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h i g h l i g h t s

• An effective algorithm for modeling of gravitational accretion was developed.
• Very efficient implementation of this algorithm enabled large-scale simulations.
• The dynamics of the model is found to lead to phase separation of condensates.
• Light condensates obey power laws, with several universal scaling exponents.
• The analyzed properties of heavy condensates have been found to be scale-free.
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a b s t r a c t

We study dynamics and scaling exponents in a nonlinear network model inspired by the formation of
planetary systems. Dynamics of thismodel leads to phase separation to two types of condensate, light and
heavy, distinguished by how they scale with mass. Light condensate distributions obey power laws given
in terms of several identified scaling exponents that do not depend on initial conditions. The analyzed
properties of heavy condensates have been found to be scale-free. Calculated mass distributions agree
well with more complex models and fit observations of both our own Solar System and the best observed
extra-solar planetary systems.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The studies of nonlinear systems in physics rely on the well
known and developed approaches, but have also greatly benefited
from the development of new methods which offer new insights
and prospectives for understanding of the behavior of such sys-
tems. The approach based on the study of complex networks rep-
resents one of seminal examples for such advancements [1,2]. To
mention just the hallmarks, such as the study of the preferential at-
tachment by Yule [3] and Simon [4], and of theWorldWideWeb [5]
in the pivotal work by Albert, Jeong and Barabási, this approach al-
lowed investigations of the emergence of scaling behavior in com-
plex systems [6], utilized the concept of scale-free networks [7],
enabled studies of dynamics and topologies of evolving net-
works [8,9], and provided important newmethods for applications
ranging to biophysics [10–14] and techno-social networks [15–17].
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The level of details used to describe nonlinear systems is
necessarily limited, both in analytic and numerical approaches.
However, if carefully crafted, even the simplified models can
provide valuable information on the behavior and properties of
such systems [18–22]. The formation of planetary systems is a
well-known nonlinear system exhibiting chaotic behavior, and
its modeling has taken on increased relevance due to the abun-
dance of new observational data on extra-solar planets [23–25].
Recent models of planet formation have tended toward greater so-
phistication, incorporating many complex phenomena. Such mod-
els aim to provide detailed understanding of various stages of
planet formation, such as initial collapse of the protostar, inter-
action of dust and gas in the young disk, non-gravitational accre-
tion of dust into mountain-sized objects, the separate processes of
creating terrestrial planets, cores of gas giants, and gas accretion
onto cores, and finally the interaction between formed planets and
the remaining diskmaterial [26–29]. This ‘‘divide and conquer’’ ap-
proach has yielded significant results and represents the state-of-
the-art in the field.

The current paper has the complementary goal of applying the
standard method of effective model building used for studying
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nonlinear systems to the exciting field of planetary system
formation. We do this by developing and numerically simulating
a simplified toy-model of the gravitationally-dominated phase
of planetary system formation. The model’s simplicity makes it
possible to span a mass scale frommountain-sized to planet-sized
objects in a unique framework, to obtain detailed statistics by
averaging over hundreds of runs, as well as to study how accretion
outcomes depend on initial conditions. We use the presented
model as a heuristic tool for getting a handle on understanding the
dominant properties of accretion, and for studying the observed
power laws, e.g. between spin angular momentum and mass, in
the size distribution of smaller objects in the Solar System, etc.

The nonlinear model presented seeks to emulate the true spirit
of effective model building in two key aspects. First, unlike in
earlier attempts [30–32], the employed interaction criterion is
not given ad hoc but rather follows from the underlying micro
physics. Second, the key requirement put before the model is
that it correctly reproduces the qualitative behavior and uncovers
functional connections between relevant dynamical quantities.We
use such qualitative understanding to distinguish different types of
condensates appearing in accretion and to study the dependence
of their properties on the initial conditions in the protoplanetary
disk. The ultimate goal of this is to obtain an initial handle on the
classification of possible types of planetary systems.

