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Dipole representation of half-filled Landau level
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We introduce a variant of a dipole representation for composite fermions in a half-filled Landau level, taking
into account the symmetry under an exchange of particles and holes. This is implemented by a special constraint
on a composite fermion and a composite hole degree of freedom (of an enlarged space), which makes the
resulting composite particle (dipole) a symmetric object. We study an effective Hamiltonian that commutes
with the constraint on the physical space and fulfills the requirement for boost invariance on the Fermi level. The
calculated Fermi liquid parameter F2 is in good agreement with numerical investigations in Phys. Rev. Lett. 121,
147601 (2018).
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I. INTRODUCTION

The fractional quantum Hall effect (FQHE) is a phe-
nomenon of strongly correlated electrons that is amenable to
quasiparticle pictures and modeling. The presence of a strong
magnetic field very often leads to dominance of the physics
inside a Landau level (LL) (a subspace of the Hilbert space of
the half-filled LL problem), and it justifies approaches that as-
sume that the description of the problem can be confined to an
isolated LL. The half-filled LL problem (relevant for systems
at half-filling factors) is very interesting because it contains an
additional symmetry that is not present in experiments or any
other fillings of LLs, namely the symmetry of the exchange of
particles (electrons) and holes, i.e., particle-hole (PH) symme-
try. On the other hand, systems at half-filling contain physics
that are specific for the FQHE, including the formation of a
Fermi-liquid state of composite quasiparticles (fermions) that
reside in the lowest LL (LLL) [1,2], and the incompressible
half-integer filling factor, 5/2, for electrons in the second LL
[3]. Moreover, it is widely believed that the physics at 5/2 is
connected with a Cooper pairing of underlying quasiparticles
that form so-called Pfaffian states [4]. The LL mixing (the
influence of other LLs on the effective physics in the base LL)
is very important for the physics of Pfaffian states because
it selects and stabilizes a unique Pfaffian state among three
possibilities: Pfaffian, anti-Pfaffian, and PH Pfaffian. On the
other hand, the LL mixing is not that important for the physics
of electrons in the LLL. Moreover, we are interested to know
what will happen to the PH symmetry that is present if we
assume that the Hilbert space of the system is an isolated
LL. The state in the experiments may correspond to the spon-
taneous PH symmetry breaking state of a Hamiltonian that
contains PH symmetry.

Even if we confine our description to the isolated LL, the
problem at half-filling is still a strongly correlated one. Our
hope is that by selecting appropriate quasiparticles, and by
applying approximate methods (usually mean-field methods),
we can arrive at an effective description of the system that is
consistent with numerical and real experiments.

The Fermi liquid (FL) concept for the physics of composite
quasiparticles, i.e., composite fermions, was introduced in
the seminal work of Halperin, Lee, and Read (HLR) [1] on
the basis of the Chern-Simons field-theoretical description,
which does not include a projection to the LLL. To achieve
a detailed description and understanding of the Fermi-liquid
state inside the LLL, Pasquier and Haldane [5], and later Read
[6], analyzed a related system of bosons at filling factor 1,
with an exact representation of the composite fermion (CF)
quasiparticles in an enlarged space of the half-filled LL prob-
lem. On the other hand, Shankar and Murthy [7] advanced
a field-theoretical description of the dipole-CF representation
of the problem [8]. In recent years, the concept of a Dirac,
i.e., a two-component quasiparticle, was introduced by Son
[9] for the description of the half-filled LL, i.e., a system that
features PH symmetry. In Ref. [10], a microscopic derivation
of such a theory was given in which the two components were
connected to the two possibilities for quasiparticles, i.e., CFs
and CHs (composite holes).

Here we propose an extension of the quasiparticle view of
the physics inside an isolated LL based on a one-component
fermion, namely a dipole. Our description does not distinguish
between CFs and CHs. We employ the enlarged-space formal-
ism [5–7], but with a special constraint that incorporates PH
symmetry, in the system of electrons that fill half of an isolated
LL. The special constraint and demand for the boost invari-
ance defines an effective Hamiltonian and FL description, in
agreement with numerical experiments [11].

The paper is organized as follows. In Sec. II, the enlarged-
space formalism for the system of bosons at filling factor 1
is reviewed before the exposition of our proposal in the same
section. At the end of the section, we discuss the FL descrip-
tion based on that proposal. In Sec. III, in order to further
understand the nature of the introduced quasiparticles, the
problem of the bilayer, i.e., two half-filled LLLs, is analyzed
in the new representation. In Sec. IV, we discuss an additional
implementation of our approach, i.e., a quantum Boltzmann
equation based on the dipole picture that incorporates the
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boost invariance and PH symmetry, and we end with con-
clusions. In Appendix A, the invariance under the change of
basis, i.e., the SU(N ) invariance for the proposed formalism,
is described, and in Appendix B we provide details concerning
the derivation of the quantum Boltzmann equation.

II. DIPOLE REPRESENTATION IN AN ISOLATED
LANDAU LEVEL

We study an extension of the formalism for CFs that was
developed in [5,6] for the case of bosons at filling factor 1
to the case of electrons in an isolated LL that is half-filled.
Although an extension of the CF formalism to the case of half-
filled LL of electrons has to incorporate bosonic correlation
holes (i.e., artificial degrees of freedom in the setup), we will
show that with a hard-core constraint in an enlarged space, we
can delineate a physical subspace and reach a faithful descrip-
tion. In the following, we will review the basic formalism for
the system of bosons at filling factor 1.

