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Recently, the frustrated XY model for spins 1=2 on the honeycomb lattice has attracted a lot of attention
in relation with the possibility to realize a chiral spin liquid state. This model is relevant to the physics of
some quantum magnets. Using the flexibility of ultracold atom setups, we propose an alternative way to
realize this model through the Mott regime of the bosonic Kane-Mele-Hubbard model. The phase diagram
of this model is derived using bosonic dynamical mean-field theory. Focusing on the Mott phase, we
investigate its magnetic properties as a function of frustration. We do find an emergent chiral spin state in
the intermediate frustration regime. Using exact diagonalization we study more closely the physics of the
effective frustrated XY model and the properties of the chiral spin state. This gapped phase displays a chiral
order, breaking time-reversal and parity symmetry, but is not topologically ordered (the Chern number is
zero).
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The last few decades have seen growing interest in the
quest for exotic spin states [1]. Significant progress has been
made both from the theoretical and experimental sides [2–4].
The best candidates are found in two-dimensional systems.
Disordered phases are expected to occur in complex
geometries, such as the kagome lattice [5–8], or in frustrated
bipartite lattices, such as the square lattice with second-
neighbor couplings [9,10]. Among basic lattices, the
honeycomb hosts free Majorana fermions due to Kitaev
anisotropic interactions [11], and raises questions when
starting from the Hubbard model [12–14]. In such context
and motivated by quantum magnets [15], frustrated
Heisenberg models on the honeycomb lattice have been
recently explored [16–29]. In parallel, some materials were
found to realize the XXZ version of this model [30], and
theoretical and numerical studies suggested that the XY
version possibly hosted a chiral spin liquid state, with
seemingly contradictory results [31–38]. As suggested in
Ref. [39], in the intermediate frustration regime the ground-
state physics could bemapped to a fermionicHaldanemodel
[40] with topological Bloch bands at a mean-field level, as a
result of Chern-Simons (ChS) gauge fields [41–45].
However, the topological nature of this spin state is still
elusive.
Our objectives are twofold in this Letter. Motivated by

cold atom experiments [46,47], we first study the phase
diagram of the bosonic Kane-Mele-Hubbard (BKMH)
model using bosonic dynamical mean-field theory

(B-DMFT) [48–54]. The Kane-Mele model [55] is the
standard model with spin-orbit coupling that displays a Z2

topological classification. Still, it has not yet been studied
for interacting bosons, and for interacting fermions at the
Mott transition it becomes magnetically ordered in the xy
plane, with quantum fluctuations stabilizing the Neel
ordering [56–58]. We explore the Mott regime of this
model and show that it allows for a tunable realization of
the frustrated XY model on the honeycomb lattice. Second,
we use exact diagonalization (ED) and theoretical argu-
ments to study the resulting XY model. We observe that an
intermediate frustration regime hosts a chiral spin state with
spontaneously broken time-reversal (T ) and parity (P)
symmetries, associated with antiferromagnetic ordering
and the onset of local currents. Based on the calculation
of the Chern number, we conclude that this state has no
intrinsic topological order.
We start our analysis with the bosonic version of

the Kane-Mele model [55] on the honeycomb lattice
[Fig. 1(a)], which contains two species of bosons labeled
by σ ¼ ↑;↓. In the presence of repulsive Bose-Hubbard
interactions, the Hamiltonian reads

H¼−t1
X
σ;hiji

½b†σ;ribσ;rj þH:c:� þ it2
X
σ;⟪ik⟫

νσik½b†σ;ribσ;rk −H:c:�

þU
2

X
σ;i

nσ;riðnσ;ri − 1ÞþU↑↓

X
i

n↑;rin↓;ri : ð1Þ
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Here, b†σ;riðbσ;riÞ are creation (annihilation) operators at site
i, and nσ;ri ¼ b†σ;ribσ;ri is the density operator. t1ðt2Þ is the
amplitude of hopping to the first (second) neighbors, and
ν↑ik ¼ −ν↓ik ¼ 1ð−1Þ for a left turn (right turn) on the
honeycomb lattice. We assume a filling of one boson
per site hn↑;ri þ n↓;rii ¼ 1. The Haldane model [40] for
spinless fermions has been realized through Floquet engi-
neering in cold atoms [59]. Similarly, spin-orbit models
have been proposed in optical lattices setups [60–62] and
experimentally achieved with photons [63–66]. All the
ingredients required for a successful implementation of
Eq. (1) are thus available.
I. B-DMFT on BKMH model.—The ground-state phase