Before launching into details, we offer a brief preview of how
our model matches observations. First, the spin angular momen-
tum as a function of mass obeys a power law with a scaling ex-
ponent approximately matching that seen in the Solar System
(Fig. 7). Second, the ratios of the masses of the three heaviest plan-
ets in our Solar System can be reproduced using the model’s sin-
gle input parameter K defined below (Fig. 6 and Table 2). Third,
using the obtained values of parameter K we correctly recover
(Table 2) the accepted mass of the Minimum Mass Solar Neb-
ula [33]. The analyzed toy-model also successfully fits the three
heaviest masses of extra-solar systems for which several planets
are known (Table 2). Finally, the mass distribution of ‘‘light’’ con-
densates (Fig. 5) exhibits a power law behavior in agreement with
the observed size distribution of main-belt asteroids [34]. It is well
known that most of the main-belt asteroids, except the largest
ones, have been shattered after the formation of the main-belt and
that their size distribution is dominated by fragmentation, not ac-
cretion. The above result suggests the plausible scenario in which
the fragmentation process preserves the power law distribution in
size.

We believe that the presented nonlinear network model and
the obtained scaling laws and scaling exponents, as well as the ob-
served phase separation could contribute to the understanding of
the complex process of planetary formation and its main features.

2. The model

Thepresentedmodel starts fromagivenplanar distribution ofN
initial particles of equal mass andwith no spin. The initial particles
have a uniform angular distribution, while the radial distribution is
given by ρ(r) which is normalized according to


∞

0 dr ρ(r) = MP ,
whereMP is the total mass of the protoplanetary material.

The N-body dynamics is simplified by dividing it into two
pieces—free propagation on Keplerian trajectories and instanta-
neous binary mergers. For simplicity, we assume that all trajecto-
ries are nearly circular and neglect their eccentricities. The binary
merger proceeds if the two particles satisfy an interaction crite-
rion given below. Although all orbits in the model are circular and
do not cross, we assume that two bodies whose orbits are close
enough (as will be defined by the interaction criterion) can merge,
and that the growing protoplanets have some radial reach that al-
lows them to accrete neighboring bodies. Another limitation of the
model is that it assumes that there is no radial migration of the
bodies, while, in fact, small bodies will drift radially due to nebula
gas drag, and larger protoplanets will migrate inward due to their
gravitational interactions with the nebula.

The result of the merging of bodies with masses m1 and m2, at
positions r1 and r2, and spins s1 and s2, is a new body with mass
m, position r and spin s. The properties of the new body follow
from mass, energy and angular momentum conservation. Mass
conservation gives m = m1 + m2. Expressing angular momenta
in units of

√
M∗G, where M∗ is the mass of the star, the orbital

angular momentum of a body of mass m at a distance r from
the star equals ℓ = m

√
r . All bodies are assumed to have no

initial spin, and after each merger the excess angular momentum
∆ℓ = m1

√
r1 + m2

√
r2 − (m1 + m2)

√
r is, according to the

angular momentum conservation law, converted into the spin of
the new body, s = s1 + s2 +∆ℓ. The position r follows from energy
conservation:

−
GM∗m1

2r1
−

GM∗m2

2r2
= −

GM∗(m1 + m2)

2r
+ Q , (1)

where Q is the thermal energy corresponding to the heating of the
merged body. We have neglected the much smaller contributions
of the potential energy of the gravitational interaction of the
condensing bodies, as well as kinetic energies due to spin. Q ≥ 0
implies that the merging position satisfies r ≤ rs, where m/rs =

m1/r1 + m2/r2. In addition, rs < r0, where r0 is the merging
position leading to zero spin, i.e. m

√
r0 = m1

√
r1 + m2

√
r2. As a

result, the thermodynamic requirementQ ≥ 0 implies that,within
our model, spin is necessarily positive. From now on we use the
merging point r = rs, corresponding to Q = 0.

The above relations completely specify the kinematics. The
merging criterion encoding the dynamics of the model follows
fromwhat is an essentially dimensional analysis of Newton’s laws,
and is determined as follows: two bodies merge if |F△t| & |△p|,
where F is the characteristic gravitational force between the bodies
during interaction, △t is the characteristic time for the merger,
and △p is the resulting change in momentum. We assume that
particles interact only at their closest approach and so disregard all
dependence on orbital position and find |F | ∼ Gm1m2/(r1 − r2)2.
The characteristic time is△t ∼ |△r|/|△v|, where |△r| = |r1 − r2|,
and |△v| =

