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1Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, USA
2Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

(Received 26 January 2011; published 5 July 2011)

We perform a systematic study of incoherent transport in the high temperature crossover region

of the half filled one-band Hubbard model. We demonstrate that the family of resistivity curves

displays characteristic quantum critical scaling of the form �ðT; �UÞ ¼ �cðTÞfðT=T0ð�UÞÞ, with

T0ð�UÞ � j�Ujz�, and �cðTÞ � T. The corresponding � function displays a ‘‘strong coupling’’ form

�� lnð�c=�Þ, reflecting the peculiar mirror symmetry of the scaling curves. This behavior, which is

surprisingly similar to some experimental findings, indicates that Mott quantum criticality may be acting

as the fundamental mechanism behind the unusual transport phenomena in many systems near the metal-

insulator transition.
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Many systems close to the metal-insulator transition
(MIT) often display surprisingly similar transport features
in the high temperature regime [1–3]. Here, the family
of resistivity curves typically assumes a characteristic
‘‘fan-shaped’’ form [see Fig. 1(a)], reflecting a gradual
crossover from metallic to insulating transport. At the
highest temperatures the resistivity depends only weakly
on the control parameter (concentration of charge carriers
[1] or pressure [2,3]), while as T is lowered, the system
seems to ‘‘make up its mind’’ and rapidly converges
towards either a metallic or an insulating state. Since
temperature acts as a natural cutoff scale for the metal-
insulator transition, such behavior is precisely what one
expects for quantum criticality [4]. In some cases [1], the
entire family of curves displays beautiful scaling behavior,
with a remarkable ‘‘mirror symmetry’’ of the relevant
scaling functions [4]. But under which microscopic con-
ditions should one expect such scaling phenomenology?
What is the corresponding driving force for the transitions?
Despite recent progress, such basic physics questions re-
main the subject of much ongoing controversy and debate.

The phenomenon of disordered-driven Anderson local-
ization of noninteracting electrons is at present rather
well understood based on the scaling formulation [5]
and is generally viewed as an example of a T ¼ 0 quantum
phase transition. On the other hand, a considerable number
of recent experiments [1] provide compelling evidence
that strong correlation effects—some form of Mott
localization—may be the dominant mechanism [6].
Should one expect similar or very different transport
phenomenology in the Mott picture? Is the paradigm of
quantum criticality even a useful language to describe
high temperature transport around the Mott point? These
issues are notoriously difficult to address, because conven-
tional Fermi liquid concepts simply cannot be utilized
in the relevant high temperature incoherent regime.
In this Letter, we answer this question in the framework

of dynamical mean-field theory (DMFT) [7], the only
theoretical method that is most reliable precisely at high
temperatures.
Model and DMFT solution.—We consider a single-band

Hubbard model at half filling

H ¼ � X

hi;ji�
tijðcyi�cj� þ c:c:Þ þX

i

Uni"ni#; (1)

where cyi� and ci� are the electron creation and annihilation

operators, respectively, ni� ¼ cyi�ci�, tij is the hopping

amplitude, and U is the repulsion between two electrons
on the same site. We use a semicircular density of states,
and the corresponding half-bandwidth D is set to be
our energy unit. We focus on the paramagnetic DMFT
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FIG. 1 (color online). (a) DMFT resistivity curves as a func-
tion of temperature along different trajectories �0:2 � �U �
þ0:2 with respect to the instability line �U ¼ 0 (black dashed
line; see the text). Data are obtained by using IPT impurity
solver. (b) Resistivity scaling; essentially identical scaling func-
tions are found from CTQMC (open symbols) and from IPT
(closed symbols).
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solution, which is formally exact in the limit of large
coordination. Here the Hubbard model maps onto an
effective Anderson impurity model supplemented by a
self-consistency condition [7]. To solve the DMFT equa-
tions we use the iterated perturbation theory (IPT) [7] and
cross-check our results with numerically exact continuous
time quantum Monte Carlo (CTQMC) calculations [8,9].
We find, in agreement with previous work [10], that after
appropriate energy rescaling (see below), the two methods
produce qualitatively and even quantitatively identical re-
sults in the incoherent crossover region that we examine.