A. Bosons at filling factor ν = 1

1. Review of the CF formalism for bosons at filling factor ν = 1

In this section, we will briefly review the CF formalism that
was introduced in [5] and further developed in [6] for bosons
at filling factor ν = 1. The CF is a composite quasiparticle
of an underlying system of bosons (or electrons) that consists
of a boson (an electron) and its (associated) correlation hole
in the incompressible or weakly compressible (like the FL
state of CFs) FQHE states. For the case of bosons at filling
factor ν = 1, we have one boson on average per state �n

in an isolated LL, n = 1, . . . , Nφ . Nφ denotes the number of
flux quanta through the system. Thus n enumerates states in a
chosen basis of the relevant LL.

The Laughlin solution of the FQHE at ν = 1/3 of
electrons—an excellent description of the ground-state wave
function, which incorporates basic correlations among par-
ticles that are solely interaction-driven in an isolated LL,
motivates the introduction of the composite quasiparticles. In
the regime of the FQHE, we can easily envision a structure of
a neutral quasiparticle: an underlying boson (or an electron)
and its associated correlation hole, which we can express
and regard as (Laughlin) quasihole excitation (eigenstate) of
the system with quantized charge and statistics [or nearly
quantized and localized, almost an eigenstate in a weakly
compressible systems (like the FL state of CFs)].

In the case of bosons at filling factor ν = 1 of an isolated
LL, and by following the Laughlin ansatz, we can easily find
out that the most natural assignment for the statistics of the
correlation hole is fermionic (so that the statistics of CFs is
fermionic and counterbalances the Vandermonde determinant
fermionic correlations, and produces overall bosonic correla-
tions and wave functions), and that it represents a deficiency
of a unit of charge (a hole). Thus we are inclined to consider a
composite fermionic object (CF) and associate an annihilation
operator with two indices m and n, cnm, where n and m refer
to two states of a chosen basis in a LL: the left index, n,
describes the state of an (underlying, elementary) boson, and
the right index, m, describes the state of its correlation hole—
an artificial (additional) degree of freedom. In this way, we

are enlarging the space that we associate with the system’s
description; we introduce also creation operators, c†

mn, so that

{cnm, c†
m′n′ } = δn,n′δm,m′ , (1)

and we consider states in the enlarged space,

c†
mn · · · c†

pq|0〉. (2)

The physical subspace of this enlarged space can be delineated
by projecting out artificial, nonphysical degrees of freedom,
i.e., “vortices” (correlation holes), that possess fermionic
statistics:

|n1, . . . , nN 〉 =
Nφ∑

m1,...,mN

εm1···mN c†
m1n1

· · · c†
mN nN

|0〉, (3)

where εm1···mN is the Levi-Civita symbol.
We may notice that this construction is invariant under an

SU(N ) transformation, i.e., a change of basis in the LL in the
R sector only, i.e.,

c†
mn →

Nφ∑
m′

Umm′c†
m′n, (4)

where Umm′ is an SU(N ) matrix. (The physical states are spin-
singlets under this transformation.)

In the CF representation, one can consider ρL
mm′ and ρR

mm′ ,
density operators for physical (L) and unphysical (holelike,
R) degrees of freedom:

ρL
nn′ =

∑
m

c†
mncn′m (5)

and

ρR
mm′ =

∑
n

c†
mncnm′ . (6)

Also the following decomposition [of the basic state (n, m) of
the composite object] can be considered:

cnm =
∫

dk

(2π )
3
2

〈n|τk|m〉ck, (7)

with τk = exp(ik · R), where R is a guiding-center coordinate
of a single particle in the external magnetic field,

[Rx, Ry] = −i. (8)

We took lB (magnetic length) = 1, and {|n〉} are single-particle
states (orbitals) in a fixed LL.

The parameter k denotes the momentum of the composite
object, i.e., a CF. Physically, the state of the CF with vortex
orbital m and electron orbital n can be described by a superpo-
sition of the (commutative) momentum k states, the weights
of which depend on the effective distance between orbitals
(the size of the dipole), |keff |, because τk = exp(ik · R) is the
translation operator.

The introduced decomposition implies the following ex-
pressions for the L and R densities in the inverse space:

ρL
nn′ =

∑
m

c†
mncn′m =

∫
dq
2π

〈n′|τq|n〉ρL
q , (9)

155132-2



DIPOLE REPRESENTATION OF HALF-FILLED LANDAU … PHYSICAL REVIEW B 107, 155132 (2023)

where

ρL
q =

∫
dk

(2π )2
c†

k−qck exp

(
i
k × q

2

)
. (10)

Note the inverse order of indices, n and n′, on the left- and
right-hand sides of (9). Similarly,

ρR
mm′ =

∑
n

c†
mncnm′ =

∫
dq
2π

〈m|τq|m′〉ρR
q , (11)

where

ρR
q =

∫
dk

(2π )2
c†

k−qck exp

(
−i

k × q
2

)
. (12)

The density ρL
q satisfies the GMP algebra,

[
ρL

q , ρL
q′
] = 2i sin

(
q × q′

2

)
ρL

q+q′ , (13)

while ρR
q , as a density of “holes,”

[
ρR

q , ρR
q′
] = −2i sin

(
q × q′

2

)
ρR

q+q′ , (14)

i.e., GMP algebra for particles with opposite electric charge.
Thus we can realize the basic algebra of the electron den-

sity projected to a LL as an algebra of the same density
expressed via operators that represent overall neutral objects
(dipoles), i.e., CFs. We expect that the CF representation will
capture the basic physics of the problem, and already at the
mean-field level will give meaningful results (stable FL if we
apply Hartree-Fock [6]).