√
GM∗ |1/

√
r1 − 1/

√
r2|. Similarly, the change in

momentum due tomerger equals |△p| =
√
GM∗ |(m1+m2)/

√
r−

m1/
√
r1 − m2/

√
r2|. The complete merging criterion becomes

|r1 − r2|
m1m2

 1
√
r1

−
1

√
r2

  m
√
rs

−
m1
√
r1

−
m2
√
r2

 ≤ K . (2)

Merging stops when no two particles satisfy Eq. (2). Dynamics
within our effective gravitational accretion model is driven by a
single parameter K . If we express masses m1 and m2 in units of
MP , the parameter K becomes dimensionless and is proportional
to MP/M∗. Since our merging process follows from a dimensional
analysis, the proportionality factor between K and MP/M∗ cannot
easily be determined, but is assumed to be close to unity. As
already pointed out, the model neglects radial migration, which is
quite sensitive to masses of bodies. This will promote differential
migration, and the added mobility will enhance the bodies’ ability
to accrete. Therefore, radial migration would render K parameter
to be mass-dependent, and the system could not be described via
a single value of K . However, these effects are neglected in the
simplified model employed here.

The interaction criterion is homogeneous with respect to
changes of both mass and distance scales. We fix the mass scale
by setting MP = 1, i.e. by expressing the masses of all the bodies
in units of MP . Distance scales are fixed by our choice of ρ(r). For
m1 ≫ m2, the derived criterion implies that m1 merges with any
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body within the r1 ± δ(r1,m1) feeding zone, Hill’s radius, where
δ(r,m) = 2rK 1/4m1/4

∼ r(m/M∗)
1/4. The same approximative

result was also obtained in some early studies [30,35], while the
correct scaling for Hill’s radius δ(r,m) ∼ r(m/M∗)

1/3 follows from
the exact treatment of the restricted three-body problem [36]. This
is reasonably close to the result obtained fromour simplifiedmodel
and indicates that its single interaction criterion, to some extent,
effectively encodes some of major ingredients in gravitational
accretion, such as particle collisions and gas capture.We stress that
the toymodel does not include important effects due to resonances
and tidal lock.

3. The algorithm and implementation details

The straightforward way to simulate the presented model
[37–39] would be to generate the positions of all N initial particles
according to initial mass distribution ρ(r) and then to randomly
pick the pairs and merge them if the interaction criterion is
satisfied. The random number generator used in this work is RAN3
described in Press, et al. [40]. This process would continue until
no further merging was possible, i.e. no pair of bodies satisfied
the criterion. Such a strategy (definition algorithm) has been
investigated and the memory requirements needed to simulate N
body accretion scale as O(N), whereas computing time has been
found to be of orderO(N2.2). Thismakes it impractical for the study
of sufficiently large systems.

Fortunately, there is amore efficientway to simulate ourmodel.
It is not necessary to specify all the N bodies at the very beginning,
due to the fact that we are dealing with a two body interaction
criterion. For example, in the very first merger the position of
the N − 2 spectators are irrelevant and need not be generated at
that time. After the question of this merging is resolved another
particle is added and so on. At each step the possible merging
of the newly added particle with the ones already present is
investigated. This operation is local, i.e. if the newly introduced
particle merges that can only happen with one of the two particles
with the nearest radial distance, and for this reason it is useful
to keep particles sorted according to increasing r throughout
the simulation. Obviously, the positions and masses of particles
change after merging, making further merging possible. After all
the merging possibilities are exhausted a new particle is added to
the system, and the procedure is recursively repeated until all N
initial particles are considered. Althoughwe cannot prove the strict
equivalence of these two simulation schemes, numerical evidence
shows that the results are equivalent within statistical errors.

Fig. 1 gives a schematic presentation of how initial particles are
introduced. Black dots represent newly introduced particles, gray
dots represent existing particles, while ellipses correspond to their
regions of attraction for the capture of initial particles. At the top
line we introduce a new particle that does not merge with the
rest of the particles. The resulting situation is shown in line two.
Lines three and four depict a typical merging. Lines five to seven
show the introduction of a new particle that leads to a two step
merging cascade. In line twowe see that particles 3 and4,while not
interacting, have overlapping regions of attraction for the capture
of initial particles. In cases like this we need to specify whether the
merging proceeds to the left or right. We have investigated both
the cases when all such merging is to the left and to the right. The
difference is quite small and may be absorbed into a change of K .
Throughout this paper we resolve the case of overlapping regions
of attraction by always merging to the left, i.e. to smaller values
of r .

