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Quantum Hall bilayer in dipole representation
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The Quantum Hall Bilayers (QHB) at filling factor ν = 1 represents a competition between Bose-Einstein
condensation (BEC) at small distances between layers and fermionic condensation, whose influence grows with
distance and results in two separate Fermi liquid states for the underlying quasiparticles at very large (or infinite)
distances. The question that can be raised is whether, at intermediate distances between layers, a distinct phase
exists or if a singular transition occurs, with the possibility that this happens at infinite distances. Here, using
a dipole representation for fermionic quasiparticles, we find support for the latter scenario: Within a large and
relevant range of distances, BEC condensation, identified as Cooper s-wave pairing of dipole quasiparticles,
prevails over both Cooper p-wave pairing and s-wave excitonic pairing of the same quasiparticles.
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I. INTRODUCTION

The QHB [1,2] is a fractional quantum Hall effect (FQHE)
system with an additional layer degree of freedom: Two lay-
ers of two-dimensional electron gases at distance d from
each other are pierced by a strong magnetic field, B, per-
pendicular to the layers. The total density of the system,
nT , matches the density of available states in the (lowest)
Landau level (LL), (eB)/h, in which electrons live. Thus
the total filling factor is νT = nT (2π l2

B) = 1, with the char-
acteristic length of the system, lB = √

h̄/(cB), the magnetic
length.

Therefore, each layer is half-filled, i.e., it represents a
system of electrons that occupy half of the available states
in the lowest LL (LLL), and thus νT = ν↑ + ν↓, νσ = 1/2,
σ =↑,↓, where the up and down signs refer to a specific layer.
At long distances, d � lB, the layers are almost independent,
at least much less intertwined, and at d � lB, they are strongly
coupled and an excitonic binding between a hole in one layer
and a particle in the opposite one dominates. Thus, a dis-
tance, d̄ ∼ lB, may represent a characteristic distance for the
transition from a strong-coupling to a weak-coupling regime
for the system of two layers, and a question can be raised:
What happens at these intermediate, d ∼ lB distances? A new
intermediate phase, a single transition between two phases
(connected with two extremes, small and large distances),
or a crossover with no phase transition? Various scenarios
appeared in the literature and in this work we will address
this question using a special formalism.

The first proposals for multicomponent FQHE systems
and studies of the QHB in Refs. [3–6] were followed by
experiments [7,8] that confirmed the integer QHE for small
distances between the layers in the case of the QHB. Further
development of the theoretical understanding of the system
at d � lB, as an excitonic condensate or an ordered state of
the pseudospin of electrons [9–12], was followed by experi-
ments [13,14] that revealed the new ordered state and phase at

small distances. On the other hand, there is an expectation that
at large distances (d � lB), we have well-separated layers,
each in a compresssible state [15] of a single layer at filling
factor 1/2 [16,17].

Many theoretical, analytical, and numerical studies have
been done [9–12,18–51] in order to understand the evolution
of the QHB with distance; in particular with the assumption
of the projection of the physics into the LLL in the absence
of disorder. The modeling and understanding of the FQHE is
based on the composite excitations—particles which are often
identified as composite fermions (CFs) [52–54].

In the case of the single-layer at filling factor 1/2, and
under assumption that all electrons are in the LLL, composite
fermion can be viewed as a composite of electron and its
correlation hole, which represents a unit of a positive charge.
Thus CF is an overall neutral fermionic object which can
make a Fermi sea of CFs (and we may expect a compressible
behavior of the system). If we apply a classical analogy, such
an overall neutral composite, in an external magnetic field, B,
then it must have its momentum proportional to its dipole mo-
ment, and at and near Fermi surface we have dipoles [55–57].
This dipole picture is a direct consequence of the projection
into a LL [55–57].

Nevertheless, there is an additional feature of the system of
electrons that fill half of available states in a LL: The physics
should be invariant under exchange of particles and holes,
i.e., we have a particle-hole (PH) symmetry and, together
with CFs, we should also consider and incorporate composite
holes (CHs) in our description to have the PH symmetry
manifestly represented. To include the PH symmetry, a two
component Dirac-type description was introduced in Ref. [58]
for the description of half-filled LL. But, to describe, in a
Fermi-liquid (FL) framework, a half-filled LL of electrons,
we may also consider a variant of the dipole construction in a
one-component fermion formalism, as introduced in Ref. [59].
This construction is a generalization of the dipole, i.e., CF
representation in the case of bosons at filling factor ν = 1 in

2469-9950/2023/108(15)/155129(7) 155129-1 ©2023 American Physical Society

https://orcid.org/0000-0001-7136-2883
https://orcid.org/0000-0002-8612-3196
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.155129&domain=pdf&date_stamp=2023-10-18
https://doi.org/10.1103/PhysRevB.108.155129
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the LLL [60,61], and it is applicable in the low-energy limit
(of the effective FL description).