2. Hamiltonian and constraints

The basic Hamiltonian in the second-quantized notation,

H = 1

2

∑
m1,...,m4

Vm1,m2;m3,m4 a†
m1

a†
m2

am4 am3 , (15)

can be represented by the following Hamiltonian in CF repre-
sentation [6]:

H = 1

2

∑
m1,...,m4

n1,n2

Vm1,m2;m3,m4 c†
n1m1

c†
n2m2

cm4n2 cm3n1 . (16)

That this is possible can be seen because by mapping bilinear
a†

paq into
∑

k c†
kpcqk , we are preserving the basic algebra of

fermionic (electron) bilinears, but what may happen is that
new (in the enlarged space) operators (including the Hamilto-
nian) can map physical states into superpositions of physical
and unphysical states. Thus we have to ensure that physical
states are mapped into physical (sub)space: the Hamiltonian
has to commute with the constraint(s) (that determine the
physical subspace of the enlarged space). From (3) we see
that in this case the constraint that defines the physical space
is ρR

nn = 1 and [H, ρR
nn] = 0. In the inverse space [6],

H = 1

2

∫
dq

(2π )2
Ṽ (|q|) : ρL(q)ρL(−q) :, (17)

we have [ρL
q , ρR

q′] = 0, and thus [H, ρR
q ] = 0, as required for

the constraint ρR
q = 0. In the following section, where we

study electron systems at half-fillings, the constraints will not

be so simple, and we have to ensure the commutation with H
at least in the physical subspace (with the help of constraints).

B. Electron system of (an isolated) half-filled Landau level

1. Physical states

In the case of the electron system at half-filling, the corre-
lation hole, i.e., the superposition of two Laughlin quasihole
constructions, if considered as an independent and well-
defined degree of freedom, should carry bosonic statistics.
This is a departure from the simple introduction of the un-
physical degrees of freedom in the case of the bosonic system
at filling factor 1. These degrees of freedom, in that case, carry
fermionic statistics and are entering the description via the
simple constraint ρR

nn = 1 that ensures easy implementation
of the SU(N ) invariance; we can transform the basis only
in the R sector, and the physical state will be invariant with
respect to that particular transformation. Thus, as expected
and required, if we are transforming a physical state, we have
a usual, unitary implementation of SU(N ), and only L degrees
of freedom are affected.

We may wonder if it is possible at all to implement the
SU(N ) invariance if we have bosonic unphysical (additional)
degrees of freedom that enter the CF description. If we do not
consider CFs and CHs (to account for the PH symmetry in a
half-filled Landau level) and a Dirac-type theory [10], we can
attempt a description that is similar to that in the bosonic ν =
1 case by considering only CFs, more precisely single-particle
operators with two indexes, cmn, but only of one kind, and the
following associated physical states (Slater determinants) in
the enlarged space:

|�phy〉= |n1, . . . , nNφ/2〉 =
′∑

σ∈SNφ/2

c†
σ (m1 )n1

· · · c†
σ (mNφ/2 )nNφ/2

|0〉,

(18)

where the prime over the sum means that the sum
is over permutations of distinct states, m1 �= m2 �= · · · �=
mNφ/2, i.e., indexes connected with a basis in a LL:
{|n1〉, |n2〉, . . . , |nNφ/2〉, |m1〉, |m2〉, . . . , |mNφ/2〉}. In (18) we
have electrons that occupy states from subspace V =
{|n1〉, |n2〉, . . . , |nNφ/2〉}, i.e., half of the available states in a
LL. The second half, V⊥ = {|m1〉, |m2〉, . . . , |mNφ/2〉} (states
from the orthogonal subspace), are occupied by “hard-core”
bosonic correlation holes.

We may consider both bosonic correlation holes and real
(associated with a Chern band, i.e., an LL) fermionic holes.
When we talk about PH symmetry, we refer to fermionic
holes. But due to the implied constraint, in Eq. (18), on the
density and occupation by correlation holes, their densities
(occupation numbers) are constrained to be equal, and in that
sense the PH symmetry (active exchange of electrons and
real holes) can be associated with the exchange of L and R
(correlation hole) in the Hamiltonian and constraint(s) that are
expressed via densities.

In Appendix A we discuss how the SU(N ) invariance
can be implemented if one consider simultaneous transfor-
mation(s) on L and R; a transformation on only one type of
index is nontrivial (nonunitary). In an isolated half-filled LL
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we have PH symmetry, and in that case we may expect that the
change of basis affects both L (particle) and R (hole), because
of the intertwined physics of particles and (real) holes. This
is unavoidable, and it is the only option we have both in the
Dirac (manifestly invariant PH symmetric with CFs and CHs)
or CF-only representation and the description of the problem
discussed here.

