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Microscopic derivation of Dirac composite fermion theory:
Aspects of noncommutativity and pairing instabilities
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Building on previous work [N. Read, Phys. Rev. B 58, 16262 (1998); Z. Dong and T. Senthil, Phys. Rev. B 102,
205126 (2020)] on the system of bosons at filling factor v = 1, we derive the Dirac composite fermion theory for
a half-filled Landau level from first principles and apply the Hartree-Fock approach in a preferred representation.
On the basis of the microscopic formulation, in the long-wavelength limit, we propose a noncommutative field-
theoretical description, which in a commutative limit reproduces the Son’s theory, with additional terms that may
be expected on physical grounds. The microscopic representation of the problem is also used to discuss pairing
instabilities of composite fermions. We find that a presence of a particle-hole symmetry breaking leads to a weak
(BCS) coupling p-wave pairing in the lowest Landau level, and strong coupling p-wave pairing in the second
Landau level that occurs in a band with nearly flat dispersion, a third power function of momentum.
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I. INTRODUCTION

The fractional quantum Hall effect (FQHE) can be ex-
plained by focusing on a strongly correlated problem of
particles (electrons) in two dimensions when there is a
commensuration between the number of particles and the
number of flux quanta of the applied, orthogonal to the two-
dimensional plane magnetic field. Many phenomenological
questions can be answered by assuming that the most impor-
tant physics takes place in a fixed Landau level (LL) with the
precise commensuration of the number of particles and the
number of orbitals in a fixed LL (and other LLs are inert). That
is why a mathematical, idealized problem of an isolated LL is
so useful and relevant for the understanding of the FQHE.

Some of the most interesting experimental phenomena oc-
cur at filling factors (ratio of the number of electrons and

the number of flux quanta) v = % and %, even-denominator
fractions. The gapless system at v = % is believed to be in
a Fermi-liquid state of underlying quasiparticles [composite
fermions (CFs)], as proposed and described in [1] early on,
while it is believed that incompressible (gapped) FQHE at
V= % can be associated with some kind of p-wave pairing of
CFs in the second LL (sLL), as proposed in [2]. To understand
more closely these systems, one may start by focusing on an

isolated half-filled LL, the lowest LL (LLL) at v = % in the

case of the CF liquid (CFL), and sLL at v = % in the case of
the gapped system.

One of the most interesting theoretical developments as-
sociated with the physics in an isolated, half-filled LL is the
proposal in [3] for the description of the CFL state that is
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based on an assumption that the underlying quasiparticles:
CFs can be effectively described as Dirac CFs, using an effec-
tive Dirac theory in two dimensions. This can be of general
interest: a system of interacting fermions on a noncommuta-
tive (NC) space of an isolated LL, in which they fill half of
the allowed, countable states, can be described by an effective
Dirac theory.

The proposed Dirac CF theory is a phenomenological the-
ory, based on the assumption that an effective theory of an
isolated, half-filled LL. must be manifestly invariant under
the particle- (electron-) hole transformation. Certainly, there
is a need for a microscopic derivation of the Dirac CF the-
ory, which can serve as a base for further understanding of
this strongly correlated system. In this paper we develop a
microscopic support for the Dirac CF theory, and provide a
framework for a more detailed investigations.