diagram of the BKMH model obtained from B-DMFT
[48–53] is shown in Fig. 1(b). In order to address unusual
states breaking translational symmetry, we use real-space
B-DMFT [54,67–69]. Local effective problems represented
by the Anderson impurity model are solved using exact
diagonalization [54]. As found for the bosonic Haldane
model at the same filling [70], three phases are competing:
a uniform superfluid (SF), a chiral superfluid (CSF) and a
Mott insulator (MI) (they are distinguished by the behav-
iors of the order parameter hbσ;rii and of the local currents

Jσij ¼ Imhb†σ;ribσ;rji [54]).
We here focus on the MI phase. As shown in Fig. 1(b),

the system enters the Mott phase when intraspecies (U) and
interspecies (U↑↓) interactions become strong enough. The
internal structure of the MI phase is richer than in the
bosonic Haldane model [70] and comprises different

regimes. Applying standard perturbation theory [71], one
rewrites the Hamiltonian (1) in terms of pseudospin-1=2
operators Sþri ¼ Sxri þ iSyri ¼ b†↑;rib↓;ri , S−ri ¼ Sxri − iSyri ¼
b†↓;rib↑;ri and Szri ¼ ðn↑;ri − n↓;riÞ=2 as follows:

H ¼ −
X
hiji

½J1ðSþri S−rj þ H:c:Þ − K1SzriS
z
rj �

þ
X
⟪ik⟫

½J2ðSþri S−rk þ H:c:Þ þ K2SzriS
z
rk �; ð2Þ

where Ji ¼ t2i =U↑↓ and Ki ¼ t2i ð1=U↑↓ − 2=UÞ. We
observe that the spin-1=2 frustrated XY model is realized
when U ¼ 2U↑↓ (for which Ki ¼ 0). Frustration is asso-
ciated with the positive sign of the J2 term, which combines
the sign of the bosonic exchange and the phase of π
accumulated in the hoppings between second neighbors.
The fermionic Kane-Mele model does not include such
frustrating terms [56,72].
The properties of this effectiveXY model depend only on

the ratio J2=J1 ¼ ðt2=t1Þ2. In the classical limit, a coplanar
ansatz [16,54,73] provides the following phase diagram: the
ferromagnetic (FM) phase is stable for J2=J1 ≤ 1=6, above
which degenerate incommensurate spiral waves become
energetically favored. Their wave vectors live on closed
contours in the Brillouin zone. In the case of the Heisenberg
model, quantum fluctuations were predicted to lift this
degeneracy via an order-by-disorder mechanism [18].
B-DMFT on the BKMH model captures already devia-

tions from this classical picture. In Figs. 2(a)–2(d), we
study the coplanar spin ordering (arrows), in the presence
of an external staggered magnetic field hz, breaking the P
symmetry (bond-center reflection which interchanges sub-
lattices A and B):