2. Hamiltonian and constraints

The realization of the SU(N ) symmetry and the quasiparti-
cle description relies on the requirement that

ρL
nn + ρR

nn = 1, (19)

i.e., the hard-core constraint that we introduced at the begin-
ning of the subsection in the description of the basic physical
states (18). The constraint is part of the formulation of the
problem; it specifies the half-filling condition. What is special
with respect to the previous introduction of the additional
degrees of freedom that should represent correlation holes is
that here correlation holes describe hole degrees of freedom of
the half-filled problem. In that sense, our approach can be con-
sidered as only effective, not microscopic, considering how
the quasiparticle description is introduced (with respect to the
bosonic case at ν = 1). But once the constraint is assumed,
we can build our description, i.e., an effective Hamiltonian, by
requiring that the Hamiltonian commutes with the constraint,
as we will describe shortly. On the other hand, there are
reasons why such a constraint is appropriate. First, it includes
particle and hole degrees of freedom (CFs and CHs) in such a
way that the PH symmetry is accounted for. Second, it leads to
a PH symmetric form of the Hamiltonian, which is known as
a dipole representation of the underlying quasiparticle physics
introduced by Shankar and Murthy, but with an additional
factor of 4 that reduces the strength of the Coulomb inter-
action. That factor is likely the one that was missing in the
interpretation of surface acoustic wave experiments by the
HLR theory and the dipole-based theory [8]. An additional
and important reason for the form of the constraint, as we
will show in the following, is that the constraint can be used
to obtain a final form of the Hamiltonian that features the
boost invariance. The boost invariance should characterize an
effective description at least at the Fermi level as an invariance
in the system that does not have (bare) mass (i.e., a kinetic
term) in its microscopic description. As we will show, the
calculated Fermi liquid parameter, F2, on the basis of that
Hamiltonian and constraint, is in very good agreement with
the numerical experiment of Ref. [11].

To get the form of the Hamiltonian that satisfies these
requirements, we start with the microscopic form of the
Hamiltonian [the same as for bosons in (17)] where we
abandon the requirement for normal ordering and make the
following substitution:

ρL(q) → ρL(q) − ρR(q)

2
. (20)

Therefore,

H = 1

8

∫
dq

(2π )2
Ṽ (|q|)[ρL(−q)

− ρR(−q)][ρL(q) − ρR(q)]. (21)

Here Ṽ (|q|) = 1
|q| exp(−|k|2

2 )[Ln( |k|2
2 )]2, where Ln represents

the Laguerre polynomial for a fixed LL index n. Thus we mod-
ified the Hamiltonian in the particle representation to the one
that features PH symmetry in such a way that the exchange
ρL(q) ↔ ρR(q) does not change the form of the Hamiltonian.
Also,

[H, [ρL (q) + ρR(q)]]|[ρL (k)+ρR (k)]=0 = 0, (22)

i.e., the constraint commutes with the Hamiltonian in the
physical space, as required.

The Hamiltonian in (21) possesses a single-particle term,
H1 [12],

H = H1+ : H :, (23)

next to the purely interacting term, : H :. If we interpret the
mass in H1 at kF as the effective mass, m∗, of a FL description,
we need an additional interaction, a term next to the bare one,
i.e., : H : in order to achieve (a) the FL description of the
system, and (b) the description that is also invariant under
boosts, i.e., whose Hamiltonian is purely interacting at the
Fermi level. We will come back to these requirements with
more explanations below the final form of the Hamiltonian in
Eq. (27).

To implement this, we may add a term that needs to repre-
sent an interaction, but at the same time be equal to zero in the
physical space (not to add or spoil energetics encoded in H
based on the bare, Coulomb interaction). In the inverse space,
that term may be of the following form:∫

dq
(2π )2

C(|q|) exp

(
−q2

2

)[
Ln

(
q2

2

)]2

× [ρL(−q) + ρR(−q)][ρL(q) + ρR(q)]. (24)

On the other hand, in the space of the LL orbitals, we may
consider the following term:∑

n,n′
δn,n′

(
ρL

nn + ρR
nn

)(
ρL

n′n′ + ρR
n′n′

)
, (25)

based on the constraint expressed on the space of orbitals
{|n〉}, which is not zero but, due to the constraint, simply
a constant in the physical space, i.e., a constant equal to
the number of orbitals. By comparing two expressions that
constrain the form of the required interaction term, we can
conclude that C(|q|) in (24) should be a constant, independent
of q. Namely, if we regularize the expression in (25) in the
thermodynamic limit by omitting the terms that do not con-
serve momentum in the inverse space, and may represent local
single-particle potentials, we find that the remaining term that
represents an interaction invariant under translation is

HC = C
∫

dq
(2π )2

exp

(
−q2

2

)[
Ln

(
q2

2

)]2

× [ρL(−q) + ρR(−q)][ρL(q) + ρR(q)], (26)

i.e., a δ-function interaction projected into an isolated LL.
This term is equal to zero in the physical space.

The complete Hamiltonian that describes the low-energy
physics at the Fermi level and incorporates the boost
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invariance is

HC = H + HC, (27)

where the constant C is chosen such that the second derivative
with respect to momentum of the total single-particle disper-
sion in the single-particle term of HC at the Fermi level is
equal to zero.