The memory required for this algorithm is of the order O(n),
where n (typically n ≪ N) is the final number of condensates. On
the other hand, we expect the computing time to be

t = N(a + b logN). (3)
Fig. 1. Schematic presentation of the order of introduction of initial particles used
in the employed algorithm.

Fig. 2. The computing time (on a moderate Intel Xeon E5345 2.33 GHz processor)
for a single run as a function of N for K = 10−6 (top) and K = 101 (bottom line).
The two lines represent fits to the scaling law from Eq. (3), with a = 3.8 · 10−6 ,
b = 2.2 · 10−8 for K = 10−6 (full line) and a = 2.5 · 10−6 , b = 2.2 · 10−8 for
K = 101 (dashed line).

The overall factor of N comes from the loop over N initial particles.
The term in parentheses represents the time for the calculations
inside the loop, i.e. for a single particle. The b logN term comes
from keeping particles sorted according to increasing r throughout
the simulation,while the constant term a represents the number of
other operations inside the loop, regardless of sorting. Obviously,
for N ≫ 10a/b the term containing the logarithm will dominate
and the algorithm will be O(N logN). However, since in our code
a/b > 100 that regime is never reached in practice and, for the
considered numbers N = 103–1010, the algorithm is O(N), as can
be seen from Fig. 2.

4. Numerical results

Our model depends on the parameter K , the number of initial
bodies N , and the initial mass distribution ρ. In this letter we
investigate the robustness of gravitational accretion on the choice
of ρ. We shall show that several important consequences of
accretion are independent of, or depend very weakly on, the
specific form of ρ. This is particularly important since very little
is known about the true conditions at the start of accretion. To
demonstrate this we conducted numerical simulations using our
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Fig. 3. Illustration of the triangular-shaped distributions on r ∈ [0, 1] peaked at c .

Fig. 4. 1/Ω − 1 as a function of K for N from 104 to 108 (average over 100 runs,
error bars shown).

SOLAR code [41] on a wide range of initial mass distributions
(Table 1): triangular-shaped distributions on r ∈ [0, 1] peaked
at c = 10−1, 10−2, 10−3 (see Fig. 3); uniform distribution on
r ∈ [0, 1]; ρ(r) ∝ r/(1 + r4); ρ(r) ∝ r(2 − r) (for r ∈ [0, 2]).
The listed distributions have not been chosen for physical reasons,
but so as to investigate the dependence of outcomes on drastic
changes of initial conditions. All the presented graphs of numerical
simulations were done on the triangular-shaped distribution
peaked at c = 10−1 which we denote as ‘triangle 1’, although our
results do not change much if other distributions are used.

We start by identifying a set of quantities that characterize the
final distribution of condensates. The first such quantity is the ratio
of the number of final and initial bodies Ω = n/N . From Fig. 4 we
see that 1/Ω − 1 is given by a power law in both N and K . The fit
gives

1/Ω − 1 ∝ NαKβ . (4)

The ‘triangle 1’ distribution gives α = 0.744(1) and β = 0.251(1).
From Table 1 we see that the scaling exponents depend very
weakly on ρ. Ω decreases monotonically with K from its maximal
value of 1 at K = 0 to the minimum 1/N ∼ 0 at large K , the two
extremes corresponding respectively to no accretion, and the col-
lapse of all the material into a single body. Thus the model’s single
input parameter K ∼ MP/M∗ regulates the amount of accretion
taking place.

The power-law behavior of the quantity Ω comes about
through a runaway growth process [42]. Similar mechanisms have
been observed in completely different realms, for example when a
graph (of the node-edge variety) grows via preferential attachment
of new nodes to existing nodes of greater weight. Such structure
Table 1
Mass distribution scaling exponents for different initial densities: triangles
on r ∈ [0, 1] peaked at c = 10−1 , 10−2 , 10−3; uniform on r ∈ [0, 1];
proportional to r/(1 + r4); proportional to r(2 − r). Numbers in brackets
denote statistical errors on last digit.