In this work, we applied the variant of the dipole rep-
resentation that we developed [59], in order to understand
the evolution of the QHB with distance. We identified, at
all distances between layers, the presence of a single phase
that can be described as an s-wave Cooper pairing of dipole
quasiparticles. The underlying physics of this pairing is the
excitonic attraction between electrons in one layer and holes
in the opposite layer, and thus the phase that is well under-
stood at small distances continues to exist at large distances.
This scenario was proposed in Ref. [49], on the basis of the
Dirac description [58] of the physics in each layer, and was
numerically supported in a recent work [50] by modeling
the system on a sphere. This work modeled the underlying
physics as an attraction (Cooper pairing) between CF in one
layer and CH in the other, opposite layer. In our study, using
the formalism of Ref. [59], the nature of the dominant phase
is further elucidated, as is the competition among other can-
didates for the ground state of the system as the distance d is
varied. The s-wave Cooper pairing of dipoles prevails over a
Cooper p-wave pairing and s-wave excitonic pairing of dipole
quasiparticles. The excitonic pairing would represent a topo-
logical, incompressible phase inside an LLL. Our formalism
and the BCS treatment of its setup are more accurate in the
weak-coupling regime, and the confirmation at intermediate
and large distances of the same phase (that is dominant in the
strong-coupling regime at small distances) is, in this sense,
reliable and supports the extension to all d’s.

In the dipole formalism that we applied, in the case
of bilayer, the dipole quasiparticles [which are neither CFs
nor CHs but are symmetric objects that are consistent with
the PH symmetry] enable a representation that has mani-
fest symmetry under the exchange of particles and holes
is done simultaneously in both layers. The dipole repre-
sentation has additional, artificial degrees of freedom -
correlation holes, which are identified with holes in the elec-
tron system(s). This unusual constraint, which we have to
incorporate into the description, comes from the projection
into a single LL of the states of fermionic quasiparticles
that reside near the Fermi level (and most significantly influ-
ence the physics). To incorporate the constraint and use the
mean-field method, we need to deal with effective Hamil-
tonians which are adapted to the use of the method by
explicit inclusion of the constraint (as null operators) in their
description. We focus (narrow possibilities) on small num-
ber of effective Hamiltonians which explicitly represent, in
their forms, physics of potential phases. We solve them (in
the mean-field approximation) and compare the energies of
different Hamiltonians to find the most stable solution at
distance d .

The paper is organized as follows. Section II provides
a review of the dipole representation in a single layer. We
discuss the key concepts and principles underlying the dipole
representation and its relevance to our study. In Sec. III,
we investigate the implications of the dipole representation
in the QHB case and present results on the competition
among phases and the resulting phase diagram. Finally, in
Sec. IV, we summarize our findings and provide concluding
remarks.

II. DIPOLE REPRESENTATION FOR HALF-FILLED LL

The dipole representation for half-filled LL is an extension
of the formalism introduced for the description of the CF
quasiparticles for a system of bosons at a filling factor ν = 1
in an isolated LL [60,61]. In an enlarged space the CF annihi-
lation operator, cmn, is introduced as an operator with double
indices, where each index corresponds to a state in a LL,
n, m = 1, 2, . . . , Nφ , the left (L, physical) index is associated
with a state of an elementary boson, and the right (R, artificial)
index is associated with the state of the corresponding corre-
lation hole. In the context of FQHE the correlation hole can
be defined by a (local) insertion of flux quanta in the system
and represents a well-defined object with charge and statistics.
In the system of bosons, the many-body hole is fermionic,
and the resulting composite object is a fermion, i.e., boson
+ correlation hole = CF. We may introduce the physical and
artificial (of additional degrees of freedom) densities,

ρL
nn′ =

∑
m

c†
mncn′m, (1)

and

ρR
mm′ =

∑
n

c†
mncnm′ , (2)

and their forms in the inverse space,

ρL
q =

∫
dk

(2π )2
c†

k−qck exp

(
i
k × q

2

)
, (3)

and

ρR
q =

∫
dk

(2π )2
c†

k−qck exp

(
−i

k × q
2

)
, (4)

which have the same form as the projected densities of
systems of elementary particles into a single LL; they are
nonlocal and obey the Girvin-MacDonald-Platzmann algebra.
The collapse from the two-particle to a single-particle index
k is physically enabled by the existence of the well-defined
dipole object (CF) which momentum (k) in the (external)
magnetic field is proportional to its dipole moment.