It is well known that at very low temperatures T < Tc �
0:03, this model features a first-order metal-insulator tran-
sition terminating at the critical end point Tc (Fig. 2), very
similar to the familiar liquid-gas transition [10]. For
T > Tc, however, different crossover regimes have been
tentatively identified [7,11], but they have not been studied
in any appreciable detail. The fact that the first-order
coexistence region is restricted to such very low tempera-
tures provides strong motivation to examine the high tem-
perature crossover region from the perspective of ‘‘hidden
quantum criticality.’’ In other words, the presence of a
coexistence dome at T < Tc � 1, an effect with a very
small energy scale, is not likely to influence the behavior at
much higher temperatures T � Tc. In this high tempera-
ture regime smooth crossover is found, which may display
behavior consistent with the presence of a ‘‘hidden’’ quan-
tum critical (QC) point at T ¼ 0. To test this idea, we
utilize standard scaling methods appropriate for quantum

criticality and compute the resistivity curves along judi-
ciously chosen trajectories respecting the symmetries of
the problem.
Instability trajectory formalism.—Previous work has al-

ready recognized [10] that, in order to reveal the proper
scaling behavior close to the critical end point, one has to
follow a set of trajectories parallel to ‘‘zero field’’ trajec-
tory U�ðTÞ. We thus expect �U � U�U?ðTÞ to play the
role of the scaling variable corresponding to a symmetry-
breaking field favoring one of the two competing (metal
vs insulator) phases. By analogy [10,12] to the familiar
liquid-gas transition, we determine the precise location
of such an ‘‘instability trajectory’’ by examining the cur-
vature of the corresponding free energy functional [13].
This curvature vanishes at Tc and is finite and minimal at
T > Tc, along this instability line. Consequently, as in
Refs. [10,13,14], our problem is recast as an eigenvalue
analysis of the corresponding free energy functional
F ½GðiwnÞ� for which the DMFT Green’s function solution
GDMFTðiwnÞ represents a local extremum and can be re-
garded as a vector in an appropriate Hilbert space.
The free energy near such an extremum can be written as

F ½GðiwnÞ� ¼F 0þTt2
P

m;n�Gði!mÞMmn�Gði!nÞþ 	 	 	 ,
where

Mmn ¼ 1

2Tt2
@2F ½G�

@Gði!mÞ@Gði!nÞ
��������G¼GDMFT

(2)

and �Gði!nÞ � Gði!nÞ �GDMFTði!nÞ. The curvature of
the free energy functional is determined by the lowest
eigenvalue � of the fluctuation matrix M. As explained in
Ref. [15], � can be obtained from the iterative solution of
DMFT equations. The difference of the Green’s functions
in iterations n and nþ 1 of the DMFT self-consistency
loop is given by

�Gðnþ1Þði!nÞ � �GðnÞði!nÞ ¼ e�n��Gð0Þði!nÞ; (3)

and therefore � determines the rate of convergence of the
Green function to its solution.
An example of our calculations is shown in the inset in

Fig. 2, where the eigenvalues at several temperatures are
plotted as a function of interaction U=Uc. The minima of
these curves define the locus of the instability trajectory
U?ðTÞ, which terminates at the critical end point (Uc, Tc),
as shown in Fig. 2. Note that the immediate vicinity T 
 Tc

of the critical end point has been carefully studied theo-
retically [10] and even observed in experiments [2],
revealing classical Ising scaling (since one has a finite
temperature critical point) of transport in this regime. In
our study, we examine the crossover behavior at much
higher temperatures T � Tc, displaying very different
behavior: precisely what is expected in presence of quan-
tum criticality.
Resistivity calculation.—To reveal quantum critical

scaling, we calculate the temperature dependence of the
resistivity along a set of trajectories parallel to our insta-
bility trajectory [fixed �U ¼ U�U?ðTÞ]. Resistivity was
calculated by using standard DMFT procedures [7], with