In short, the FL assumption and assertion is that the ef-
fective physics can be expressed via quasiparticle excitations
near the Fermi surface with energy,

ε̃(p) = p2

2m∗ +
∫

d p′

(2π )2
f (p, p′)n(p′), (28)

where m∗ is the effective quasiparticle mass, f is the effective
interaction among quasiparticles, and n(p) is the occupation
number at momentum p of quasiparticles. To identify f in
the scope of our approximation, we will consider for f the
interaction based on the Fock approximation and approach to
HC (which will coincide with the bare interaction). Further-
more, as usual in the FL description, we are concerned with
excitations near the Fermi surface, and we assume that f is
only a function of the directions of p and p′. Thus we consider
FL parameters,

Fl = m∗ fl

2π
, (29)

where

fl = 1

2π

∫ 2π

0
dθ f (θ ) exp(ilθ ). (30)

The very important aspect of the FL description is the connec-
tion between the bare mass of underlying particles mb ≡ me

and the quasiparticle description. We may use the Galilean
invariance under boost by momentum q, which induces the
change in the energy density equal to ne

|q|2
2mb

, and we equate
this energy to that implied by the FL description, to obtain
(see, for example, [8])

1

mb
= 1

m∗ + f1

2π
. (31)

Thus, in a FL description, to have a consistent theory, we need
to have a special (additional) interaction defined by f1 that will
compensate for the renormalization of the mass by interaction
(from mb to m∗) in order to reach a quasiparticle picture. Fur-
thermore, in our case, in the microscopic underlying (electron)
description, there is no single-particle term (and bare mass mb)
in the solely interacting (microscopic) Hamiltonian defined
inside a LL. To ensure the boost invariance in the purely
interacting theory, we need

0 = 1

m∗ + f1

2π
(i.e., F1 = −1). (32)

Thus the mass m∗ is expressed and defined solely by the
Landau interaction (parameter). Concretely, in our case, the
introduced HC is necessary to complete the effective FL de-
scription near the Fermi surface. It plays the role of f1, an
extra, necessary interaction. As already emphasized, it also
(by a definite value of constant C) eliminates the (total) mass
term at the Fermi level in the Fock approximation. Thus, in

FIG. 1. Fermi liquid parameter F2 as defined in Eq. (34) with
(35), in the case of the LLL (blue), the second LL (black), and the
third LL (red). The inset shows the calculated values for F2 if the
interaction with Cη is absent in (35).

our case, the Landau interaction f is given in the Fock ap-
proximation by the interaction defined by the normal ordering
of HC for the interacting particles at the Fermi level.

To probe the FL description implied by HC , we consider a
generalized Coulomb interaction [11],

Vη(q) = 1

|q| exp(−|q|η), (33)

which models the effect of the finite thickness of samples in
experiments, but also stabilizes FL behavior [11]. The calcu-
lated F2—the FL parameter at angular momentum l = 2—on
the basis of the effective Hamiltonian HC (in the Fock approx-
imation) is given in Fig. 1. We calculated

F2 = −
∫

dθ cos(2θ ) f (θ )∫
dθ cos(θ ) f (θ )

, (34)

where f (θ ) is defined by the total interaction at q = p − p′,
for which |p| = |p′| = kF = 1, p′ = êx, p · p′ = cos(θ ), and
thus |q| = 2| sin( θ

2 )| with

f (θ ) =
[
Vη(|q|) sin2

(
sin(θ )

2

)
+ 8Cη cos2

(
cos(θ )

2

)]

× exp

(
−q2

2

)[
Ln

(
q2

2

)]2

, (35)

where Cη is the value of C at a particular η necessary to
eliminate the mass term at kF . The calculated F2 (Fig. 1) is in
an agreement with the trends of the numerical experiment of
Ref. [11]; it predicts the absence and presence of the Pomer-
anchuk instability in the LLL and third LL, respectively, for
the pure Coulomb interaction, as in Ref. [11], but it does not
predict one in the second LL, which exists according to the
analysis in [11]. In the inset of Fig. 1, the values of F2 are given
for the usual Hamiltonian H in the dipole representation, in
the absence of the single-particle term, i.e., for :H :. We can
see that they differ considerably from the expectations based
on HC and the results of the numerical experiment in [11]; the
inclusion of the C-interaction together with the requirement
for boost invariance is essential to get an agreement with the
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FIG. 2. Fermi liquid parameter F3 as defined in Eq. (34) with
(35), in the case of the LLL (blue), the second LL (black), and the
third LL (red). The inset shows the calculated values for F3 if the
interaction with Cη is absent in (35).

results of Ref. [11]. In Figs. 2 and 3 we present the values of
Fermi liquid parameters, F3 and F4.