To complete the description of the system we need to im-
pose constraints in order to have as many degrees of freedom
as required by the definition of the problem. It is not hard to
see (due to the fact that the total number of CFs is equal to
the number of bosons and due to their fermionic statistics)
that we need to have ρR

nn = 1 for each n, or ρR
q = 0 when

q �= 0, in inverse space. In the case of the half-filled LL of
electrons, details can be found in Ref. [59], we may formally
proceed with the same constructions as in the previous case,
but now the correlation holes have bosonic statistics. To have
a well-defined description we need to impose ρL

nn + ρR
nn = 1

for each n or ρL
q + ρR

q = 0 when q �= 0 (which requires that
correlation holes are hard-core bosons). But these constraints
include the densities of the physical sector and thus have
nontrivial influence on the physical degrees of freedom: The
correlation holes are on the positions of the real (fermionic)
holes. This is an unexpected constraint that opposes the usual
interpretation of the correlation hole as a potential well for an
elementary particle. Nevertheless, the constraint corresponds
to the physics of the CFs near the Fermi level, i.e., to the most
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important, effective physics of the problem: The magnitude of
the momentum of these CFs is |k| ∼ kF = 1/lB (lB is the mag-
netic length), and due to the projection to a fixed LL [55–57],
this implies that the correlation hole is shifted, distanced from
the electron for the same amount, |k|l2

B ∼ lB. Furthermore, we
consider the Hamiltonian of the problem in a PH symmetric
form, one that is symmetric under exchange of particles and
holes, i.e., L and R densities,

H = 1

2

∫
dq

(2π )2
Ṽ (|q|) [ρL(−q)− ρR(−q)]

2

[ρL(q)− ρR(q)]

2
.

(5)

Because of the constraint and the implied PH symmetry, we
may refer to the composite object not as a CF but simply as a
dipole, i.e., a symmetric object which is neither CF nor CH.

III. THE QUANTUM HALL BILAYER IN DIPOLE
REPRESENTATION

We begin with the Hamiltonian for the QHB in the second
quantization, with electron density operators, ρσ (q), σ =↑,↓
(↑ and ↓ refer to the two different layers):

He =
∫

dq
(2π )2

{∑
σ

1

2
V (|q|) : ρσ (q) ρσ (−q) :

+V↑↓(|q|) ρ↑(q) ρ↓(−q)

}
. (6)

In the enlarged space formalism, the bilinears ρσ (q) become

ρL
σ (q) =

∫
dk

(2π )2
c†
σ (k − q)cσ (k) exp

(
i
k × q

2

)
, (7)

where formally we have, instead of electron annihilation
and creation operators, the quasiparticle operators, cσ (k)
and c†

σ (k). Quasiparticles in the long-distance approxi-
mation can be interpreted as fermionic dipoles. In the
Hamiltonian we recognize the intrainteraction terms with
V (|q|) = (1/|q|) exp(−|q|2/2) and the interinteraction term
with V↑↓(|q|) = V (|q|) exp(−d|q|), where d denotes the dis-
tance between the layers. We then proceed by using the dipole
representation, which we find optimal for exploring the influ-
ence of the fermionic quasiparticles and physics that grows
with distance. This representation allows the inclusion of the
PH symmetry of the system (under exchange of all electrons,
irrespective of index, and holes) in a manifestly invariant way
in the Hamiltonian. We then proceed to utilize the dipole rep-
resentation, which we find optimal for exploring the influence
of the fermionic quasiparticles and the physics that evolves
with distance.