T0

Fermi liquid

region
Quantum critical

FIG. 2 (color online). DMFT phase diagram of the fully frus-
trated half filled Hubbard model, with a shaded region showing
where quantum critical-like scaling is found. Metallic Uc2ðTÞ
and insulating Uc1ðTÞ spinodals (dotted lines) are found at
T < Tc; the corresponding first-order phase transition is shown
by a thick solid line. The thick dashed line, which extends at
T > Tc, shows the instability trajectory U

?ðTÞ, and the crossover
temperature T0 delimits the QC region (dash-dotted lines). The
inset shows examples of eigenvalue curves at three different
temperatures, with pronounced minima at U?ðTÞ determining
the instability trajectory.
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the maximum entropy method [16] utilized to analytically
continue CTQMC data to the real axis. The resistivity
results are shown in Fig. 1, where in panel (a) IPT resis-
tivity data for �U ¼ 0;�0:025;�0:05;�0:1;�0:15;�0:2
in the temperature range of T 
 0:07–0:2 are presented
(CTQMC data are not shown for the sake of clarity of the
figure). The resistivity is given in units of �Mott, maximal
resistivity according to the Boltzmann quasiclassical
theory of transport [17]. The family of resistivity curves
above (�U > 0) the ‘‘separatrix’’ �cðTÞ (dashed line, cor-
responding to �U ¼ 0) has an insulatinglike behavior,
while metallic dependence is obtained for �U < 0.

Scaling analysis.—According to what is generally ex-
pected for quantum criticality, our family of curves should
satisfy the following scaling relation:

�ðT; �UÞ ¼ �cðTÞfðT=T0ð�UÞÞ: (4)

We thus first divide each resistivity curve by the separatrix
�cðTÞ ¼ �ðT; �U ¼ 0Þ and then rescale the temperature,
for each curve, with an appropriately chosen parameter
T0ð�UÞ to collapse our data onto two branches [Fig. 1(b)].
Note that this unbiased analysis does not assume any
specific form of T0ð�UÞ: It is determined for each curve
simply to obtain optimum collapse of the data [18].
This puts us in a position to perform a stringent test of
our scaling hypothesis: True quantum criticality corre-
sponds to T0ð�UÞ, which vanishes at �U ¼ 0 and displays
power-law scaling with the same exponents for both scal-
ing branches. As seen in Fig. 3(a), T0 falls sharply as
U ¼ U? is approached, consistent with the QC scenario
but opposite to what is expected in a ‘‘classical’’ phase
transition. The inset in Fig. 3(a) with log-log scale
shows clearly a power-law behavior of T0 ¼ cj�Ujz�, with
the estimated power ðz�ÞIPT�U<0 ¼ 0:56� 0:01 for the

‘‘metallic ’’ side and ðz�ÞIPT�U>0 ¼ 0:57� 0:01 for an insu-

lating branch.
We also find [Fig. 3(b)] a very unusual formof our critical

resistivity �cðTÞ, corresponding to the instability trajectory.

Its values largely exceeds the Mott limit, yet it displays
metalliclike but non-Fermi liquidlike temperature depen-
dence �cðTÞ � T. Such puzzling behavior, while inconsis-
tent with any conventional transport mechanism, has been
observed in several strongly correlated materials close to
the Mott transition [17,20]. Our results thus suggest that it
represents a generic feature of Mott quantum criticality.
� function and mirror symmetry of scaled curves.—To

specify the scaling behavior even more precisely, we com-

pute the corresponding � function [4] �ðgÞ ¼ d lng
d lnT , with

g ¼ �c=� being the inverse resistivity scaling function.
Remarkably [Fig. 4(a)], it displays a nearly linear depen-
dence on lng and is continuous through �U ¼ 0 indicating
precisely the same formof the scaling function on both sides
of the transition—another feature exactly of the form ex-
pected for genuine quantumcriticality. This functional form
is very natural for the insulating transport, as it is obtained