ρ(r) α β τ

Triangle 1 0.744(1) 0.251(1) 1.22(1)
Triangle 2 0.758(2) 0.256(3) 1.20(1)
Triangle 3 0.775(2) 0.264(6) 1.19(1)
Uniform 0.751(1) 0.247(1) 1.21(1)
r/(1 + r4) 0.735(8) 0.243(3) 1.22(1)
r(2 − r) 0.749(2) 0.249(1) 1.21(1)

Fig. 5. Relative number of condensates as a function of mass for N from 106

to 108 (average over 100 runs). Top: Weak condensation (K = 10−7), almost
all condensates belong to the light class and exhibit scaling. Bottom: Strong
condensation (K = 0.04), leading to Solar-like planetary systems with both light
and heavy condensates.

occurs in systems such as power grids, the Internet, and the
WWW [5–7].

The quantity Ω is a global property of condensates. A more
detailed understanding of their structure is achieved by studying
their distribution in mass. From Fig. 5 we see that the mass
distribution of light condensates fits well to the K -independent
power law

n(mi)/n ∝ (Nmi)
−τ . (5)

Condensates that scale according to this laware designated as light,
those that do not as heavy, the dividing line being at critical mass
mc . For the ‘triangle 1’ distribution τ = 1.22(1), corresponding
to a size distribution with exponent 3.66 (since m ∼ d3), in good
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Fig. 6. Masses of four heaviest condensates mi as functions of K for N = 104 and
108 (average over 100 runs).

Table 2
FittingK fromFig. 6 to theplanetarymass ratios (sorted bymass) of recently
discovered extrasolar systems with several observed planets. For Sun, K =

0.04 corresponds to the accepted value of theMinimumMass Solar Nebula.

Name m1 m2 m3

K = 0.025 0.58(1) 0.276(7) 0.099(6)
HD 160691 0.581 0.313 0.098

K = 0.04 0.699(9) 0.238(7) 0.040(3)
Sun 0.712 0.213 0.038

K = 0.11 0.80(2) 0.18(2) 0.020(1)
55 Cnc 0.789 0.158 0.044

agreement both with the observed size distribution of main belt
asteroids [34] and with more detailed models of planet accretion
that predict a cumulative distribution in mass with exponent
2.5 ± 0.4 [42]. Furthermore, from Table 1 we see that this is
another example of an exponent essentially independent of initial
conditions.

To leading order, the average mass of light condensate does
not depend on mc and is approximately equal to τ/(τ − 1)N . The
spread of the mass of light condensates about that mean depends
on mc , vanishing with it as (mc)

1−τ/2. The total mass of the light
condensates is given by Mlight ≈ mlightnlight ≈

τ
τ−1 Ω . As we can

see from Table 1, α ∈ (0, 1) and it follows that in the large N
limit, the number of light condensates goes to infinity while their
contribution to the total mass vanishes.

Formed planetary systems are dominated by a relatively small
number of extremely heavy condensates, which we designate as
planets. In our effectivemodel,we investigated theirmass, position
and spin, using runs with up to N = 1010 particles. Fig. 6 shows
the masses of the four heaviest condensates as a function of the
condensation parameter K . As can be seen, the masses of the
heaviest planets are essentially independent of N for N & 104,
i.e. they have already converged to the continuum limit.

For K = 0.04 the simplifiedmodel shows good agreement with
the observed ratios of the masses of Jupiter, Saturn, Neptune, and
even Uranus (in order of mass). Note that K = 0.04 ∼ MP/M∗

is consistent with mass estimates of the Minimum Mass Solar
Nebula [33]. Table 2 demonstrates that a similar fitting canbemade
to two currently observed extra-solar systems for which several
planets are known, namely HD 160691 and 55 Cnc.

We stress that K is the only parameter in the model and that
by fixing it, all the other results become predictions. Choosing
K in the same way for different ρ’s leads to roughly the same
planetary masses. The weak dependence of the planetary masses
on the initial mass distribution is the reason why we get good
Fig. 7. Top: Spin of condensates as a function of mass for K = 0.04 and N =

106, 108, 1010 . The data fit to s ∝ m1.72 . Bottom: Spin vs. mass in the Solar System,
expressed in relative units of Earth’s massm⊕ and spin s⊕ . The planets in the Solar
System fit to s ∝ m2 .

agreement with Solar System data even for physically unrealistic
distributions such as ‘triangle 1’. However, we stress again that the
radial migration of bodies is neglected in our model, and therefore
good agreement with Solar System data is somewhat fortunate.