III. THE BILAYER CASE: PAIRING BETWEEN TWO LLLs

To get a better understanding of the underlying
quasiparticle—a dipole in the new representation—we
consider the quantum bilayer problem, i.e., the problem with
two half-filled LLLs. The bilayer consists of two layers. Each
layer represents a half-filled LLL, but with no PH symmetry,
because of the interlayer interaction. The two-component
physics can be represented inside a single LLL by the
following Hamiltonian with electron density operators, ρσ (q),
σ =↑,↓:

He =
∫

dq
(2π )2

{∑
σ

1

2
V (|q|) : ρσ (q) ρσ (−q) :

+ V↑↓(|q|) ρ↑(q) ρ↓(−q)

}
. (36)

FIG. 3. Fermi liquid parameter F4 as defined in Eq. (34) with
(35), in the case of the LLL (blue), the second LL (black), and the
third LL (red). The inset shows the calculated values for F4 if the
interaction with Cη is absent in (35).

We begin the description of the system in the new representa-
tion with the following Hamiltonian:

H =
∫

dq
(2π )2

{∑
σ

1

8
V (|q|)[ρL

σ (−q) − ρR
σ (−q)

]
× [

ρL
σ (q) − ρR

σ (q)
]

+ V↑↓(|q|)
4

[
ρL

↑ (−q) − ρR
↑ (−q)

][
ρL

↓ (q) − ρR
↓ (q)

]}
,

(37)

with constraints [ρL
σ (k) + ρR

σ (k)] = 0; σ =↑,↓.
We chose the form of the Hamiltonian as the one that

will conform to the requirements, [H, [ρL
σ (q) + ρR

σ (q)]] =
0; σ =↑,↓, that hold if the constraints [ρL

σ (k) + ρR
σ (k)] =

0; σ =↑,↓ are applied. The constraints define physical spaces
in two layers, and they also constrain the form of the Hamil-
tonian in the description with enlarged space(s). Just as in the
single-layer case, we can add the terms that are zero on the
physical space of the form of HC in each layer to ensure the
boost invariance of the system at the Fermi level. Our main
interest is the effect of the interlayer interaction. To get a
transparent representation of the underlying physics, within
the physical space, we can add effectively zero terms, and
transform the operators that define the interlayer interaction
in the following way:[

ρL
↑ (−q) − ρR

↑ (−q)
][

ρL
↓ (q) − ρR

↓ (q)
]

− [
ρL

↑ (−q) + ρR
↑ (−q)

][
ρL

↓ (q) + ρR
↓ (q)

]
= −2

[
ρL

↑ (−q) ρR
↓ (q) + ρR

↑ (−q) ρL
↓ (q)

]
. (38)

Now the effective form of the interlayer interaction represents
a view of the underlying physics: excitonic binding of elec-
trons and holes, i.e., CFs and CHs as emphasized in the recent
work in Ref. [13], which we know is a completely justified
view of the physics at small distances. But here we have
only one effectively neutral quasiparticle operator “c” which
is CF and CH at the same time—a simple dipole; the excitonic
pairing that is implied by (38) is effectively Cooper pairing of
the underlying quasiparticles “c” from each layer. Indeed, in
the BCS mean-field treatment, we have an obvious instability
described by the order parameter �k,

�k =
∫

dq
(2π )2

V↑↓(|q − k|) �q

2Eq
, (39)

where

V↑↓(q) = exp (−qd )

q
exp

(
−q2

2

)
, (40)

and Eq is the Bogoliubov quasiparticle energy, defined con-
sidering the complete Hamiltonian that contains the boost
invariance, and d is the distance between the layers.

In Fig. 4, solutions for �k at k = kF for s, p, and d waves
are plotted as a function of distance. For a large interval of d ,
the results are in qualitative agreement with the most recent
numerical results of Ref. [13], done on the sphere, when we
identify CF-CH (excitonic) pairing of the same reference with
the s-wave Cooper pairing of dipoles in the representation
that we presented here. Nevertheless, a question can be raised
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FIG. 4. The solutions for �k calculated self-consistently using
(39), in the case of s (blue), p (red), and d (black) wave at k = kF .

whether for larger (or even intermediate, d ∼ lB) distances, an
effective description given by the Hamiltonian in (37) is more
appropriate, because at very large distances we expect two
decoupled Fermi liquids, for which a dipole representation,
with dipole densities ρL

σ (q) − ρR
σ (q), σ =↑,↓ that are inter-

acting, seems quite appropriate (according to our reasoning
and comments in Sec. II B). Then the mean-field solutions �s

k
for the dominant s-wave excitonic instability, for this setup,
will necessarily behave near k = 0 as �s

k ∼ |k|2, and thus they
will exemplify an anomalous behavior and may lead to the
prediction of a new (intermediate) phase detected in numerical
experiments on a torus [14,15].

IV. DISCUSSION AND CONCLUSIONS

To further gauge the FL nature of our system (in the pro-
posed formalism), we can consider the quantum Boltzmann
equation for the Wigner function,

ν(k, r) =
∫

ds exp (iks)Tr

{
ρ�†

(
r + s

2

)
�

(
r − s

2

)}
,

(41)
where ρ is the density matrix of the system, and �,�†

are second-quantized operators that are defined, in the long-
distance approximation (in the usual way) on the space of
commuting coordinates, as

�(x) =
∫

dk
(2π )2

exp (ikx)ck,

�†(x) =
∫

dk
(2π )2

exp (−ikx)c†
k. (42)

Applying i ∂ρ

∂t = [HC, ρ], i.e., the von Neumann equation, we
arrive at the following equation for ν(k, r):

i
∂ν(k, r)