Hz ¼ hz

�X
i∈A

Szri −
X
j∈B

Szrj

�
: ð3Þ

It corresponds to a staggered chemical potential in the boson
language [74] and we will understand its role hereafter. We
directly infer some of the ordered phases: at low J2=J1, all
spins are aligned in a FM order, while at large J2=J1, we
recover a 120° order. For U↑↓=U ¼ 0.5; t1=U ¼ 0.025 in
the range 0.36≲ J2=J1 ≲ 1.23 we observe a different
configuration of spiral waves [Fig. 2(c)]. In addition, we
find an exotic intermediate regime when 0.25≲ J2=J1 ≲
0.36 (we notice that positions of phase boundaries are
affected by hz), characterized by a chiral spin state (CSS)
with no coplanar magnetic order [Fig. 2(b)]. This is
reminiscent of the debated intermediate phase found in
numerical studies on the XY model [31–38]. On the one
hand, density matrix renormalization group [33,34] and
coupled cluster method [35] results evidenced an antiferro-
magnetic Ising ordering, breaking P while preserving trans-
lational invariance. On the other hand, this observation was
not reported in ED [31,32] nor variational Monte Carlo
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FIG. 1. (a) Honeycomb lattice and its first Brillouin zone.
(b) Phase diagram of the BKMH model obtained using B-DMFT
containing Mott insulator, uniform superfluid, and chiral super-
fluid phases with different regimes of the MI phase marked in
italic. The central gray region corresponds to the states with no
coplanar order. Parameters U↑↓=U ¼ 0.5, μ=U↑↓ ¼ 0.5, lattice
of 96 sites. “Pentagons” mark parameter values that we further
explore in Figs. 2(a)–2(d).
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[36–38] analyses, raising questions about the exact nature of
this intermediate phase.
Mapping the model onto a fermionic one and performing

a mean-field analysis [39,54], it was proposed that an
intermediate frustration stabilizes a phase with spontane-
ously broken P and T . This phase is characterized by
antiferromagnetic correlations and ChS fluxes staggered
within the unit cell as in the celebrated Haldane model [40]
and the authors suggested that it realizes the chiral spin
liquid state of Kalmeyer-Laughlin [75,76]. In this context,
we plot in Fig. 2(e), the response for the magnetization hSzrii
with respect to the field hz. All phases except the CSS are
characterized by a trivial response to the perturbation:
hSzrii ∼ hz, whereas hSzrii is strongly fluctuating in the CSS
(however we do not observe spontaneous symmetry break-
ing with B-DMFT). These results cannot be explained in
the context of a simple coplanar ansatz, but could be related
to a breaking of the degeneracy between two mean-field
solutions in the ChS field theory description [54].

II. ED on frustrated XY model.—We complete the study
of the effective frustrated XY model using ED and
previously unaddressed probes such as the responses to
P and T breaking perturbations and the topological
description of the ground state. We consider lattices of
24–32 sites, with periodic boundary conditions, and fixed
total magnetization Sztot ¼ 0 if not stated otherwise. First,
phase boundaries are derived from the maxima of fidelity
metric g [54], which probes the first derivative of the
ground-state wave function [77–79]. The phase diagram of
the XY model deduced from the ED calculations is given in
Fig. 3(a). In agreement with the B-DMFT and previous
numerical studies, we observe three phase transitions at
J2=J1 ≈ 0.21; 0.36, and 1.32. Small deviations in these
values from the B-DMFT results could be due to the finite
size of ED clusters or nonperturbative interaction effects
(the XY model does not describe correctly the physics of
the Mott phase when ti=U are too large). The nature of the
phases detected with ED is verified by looking at the
coplanar static structure factor

SSpiralðqÞ ¼ 2
X
i;j∈A

eiq·ðri−rjÞhSxriSxrji: ð4Þ

Spiral waves display a maximum of SSpiral at some wave
vector(s) q in the first Brillouin zone. We observe [54] that
the phase in the region J2=J1 ≲ 0.21 corresponds to FM
order since Sspiral has a peak at q ¼ Γ. The phase at
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FIG. 2. Results of the B-DMFT for different values of
ðt2=t1Þ2 ¼ J2=J1 for hz=U ¼ 10−3, U↑↓=U ¼ 0.5, t1=U ¼
0.025 on a lattice of 24 sites. (a)–(d) Different spin configura-
tions. The color palette gives hSzrii, while arrows depict ordering
in the xy plane. (a) Uniform state with ferromagnetic ordering;
(b) chiral spin state with no coplanar order; (c) a configuration of
spiral states, in which each pseudospin is aligned with only one of
its three first neighbors and antialigned with two of its six second
neighbors; (d) a 120° configuration. (e) Absolute value of jhSzriij.
For each ratio ðt2=t1Þ2 we plot the result for all 24 sites and
compare it to the classical solution. Pentagons mark results
presented in (a)–(d). Note that for finite values of hz the border
between the 120° Mott state and CSF is slightly shifted in favor of
the Mott state.
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FIG. 3. Results of the ED. (a) Phase diagram of the frustrated
XY model. (b)–(d) Variation of the observables with the dimen-
sionless parameter J2=J1 for different values of hz, with
J02 ¼ 0.01J1, on a lattice of 6 × 2 unit cells. (b) Difference of
the average Ising magnetization on two sublattices m. (c) Scalar
spin chirality χ. (d) Pseudospin density wave structure factor
SPSDWðΓÞ. (e) Schematic representation of the perturbation
term HJ0