We next focus on the spin. Both the dynamics and initial
conditions of ourmodel are planar; hence, the planets can only spin
up or down. Recall that in our effective model, thermodynamics
constrains spins to be positive. The top plot in Fig. 7 displays the
spin of the condensates as a function of their mass, illustrating that
spin is dependent on N only in that larger N allows the existence
of smaller objects. The data fits to

s ∝ K ϵmω. (6)

The ‘triangle 1’ distribution givesω = 1.72(2) and ϵ = 0.45(1).
FromTable 3we see that ϵ is another example of a scaling exponent
independent of initial distribution, while ω displays very weak
dependence varying from 1.7 to 1.9 for the wide class of initial
distributions considered. Note also that the spin of a condensate
does not depend on the condensate’s location, but only on itsmass.
The bottom plot in Fig. 7 shows that the planets in the Solar System
obey the same kind of spin–mass dependence with exponent ω =

2 [43]. Mercury does not satisfy the above spin–mass relation due
to tidal lock effects. Aswe have already noted, our simplifiedmodel
does not take into consideration tidal forces. Venus, on the other
hand, is thought to have suffered a single large, spin-changing
collision during the late stages of its formation [44]. Such collisions
are extremely rare and could not be seen in model predictions
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Table 3
Spin distribution scaling exponents for different initial densities:
triangles on r ∈ [0, 1] peaked at c = 10−1 , 10−2 , 10−3; uniform
on r ∈ [0, 1]; proportional to r/(1 + r4); proportional to r(2 − r).
Numbers in brackets denote statistical errors on last digit.

ρ(r) ϵ ω

Triangle 1 0.45(1) 1.72(2)
Triangle 2 0.44(1) 1.78(2)
Triangle 3 0.44(1) 1.90(2)
Uniform 0.39(1) 1.90(1)
r/(1 + r4) 0.43(1) 1.73(3)
r(2 − r) 0.44(1) 1.71(2)

averaged over 100 runs. Note that Pluto is now considered a ‘dwarf
planet’ and not expected to obey the same scaling law, so we
did not include it in Fig. 7. However, although the agreement
with Solar System data is quite good, we have to stress that a
large number of effects were neglected in the model, such as
spin–orbit resonances, tidal interactions with satellites, stochastic
giant impacts, viscous accretion of circumplanetary gas disks, and
these unmodeled effects would probably change the outcome.

Historically, radial distributions such as Bode’s law have played
a large role in describing the Solar System. Ourmodel shows, how-
ever, that unlike mass distributions, radial distributions depend
very strongly on initial conditions. In fact, this could be used in the
future to obtain information about the ‘true’ initial conditions. The
strong dependence on position probably reflects planetary migra-
tion that has been seen in more detailed hydrodynamic models as
following from planet disk interactions, and that have been used
to explain the existence of so-called ‘hot Jupiter’ extra-Solar plan-
ets. Within our model, migration is achieved through a cascade of
mergers each of which leads to a slight change in a planetesimal’s
position.

5. Conclusions

We have presented and analyzed a simple, one-parameter
network-based model of planetary system formation through
gravitational accretion. Analytical comparisons with the restricted
three-body problem and an analysis of the model’s outcomes
suggest that the toy model captures the main features of gravi-
tational accretion. The model’s simplicity allows for efficient im-
plementation, large numbers of initial particles, and the study of
a wide range of initial conditions, thus making possible the anal-
ysis of dominant properties common to planetary formation. The
presented model leads to phase separation to two distinct types
of condensates which appear dynamically and which are distin-
guished by how they scale with the number of initial particles N .
Several important properties of both light and heavy condensates
have been analyzed. The scaling exponents and functional relations
between dynamical variable uncovered have been shown to be in
good agreement with observations. An important property of the
model is the weak dependence of scaling exponents on the ini-
tial mass distribution. This is particularly important because of our
limited knowledge on initial conditions at the start of gravitational
accretion.
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