note that a number of other features observed in this work
should be a common characteristic within the class, e.g., the
existence of the aspect ratio where the percolation probability
at the threshold is scale invariant and parity of the moments
of the percolation probability distribution function. This opens
up the question of the particle shape influence on prefactors,
whether it is possible to find systems where the observed
behaviors are more pronounced, and finally the question of the
general form of the prefactors for describing different systems.
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[26] A. Balaž, O. Prnjat, D. Vudragović, V. Slavnić, I. Liabotis,
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|a0(r)| 
 |a1(r)|L−θ1+θ0 . Therefore, successive slopes should
fall on a straight line when plotted as a function of L−θ1+θ0 with
intercept at −1/ν − θ0. The intercept is not highly sensitive
to the value of −θ1 + θ0. Note that exponent θ0 can not be
calculated using successive slopes if a0(r) is close to zero.

[30] The zeroth-order exponent for �2
L,r can be calculated us-

ing successive slopes for all r because condition |b0(r)| 

|b1(r)|L−θ1+θ0 is always satisfied for large L. The results for
the zeroth-order terms are verified by interpolation through
antisymmetrizing data points (�2

L,r − �2
L,1/r )/2.
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