even for simple activated behavior �ðTÞ � e�Eg=T . The fact
that the same functional form persists well into the metallic
side is a surprise, especially since it covers almost an order
of magnitude for the resistivity ratio. Such a behavior has
been interpreted [4] to reflect the ‘‘strong coupling’’ nature
of the critical point, which presumably is governed by the
same physical processes that dominate the insulator. This
points to the fact that ourQCbehavior has a strong coupling,
i.e., nonperturbative character.
The fact that the � function assumes this logarithmic

form on both sides of the transition is mathematically
equivalent [4] to stating that the two branches of the
corresponding scaling functions display ‘‘mirror symme-
try’’ over the same resistivity range. Indeed, we find that
transport in this QC region exhibits a surprisingly devel-
oped reflection symmetry [dashed vertical lines of Fig. 4(a)
mark its boundaries]. Such a symmetry is clearly seen in
Fig. 4(b), where the resistivity �=�c (for �U > 0) and
conductivity �=�c ¼ �c=� (�U < 0) can be mapped

onto each other by reflection with �ð�UÞ
�c

¼ �ð��UÞ
�c

[21].
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Note that T=T0 ¼ 1 sets the boundary of the quantum
critical region, over which the reflection symmetry of
scaled curves is observed. It is depicted by dash-dotted
crossover lines T0 in the phase diagram of Fig. 2 [15].

These remarkable features of the � function, and asso-
ciated reflection symmetry, have been observed earlier in
experimental [1,21] and theoretical [4] studies, which
tentatively associated this with disorder-dominated MITs.
Speculation that�� lng reveals disorder as the fundamen-
tal driving force for MIT presumably reflects the fact that,
historically, it has first been recognized for Anderson tran-
sitions [5]. Our work, however, shows that such behavior
can be found even in the absence of disorder—in
interaction-driven MITs. This finding calls for rethinking
of basic physical processes that can drive the MIT.

Conclusions.—We have presented a careful and detailed
study of incoherent transport in the high temperature cross-
over regime above the critical end point Tc of a single-band
Hubbard model. Our analysis revealed a so-far overlooked
scaling behavior of the resistivity curves, which we inter-
preted as evidence of hidden Mott quantum criticality.
Precisely locating the proposed QC point in our model is
hindered by presence of the low temperature coexistence
dome, which limits our quantum critical scaling to the
region well above Tc. Regarding the nature of transport
in the QC regime, we found that the critical resistivity well
exceeds the Mott limit, and yet it—surprisingly—assumes
a metallic form, in dramatic contrast to conventional
MIT scenarios. These features, together with large
amounts of entropy characterizing this entire regime
[22], prove surprisingly reminiscent of the ‘‘holographic
duality’’ scenario [23,24] for a yet-unspecified QC point.
Interestingly, the holographic duality picture has—so far—
been discussed mostly in the context of quantum criticality
in correlated metals (e.g., T ¼ 0 magnetic transitions in
heavy fermion compounds). Ours is the first work propos-
ing that the same physical picture could apply to quantum
criticality found at the MIT.

We believe that our results provide a significant new
perspective on QC around the Mott transition and a deeper
understanding of an apparent universality in the high tem-
perature crossover regime. Our method traces a clear ave-
nue for further searches for QC scaling, which are likely to
be found in many other regimes and models.

In particular, it would be interesting to study a corre-
sponding critical regime by going beyond the single-site
DMFT analysis. It was shown in Ref. [19] that inclusion of
spatial fluctuations does not significantly modify the high
temperature crossover region in the half filled Hubbard
model. Consequently, we expect our main findings to
persist. An even more stringent test of our ideas should
be provided in models where the critical end point Tc can
be significantly reduced. This may include studies of the
Mott transition away from half filling [25] or in systems
with frustrations [6,26]. In such situations the proposed
scaling regime should extend to much lower temperatures,

perhaps revealing more direct evidence of the—so far—
hidden Mott QC point. Our ideas should also be tested
by performing more detailed transport experiments in the
relevant incoherent regime, a task that may be easily
accessible in various organic Mott systems [3], where Tc

is sufficiently below room temperature.
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