2
.
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0.36≲ J2=J1 ≲ 1.32 corresponds to a spiral wave with
collinear order (structure factor has maxima at three M
points) as expected from the order by disorder mechanism.
At 1.32≲ J2=J1 the ground state is the 120° order spiral
wave (structure factor has a peak at two Dirac points K). In
the intermediate frustration regime (0.21≲ J2=J1 ≲ 0.36)
Sspiral is flat in reciprocal space and we expect the ground
state to be disordered in the xy plane. We notice that the
exact positions of the phase transitions, especially collinear
order ↔ 120° order, are sensitive to the lattice choice [54].
The ground state in all phases is located in the same sector
of the total momentum at point Γ. Based on the ChS field
theory predictions, the order-by-disorder arguments and
numerical observations, the CSS ↔ collinear order, and
collinear order↔ 120° order phase transitions are expected
to be first order, whereas the FM ↔ CSS phase transition
to be second order.
We analyze the linear response to perturbations breaking

P and T . We are interested in the relative magnetization
between the two sublattices m ¼ hmrii ¼ hSzri − Szriþu3i, as
well as the scalar spin chirality χ ¼ hSri · ðSriþu1 × Sriþu2Þi.
Here we suppose that i ∈ A and ui are vectors between first
neighbor sites defined in Fig. 1(a). When calculating the
chirality χ, we add a perturbation corresponding to
the second-neighbor hopping of the Haldane model, of
amplitude J02 and phase π=2 [as shown in Fig. 3(e)]:

HJ0
2
¼ J02

X
⟪ik⟫

ðe�iπ=2Sþri S
−
rk þ H:c:Þ: ð5Þ

We are interested in the limit hz, J02 ≪ J1. Results of the ED
calculations are presented in Figs. 3(b)–3(c). The CSS
reveals itself by sharp responses to such external fields.
Moreover, the scaled quantities m=hz and χ=ðhzJ02Þ tend to
diverge when hz, J02 → 0, giving a strong indication for
spontaneous symmetry breaking. This justifies our defi-
nition of the CSS, the properties of which can be observed
experimentally by tracking on-site populations of bosons
nσ;ri and currents Jσij ¼ Imhb†σ;ribσ;rji [80]. One can probe
the antiferromagnetic ordering without breaking P and T
by calculating the pseudospin density wave (PSDW)
structure factor [31,32]:

SPSDWðqÞ ¼
X
i;j

eiq·ðri−rjÞhmrimrji: ð6Þ

We observe in Fig. 3(d) that SPSDWðqÞ has a peak at q ¼ Γ
in the intermediate frustration regime. These features are
hardly affected by moderate Ising interactions Ki=J1 ∼ 0.1
in Eq. (2) [81].
The observed spin configuration of the CSS could

describe the chiral spin liquid of Kalmeyer and Laughlin
[75,76]. Yet, we know that chiral spin liquids are charac-
terized by a topological degeneracy in the thermodynamic
limit on a compact space [82–84]. In a two-dimensional

system with periodic boundaries one should have a fourfold
degenerate ground state with two topological degeneracies
per chirality sector. Still, because of finite size effects, one
only expects an approximate degeneracy in simulations.
In Figs. 4(a)–4(b), we show the low-energy spectrum as a

function of J2=J1, resolved in different sectors of total
momentum Q. As mentioned previously, the ground state
always belongs to the sector Q ¼ Γ. In the intermediate
frustration regime, we observe the onset of a gapped doubly
degenerate ground-state manifold. The first excited state
has the same momentum Q ¼ Γ, but lies in the opposite
sector of P. The first excited state also moves away in
energy when the perturbationsHz andHJ0

2
are switched on.