∂t
=

∫
ds exp (iks)Tr

{
ρ

[
�†

(
r + s

2

)
�

×
(

r − s
2

)
,HC

]}
. (43)

By considering shifts in r in single-particle correlators to
linear order, we can derive an effective expression presented
in Appendix B. Only in the small-momentum limit, i.e., the

limit in which the change of momentum (that couples with
the r coordinate) is small, does the expression take the form
of the usual quantum Boltzmann equation for a description of
a FL with a boost invariance,

∂ν

∂t
+ ∂rν∂kε − ∂kν∂rε

= additional (negligible insmall-momentum transfer)

terms. (44)

Here

ε = −
∫

dq exp

(
−q2

2

)(
V (q)

4
− 2C

)
(q × k)2ν(k + q),

(45)

i.e., the Fock contribution to the quasiparticle dispersion that
also includes the C-interaction contribution, i.e., the interac-
tion defined in (26). The C-interaction ensured that no term
with a finite mass (= 1

M k∇rν) appears in the quantum Boltz-
mann equation and on the Fermi level to the order that was
considered. Overall, the description based on the dipole rep-
resentation is in accordance with Ref. [16] and the quantum
Boltzmann equation for CFs in the absence of the projection to
a LL (based on the Chern-Simons field-theoretical approach),
if we associate the processes behind smooth variations of the
Fermi surface with small-momentum transfer variations in the
dipole representation that lead to FL behavior. We leave a
detailed comparison and analysis of the quantum Boltzmann
equation for future work.

Thus the C-interaction ensures the boost invariance even
if we go beyond the ordinary (Hartree)-Fock mean-field ap-
proach. Our description incorporates also the PH symmetry,
and it does not contain a potential bias to CFs like the use
of the Rezayi-Read state [17] in [11]. Thus the discrepancy
between our prediction for the absence of the Pomeranchuk
instability in the second LL with respect to Ref. [11] may
come from the explicit PH symmetry breaking in their anal-
ysis. The PH symmetry breaking can be associated with LL
mixing, which may drive the Pomeranchuk instability and also
stabilize p-wave at larger distances in the bilayer system.

Our proposal maintains the PH symmetry with the appli-
cation of the constraint in (19). At the same time, it places
correlation holes in the place of real holes, which seems to
be an unusual circumstance—correlation holes should bind to
particles (or vice versa). But this is a reflection of the effective
physics at the Fermi level where particles are shifted from
their correlation holes by an amount proportional to kF l2

B = lB,
i.e., on the order of the average distance between LL orbitals.
This is an important consequence of the projection to a fixed
LL of the Fermi sea correlations among quasiparticles [17].

Therefore, our proposal takes into account the require-
ments for the boost invariance and PH symmetry in the theory
that captures the effective physics at the Fermi level of dipole
quasiparticles.
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APPENDIX A: THE SU(N) INVARIANCE
IN THE HALF-FILLED CASE

In this Appendix, we will discuss the action of the SU(N )
symmetry in the theory for the half-filled LL. The symmetry
must exist, but, as we will describe, not as an independent
transformation on L and R indexes. An arbitrary, fixed SU(N )
transformation on one type of index only is not unitary.
However, we show that, in principle, we can complete a trans-
formation, defined by the same SU(N ) matrix on the other
index, and after a projection to the physical space we can reach
a unitary realization of the SU(N ) symmetry. In describing
this action, we want to show how the transformations on both
sectors, i.e., the indexes, are intertwined, and we provide a
description of the unitary realization of the SU(N ) symmetry
on the physical space described by Eq. (A9). On the other
hand, we can regard (A9) as an expected, natural (unitary)
realization of the SU(N ) symmetry on the space defined by
Eq. (18), in which only one set of indexes (L or R) is indepen-
dent and defines the other.

We may ask, “How can the SU(N ) invariance be imple-
mented on the states defined in Eq. (18)?” First, let us consider
an artificial but instructive problem of electrons at ν = 1 in a
CF representation. The unique physical state can be defined in
an enlarged space by a trace on bosonic, artificial degrees of
freedom,

|�phy〉ν=1 =
′∑

σ∈SNφ

c†
σ (m1 )n1

· · · c†
σ (mNφ

)nNφ

|0〉, (A1)

and m1 �= m2 �= · · · �= mNφ
. Thus bosonic (artificial) degrees

of freedom enter as hard-core bosons into the description. The
requirement is a necessary condition for the implementation
of the SU(N ) invariance, and it reflects a physical expecta-
tion that correlation holes for a fermionic system should not
overlap. Namely, by introducing

c†
mn →

Nφ∑
m′

Umm′c†
m′n, (A2)

we may notice that under the hard-core constraint, the SU(N )
transformation in the R sector will act locally, i.e., it will
induce the permanent number of the SU(N ) matrix that will
be multiplied by the same state:

ĝR|�phy〉ν=1 = �(g)|�phy〉ν=1. (A3)

The SU(N ) invariance exists if its action is unitary under
simultaneous transformations in the R and L sectors. Thus
by allowing a nonunitary (in general) action on L degrees of

freedom,

ĝL|�phy〉ν=1 = 1

�(g)
|�phy〉ν=1, (A4)

we can reach the invariance:

ĝSU(N )|�phy〉ν=1 = ĝLĝR|�phy〉ν=1 = |�phy〉ν=1. (A5)

The previous case is artificial and of no physical im-
portance, but it suggests how the SU(N ) invariance can be
accommodated in the system of interest, namely a half-filled
LL of electrons (if we first apply an independent transforma-
tion on the indexes on one of the sectors). We may begin with
the usual transformation on R indexes as in (A2). As a result
of the hard-core constraint among holes, we have

|�phy〉R =
∑

{m′
1 �=m′

2 �=···�=m′
Nφ/2}

∑
σ∈SNφ/2

×
[ ′∑

p∈SNφ/2

U p(m1 )σ (m′
1 ) · · ·U p(mNφ/2 )σ (m′

Nφ/2 )

]

× c†
σ (m′

1 )n1
· · · c†

σ (m′
Nφ/2 )nNφ/2

|0〉, (A6)

where the first sum is over all possible distinct collections of
Nφ/2 numbers, i.e., basis vectors. We can denote the number
in square brackets by [· · · ] = �({m′

i}) = K ({n′
i}), where {n′

i}
denote basis states from the subspace orthogonal to the one
spanned by {m′

i}. (|�phy〉 is defined by the set of {ni}′s [or
{mi}′s; see Eq. (18)] and they fix �′s.) The number �({m′

i})
is symmetric under permutations of {m′

i} and can be pulled
out of the sum over σ permutations. Thus

ĝR|�phy〉 ≡ |�phy〉R

=
∑

{m′
1 �=m′

2 �=···�=m′
Nφ/2}

�({m′
i})

×
∑

σ∈SNφ/2

c†
σ (m′

1 )n1
· · · c†

σ (m′
Nφ/2 )nNφ/2

|0〉, (A7)

where the resulting state may not be in the physical space,
which is spanned by vectors in Eq. (18). Now if we define an
SU(N ) transformation on the L indexes, in such a way that for
each term {ni} → {n′

i} in the generated expansion we divide
by K ({n′

i}), i.e.,

ĝL|�phy〉 ≡ |�phy〉L

=
∑

{n′
1 �=n′

2 �=···�=n′
Nφ/2}

1

K ({n′
i})

U n′
1n1 · · ·U n′

Nφ/2nNφ/2

×
∑

σ∈SNφ/2

c†
σ (m1 )n′

1
· · · c†

σ (mNφ/2 )n′
Nφ/2

|0〉, (A8)

it follows, under application of all hard-core constraints that
define the physical space in the enlarged space, which action
we will denote by Phc, that

ĝSU(N )|�phy〉 = Phc(ĝLĝR|�phy〉)

=
∑

{n′
1 �=n′

2 �=···�=n′
Nφ/2}

U n′
1n1 · · ·U n′

Nφ/2nNφ/2

×
∑

σ∈SNφ/2

c†
σ (m′

1 )n′
1
· · · c†

σ (m′
Nφ/2 )n′

Nφ/2
|0〉. (A9)
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Any change of basis in enlarged space (that acts on R and L indexes) is represented in physical states by the unitary
implementation (A9), as required and expected. The implementation is unitary and represents an expected expansion on physical
states, but it cannot be described as a simple action on L indexes.

APPENDIX B: QUANTUM BOLTZMANN EQUATION

The explicit expression for the right-hand side of Eq. (43) to linear order in shifts in single-particle correlators is

i
∂ν(k, r)

∂t
=

∫
dq

(2π )2

Ṽ (q)

4
{(q × k)(iq × ∇r)[ν(k, r, t )ν(k + q, r, t )] − 1

4
[i∇k(iq × ∇r)ν(k, r, t )][∇r(iq × ∇r)

× ν(k + q, r, t )] + 1

4
[∇r(iq × ∇r)ν(k, r, t )][i∇k(iq × ∇r)ν(k + q, r, t )]

+ i(q × k)2[∇rν(k, r, t )∇kν(k + q, r, t ) − ∇kν(k, r, t )∇rν(k + q, r, t )]

+ (q × k)(iq × z)[ν(k, r, t ) ∇rν(k + q, r, t ) − ∇rν(k, r, t ) ν(k + q, r, t )]}

×
∫

dq
(2π )2

(−2C){(q × k)(iq × ∇r)[ν(k, r, t )ν(k + q, r, t )] + i(q × k)2[∇rν(k, r, t )∇kν(k + q, r, t )

− ∇kν(k, r, t )∇rν(k + q, r, t )] − i

8
[∇kν(k, r, t )∇r(q × ∇r)2ν(k + q, r, t ) + ∇k(q × ∇r)2ν(k, r, t )∇rν(k + q, r, t )]

+ i

8
[∇rν(k, r, t )∇k(q × ∇r)2ν(k + q, r, t ) + ∇r(q × ∇r)2ν(k, r, t )∇kν(k + q, r, t )]

+ i

4
[ν(k + q, r, t )(q × k)(q × ∇r)ν(k, r, t ) − ν(k, r, t )(q × k)(q × ∇r)ν(k + q, r, t )]}. (B1)

If we neglect (q × ∇r) with respect to (q × k) and contributions higher in ∇r, and also calculate the overall contribution to the
mass term (∼ k∇r) in the small-q limit, we arrive at the simple form in (44).
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