By imposing the constraints,

ρL
σ (k) + ρR

σ (k) = 0 σ =↑,↓, (8)

that define the dipole representation in each layer, we place
correlation holes where holes are, and thus the PH exchange
is followed by the density exchange:

ρL
σ (k) ↔ ρR

σ (−k) σ =↑,↓ . (9)

Therefore, the Hamiltonian can be written (by using the con-
straints) in an explicitly invariant form under this exchange:

H0 =
∫

dq
(2π )2

{∑
σ

1

8
V (|q|)[ρL

σ (−q) − ρR
σ (−q)

]

× [
ρL

σ (q) − ρR
σ (q)

] + V↑↓(|q|)
4

[
ρL

↑ (−q) − ρR
↑ (−q)

]

× [
ρL

↓ (q) − ρR
↓ (q)

]}
. (10)

Note the absence of normal ordering due to the requirement
that the constraints commute with the Hamiltonian in the
physical space. This induces single particle terms (beside
purely interacting) with effective mass M (due to the in-
tralayer interaction) [62,63]. By treating the constraints as
null operators (in the physical space), which we can include
in the Hamiltonian, we reach forms of the Hamiltonian that
are adapted to the mean-field approach, as they offer obvious
interpretation which phase in the mean-field approach they
support.

In the QHB case we can add and subtract (product of)
constraints and define the following (effective) Hamiltonians:

H1 =
∫

dq
(2π )2

{∑
σ

1

8
V (|q|)[ρL

σ (−q) − ρR
σ (−q)

]

× [
ρL

σ (q) − ρR
σ (q)

] + V↑↓(|q|)
2

× [ − ρL
↑ (−q)ρR

↓ (q) − ρR
↑ (−q)ρL

↓ (q)
]}

, (11)

and

H2 =
∫

dq
(2π )2

{∑
σ

1

8
V (|q|)[ρL

σ (−q) − ρR
σ (−q)

]

× [
ρL

σ (q) − ρR
σ (q)

] + V↑↓(|q|)
2

× [
ρL

↑ (−q)ρL
↓ (q) + ρR

↑ (−q)ρR
↓ (q)

]}
. (12)

The form of H1 emphasizes the excitonic attraction between
densities from opposite layers (electron-hole attraction),
which we expect to dominate physics at small distances. On
the level of effective dipoles - composite particles (c’s) this
will translate to a strong instability to a Cooper pair formation
between c’s from different layers. On the other hand, the form
of H2 is suggestive of excitonic pairing between c’s from op-
posite layers. Indeed, in a mean-field treatment of H1 and H2,
these instabilities can be identified as shown in Fig. 1. Details
of the mean-field treatment are provided in the Appendix. For
all distances considered, the s-wave (l = 0) Cooper pairing
between layers has lower energy than the p-wave (l = 1)
Cooper pairing and s-wave (l = 0) excitonic pairing. The
s-wave excitonic phase of quasiparticles is similar to the one
proposed in Ref. [45], which describes an interlayer correlated
CF liquid (ICCFL). However, in our work, we operate within
an LL, and the quasiparticles involved are (neutral) dipoles.
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FIG. 1. The total energies of the ground states of effective Hamil-
tonians H1 and H2 as functions of the distance between layers; s-wave
Cooper pairing of H1 in black, p-wave Cooper pairing of H1 in green,
s-wave exciton pairing of H2 in red, and p-wave exciton pairing of
H2 in blue.

In calculating total energies we applied a short-distance
“cutoff” if necessary (if we encountered divergences). Though
consistently defined on the whole k plane [61], the enlarged
space description must be supplied with a natural “cutoff”
(due to an intrinsic “lattice constant” lB for this system): radius
k = √

2/lB of a circle in the k space, i.e., a volume of the
available states in a single LL. In most cases the presence
of Gaussians allows the extension of the integration over the
whole space.

The exciton instability in the plotted range d ∈ [0, 3lB]
can be described as an occupation of a single, lower band
that is associated with the symmetric superposition: [c↑(k) +
c↓(k)]/

√
2. Thus a single, large Fermi sea exists in this range

according to the mean-field calculation. Related to this is the
excitonic binding of c’s implied by H0 (with a dipole-dipole
interaction that screens the bare Coulomb interaction) with
the gap parameter, �k ∼ |k|2 (not a constant as in the case of
H2). The total energy of this solution is negligible and may
be relevant only for very large d when a transition to two
decoupled Fermi seas takes place, i.e., for an equal population
of symmetric and antisymmetric bands.