We probe the robustness of the low energy quasidegen-
erate state sector by performing Laughlin’s gedanken
experiment and pumping a quantum of magnetic flux
through one of the nontrivial loops of the torus [85–87].
Numerically, this is achieved using twisted boundary
conditions in a translational symmetry preserving manner.
The results are given in Fig. 4(c). We observe that the same
states in the sector Q ¼ Γ are nontrivially gapped for all
twists. For the pumping of a single flux quantum we could
not observe a spectral flow in the ground-state manifold,
that, however, does not imply that the manifold is topo-
logically trivial [88–90]. The topological nature of the
ground-state manifold is unambiguously determined by
calculating the Chern number [91–94]:

C ¼ 1

2π

Z
2π

0

Z
2π

0

Bðθ1; θ2Þdθ1dθ2: ð7Þ
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FIG. 4. ED calculations of the low energy spectra as a function
of J2=J1 showing (using red circles) the formation of a quasi-
degenerate twofold ground-state manifold (a) on a lattice of 4 × 3
unit cells for various SzTot; (b) on a lattice of 4 × 4 unit cells in the
SzTot ¼ 0 sector only. (c) Low energy spectrum as a function of the
twist angle θ1 for J2=J1 ¼ 0.3 and θ2 ¼ 0 on a lattice of 4 × 3
unit cells. (d) Berry curvature calculated using the non-Abelian
formalism resulting in a vanishing Chern number shown for
J2=J1 ¼ 0.3, hz=J1 ¼ J02=J1 ¼ 0.02 on a lattice of 4 × 3

unit cells.
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Here θ1 and θ2 are two angles of twisted boundary
conditions and Bðθ1; θ2Þ is the Berry curvature [95]. We
notice that two phases θi (i ¼ 1, 2) introduced in the spin
languagewould correspond to four phases θσi in the language
of bosons of the BKMH model, for which the spin
component θ↑i − θ↓i ¼ θi is fixed and the Uð1Þ component

θ↑i þ θ↓i is free [96]. Since the two quasidegenerate ground
states lie in the same symmetry sector and cannot be
separated unless twists are trivial (P cannot be used with
twisted boundary conditions), we evaluate the Berry curva-
ture using the gauge-invariant non-Abelian formulation
[97–99]: Bðθ1; θ2Þδθ1δθ2 ¼ Im lnDet½Mðθ1; θ2Þ�, where
elements of the matrix M are obtained as follows:

Mijðθ1;θ2Þ ¼ hϕiðθ1;θ2Þjϕμ1ðθ1þ δθ1;θ2Þi
× hϕμ1ðθ1þ δθ1;θ2Þjϕμ2ðθ1þ δθ1;θ2þ δθ2Þi
× hϕμ2ðθ1þ δθ1;θ2þ δθ2Þjϕμ3ðθ1;θ2þ δθ2Þi
× hϕμ3ðθ1;θ2þ δθ2Þjϕjðθ1;θ2Þi: ð8Þ

Here, δθ1 and δθ2 refer to the numerical mesh along the θ1
and θ2. i; j; μi ¼ 1, 2 are indices of states jϕ1i and jϕ2i in the
ground-statemanifold and the summation overμi is implicit.
In Fig. 4(d), we show a typical shape of the Berry curvature.
We find that the Chern number is zero in the intermediate
frustration regime. This result suggests that the intermediate
phase in the frustrated XY model is most likely to be a CSS
with no topological order, as suggested inRefs. [33–35], and
not the Kalmeyer-Laughlin state, with gauge fluctuations
beyond the mean-field solution making the phase topologi-
cally trivial as in the fermionic Kane-Mele model [56–58].
To conclude, we studied the phase diagram of the

bosonic Kane-Mele-Hubbard model on the honeycomb
lattice. We have shown that an effective frustrated XY
model appears in the Mott insulator phase. This model
possesses an intermediate frustration regime with a non-
trivial chiral spin state, which breaks both P and T . It
displays a finite scalar spin chirality order and an anti-
ferromagnetic Ising ordering, while remaining translation-
ally invariant. Measuring the Chern number associated with
this state reveals its nontopological nature.

We thank Loïc Herviou, Grégoire Misguich, Stephan
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