We applied the mean-field approach to the effective Hamil-
tonians and thus we may expect that our results are more
reliable for larger d , i.e., weak coupling between layers. The
weak-coupling assumption is completely justified for d ∼ 3lB
[see Fig. 1, weak attraction (pairing amplitudes), i.e., weak
coupling can be recognized in small differences in total ener-
gies with respect to the asymptotic value, i.e., the free-fermion
limit], and we may ask whether (at all, because of the strong
coupling for d � lB) a conclusion for the state of the system at
any d can be drawn. But the nature of the predicted phase for
d � lB (in the strong-coupling regime) in our formalism is the
same as the one that is firmly confirmed in many calculations
and approaches, a binding of the density of electrons with
the density of holes in the opposite layers (opposite charge
binding), and given that this phase (in our formalism) persists
to large d (weak-coupling regime where the approach is fully
reliable), we can conclude (assuming continuity, i.e., that a
reentrant scenario is unlikely) that one and the same phase is
present for all relevant distances including d � lB.

In our approach, the binding of charges from opposite
layers is described (effectively) as s-wave binding of dipoles
of momenta k and −k and thus involves opposite dipole
moments from opposite layers. This is similar to the binding
described in Ref. [50], where a CF in one layer binds to a CH
in the other one. The underlying physics of pairing is the same,
and the descriptions should correspond to the same phase [64].

We did not include a requirement for the boost invariance
(K invariance [63,65]) as in the single-layer case [59], because
in this case, a real increase of the energy of the system is possi-
ble due to a relative motion between layers. In the mean field,
the dispersion of the Goldstone mode is ωk ∼ √

�s/M, where
�s is the BCS gap and M is the mass of quasiparticles due
to the Coulomb interaction between the same layer particles.
The boost invariance should be ensured in the limiting cases,
d = 0 and d = ∞, but at intermediate distances, we may rely
on the mean-field estimates.

IV. DISCUSSION AND CONCLUSIONS

Thus, we may conclude that within the scope of dipole
representation and mean-field method, there is no transition
in the QHB at finite distance between layers; the excitonic
phase of electrons (or Cooper s-wave pairing of fermionic
quasiparticles and dipoles in the long-distance approximation)
dominates the physics at relevant distances. On the other
hand, the suppressed yet competing, s-wave excitonic phase
of quasiparticle inside LLL can be described as a large Fermi
sea of quasiparticles (with no layer index, i.e., with symmetric
superpositions). An intermediate state in the QHB has been
identified and described by exact diagonalization on a torus in
Ref. [46]. In our description the Fermi sea of (neutral) dipoles,
in the absence of the boost invariance (or K invariance),
leads to the incompressibility in the charge channel [63,65]
of the competing phase, and that is consistent with findings of
Ref. [46] (and distinct from the ICCFL phase of Ref. [45]).
The exciton condensation induces a gapped, topological be-
havior in the neutral channel, just as in the case of the ICCFL
phase (of Ref. [45]) and consistent with findings of Ref. [46].

Based on previous analyses [47,48], one may expect that
the inclusion of LL mixing will lead to the formation of
the p-wave pairing state of CFs (from opposite layers, i.e.,
interpairing). This state can be found in an unprojected (to a
fixed LL) Chern-Simons field-theoretical description. A Dirac
type of the gauge theory leads to the conclusion that the
p-wave Cooper pairing of CFs from opposite layers describes
the system at any distance between layers [49] (except at
d = ∞). The no-transition scenario continues to exist under
LL mixing [51]. The results of our work, within the LLL, and
the results of Ref. [51], with no projection in a Chern-Simons
treatment, are in correspondence. This continuous (one and
only for all distances) phase can be simulated by selecting an
appropriate shift (i.e., bias) in the spherical geometry, inside
the LLL, as described in Ref. [50].

In short, we have demonstrated the usefulness of the dipole
representation in the case of the long-standing problem of
the QHB, with potential to be used for half-filled problems
of general Chern bands. Inside an LLL, the QHB physics
is dominated by a single phase: the Cooper s-wave pairing
of effective dipoles. While for the system of electrons in a
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single layer that occupy half of the available states in a LL
a compressible behavior is only possible [69], here we find
that a nontrivial double, a nontrivial superposition of two such
systems with incompressible, topological behavior based on
the noncommutative nature of projection(s) inside LL(s) is
in a competition with a compressible phase, but again the
compressible (in the neutral channel) phase is realized.
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APPENDIX: MEAN-FIELD APPROACH TO EFFECTIVE
HAMILTONIANS

In this Appendix, we give a brief account of the mean-
field treatment of the Hamiltonians, H1, (11), and H2, (12).
Due to the attractive nature of the effective interaction in
H1, and the repulsive nature of the effective interaction in
H2, we introduce a mean-field reduction of the Hamiltoni-
ans, assuming the pairing in the Cooper channel of H1, i.e.,
〈c†

k,↑c†
−k,↓〉 = �bcs

k �= 0, and the excitonic pairing of H2, i.e.,

〈c†
k,↑ck,↓〉 = �exc

k �= 0.
In the BCS case, we need to solve self-consistently the

following equation, for the order parameter �bcs
q :

�bcs
k =

∫
dq

(2π )2
V↑↓(|q − k|)�

bcs
q

2Eq
, (A1)

where Eq =
√

ξ 2
q + |�bcs

q |2 and ξq = εq − εqF
, with qF = 1

(a half-filled condition for each layer). Also εq represents

the single-particle energy of quasiparticles in each layer that
is calculated using the Hartree-Fock method, applied to the
single-layer part of the Hamiltonian that describes the in-
tralayer interaction. See below an explicit formula in (A5).
The (total) ground-state energy of the system is

Ebcs
0 =

∫
dq

(2π )2
(ξq − Eq) +

∫
dq

(2π )2

∣∣�bcs
q

∣∣2

2Eq
. (A2)

In the excitonic case, we need to self-consistently solve the
following equation, for the order parameter �exc

q :

�exc
k =

∫
dq

(2π )2
V↑↓(|q − k|) �exc

q

2
∣∣�exc

q

∣∣ [nα (q) − nβ (q)], (A3)

where nα (q) and nβ (q) denote the occupations of the states
with momentum q, in the band with energies Eα (q) = εq −
|�exc

q |, and in the band with energy Eβ (q) = εq + |�exc
q |, re-

spectively. In solving (A3), we have to keep the density of the
system constant, i.e., the occupation of the lower and upper
band, described by appropriate Fermi momenta, qF

+ and qF
−,

should satisfy the following equation: (qF
+)2 + (qF

−)2 = 2.

The (total) ground-state energy of the system is

E exc
0 =

∫
dq

(2π )2

[(
ξq − ∣∣�exc

q

∣∣/2
)
nα (q)

+ (
ξq + ∣∣�exc

q

∣∣/2
)
nβ (q)

]
, (A4)

where, as before, ξq = εq − εqF
, with qF = 1 (a half-filled

condition for each layer).
The following equation describes the single-particle energy

obtained after the application of the (Hartree-)Fock procedure
to the intralayer part of the Hamiltonian:

εk = 1

2

∫
dq

(2π )2
Ṽ (|q|)

[
sin

(
i
k × q

2

)]2

−
∫

dq
(2π )2

Ṽ (|q − k|)
[

sin

(
i
k × q

2

)]2

n(q). (A5)

The occupation n(q) describes the filled Fermi sphere with
radius qF = 1. The first contribution comes from the normal
ordering of the density-density form of the intralayer term and
may represent the self-energy of a dipole [62], and the second
term represents a Fock contribution.
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[68] C. Wang and T. Senthil, Half-filled Landau level, topological

insulator surfaces, and three-dimensional quantum spin liquids,
Phys. Rev. B 93, 085110 (2016).

[69] F. D. M. Haldane, Incompressible quantum Hall fluids as elec-
tric quadrupole fluids, arXiv:2302.12472.

155129-7

https://doi.org/10.1103/PhysRevB.95.085135
https://doi.org/10.1103/PhysRevLett.127.246803
http://arxiv.org/abs/arXiv:2303.10212
https://doi.org/10.1103/PhysRevLett.63.199
https://doi.org/10.1088/0268-1242/9/11S/002
https://doi.org/10.1016/0039-6028(96)00318-4
https://doi.org/10.1103/PhysRevLett.72.900
https://doi.org/10.1103/PhysRevX.5.031027
https://doi.org/10.1103/PhysRevB.107.155132
https://doi.org/10.1016/S0550-3213(98)00069-8
https://doi.org/10.1103/PhysRevB.58.16262
https://doi.org/10.1103/PhysRevB.102.205126
https://doi.org/10.1103/RevModPhys.75.1101
https://doi.org/10.1103/PhysRevB.104.115150
https://doi.org/10.1103/PhysRevB.93.085110
http://arxiv.org/abs/arXiv:2302.12472