To describe the physics of an isolated half-filled LL, we
generalize the approach to bosons in an isolated LL at filling
factor one, of Pasquier and Haldane [4], and later developed
by Read [5], and more recently by Dong and Senthil [6]. This
approach introduces additional, vortex degrees of freedom
to efficiently capture Laughlin-Jastrow correlations. In the
case of bosons, the vortex (holelike, unphysical) degrees of
freedom are fermionic, and combine with elementary bosons
to make quasiparticles of the problem, CFs. Due to their
fermionic nature, the vortex degrees of freedom are uniformly
distributed in the LL and make a uniform background. (This
feature also guarantees a necessary independence of physics
under transformations in the unphysical sector.) We generalize
this description to the case of the half-filled LL of electrons,
by assuming a uniform distribution of two kinds of unphysical
degrees of freedom: holelike and electronlike. There are hole-
like vortices as many as particlelike (electronlike) vortices,
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and they behave as hard-core bosons among themselves, mak-
ing a uniform background. To ensure the uniform background
we need to introduce constraints in the description. Because
of two kinds of unphysical degrees of freedom, the holelike
vortices combine with electrons to make CFs, and the parti-
clelike vortices combine with holes to make composite holes
(CHs). We can choose either electrons or holes as physical
degrees of freedom of the half-filled LL, but if we want to
capture particle-hole (PH) symmetry (i.e., the symmetry un-
der exchange of particles and holes), we should treat them
on an equal footing. Thus, we need to include additional
constraints that will preclude the simultaneous presence of
a hole and an electron in an orbital of the fixed LL, and
therefore describe them as dependent (not two independent)
degrees of freedom. The requirement of the PH symmetry also
justifies our assumption on the manner in which unphysical
(vortexlike) degrees of freedom enter the description. In this
way, on the basis of two sets of constraints, we are able to
formulate the problem of the half-filled LL, that is explicitly
invariant under exchange of particles and holes. Furthermore,
within this framework, which explicitly includes the addi-
tional vortex degrees of freedom, we are able to consider the
“preferred (form of) Hamiltonian” in the language of CFs and
CHs, natural quasiparticles that, on the level of Hartree-Fock
treatment, can effectively capture the physics of the system.
Thus, a two-component fermion description, with the CF and
CH fields, necessarily and naturally appears as a consequence
of the demand for the PH symmetry, and we show that the
description is of the Dirac type (when the constraints are
taken into account). This provides a microscopic derivation
of the Dirac description and explains the Dirac nature of the
fermionic quasiparticle excitations of the low-energy physics.

On the basis of this microscopic formulation, in the
long-wavelength limit, we propose a noncommutative field-
theoretical description, which in a commutative limit repro-
duces the Son’s theory, with additional terms that may be
expected on physical grounds. We also discuss pairing in-
stabilities within the developed microscopic framework, and
provide a physical understanding of the p-wave pairing in-
stability in the LLL, and in the sLL. The pairing in the LLL
is of the BCS, weak coupling kind, and this may explain the
scarcity of the pairing phenomena in the LLL. On the other
hand, the pairing in the sLL is of the strong coupling (weak
pairing) kind as proposed and discussed in [7], though we find
that the Dirac CF band dispersion € (k) is flatter: it obeys a
third-power law, i.e., e(k) ~ k.

The section that follows is a review of the bosonic prob-
lem at v =1, in which we also introduce a point of view
of the formalism developed in [4,5], that will be useful for
the half-filled problem of electrons. Sections III and IV con-
sider a (simpler) system, closely related to the one of the
half-filled LL, a special-bilayer system with two kinds of
particles, parallel to the existence of electrons and holes in the
half-filled LL. A transformation into holes of just one kind of
particles in the special-bilayer system enables a formulation
of the half-filled LL problem in Sec. V, with all necessary
constraints. Following the usual approach [8] to a formu-
lation with constraints [that enables a Hartree-Fock (HF)
treatment] we discuss a “preferred” form of the Hamiltonian
in Sec. VI, and in Sec. VII a Dirac form of the Hamiltonian

in the HF approximation. In Sec. VIII we describe how in
the long-wavelength limit of the microscopic formulation we
can reach a field-theoretical description with gauge fields
next to the Dirac composite fermions. In Secs. IX and X
we discuss the description of possible pairing instabilities.
The structure of the proposed NC field theory is described in
Appendix A, while Appendix B concerns some specific as-
pects of the relevant covariant derivatives. Conclusions are
summarized in Sec. XI.

II. REVIEW OF THE v = 1 BOSON SYSTEM
AND INTRODUCTORY REMARKS

A CF is a composite object, a bound state of an under-
lying elementary particle with a whole number of vortices;
a vortex represents an excitation of the FQHE system due
to an insertion of one flux quantum that induces a depletion
of charge. At filling factors v = 1/¢q, where ¢q is an integer,
a composite fermion is a neutral object; a composite of an
electron (fermion) and a hole (more precisely a depletion of
charge) associated with g flux quanta, when ¢ is even, and
a composite of a boson and a hole associated with g flux
quanta, when ¢ is odd. To simplify the terminology, we will
always call the excitation with ¢ flux quanta a vortex. These
introductory remarks serve just to remind the reader of the
physical picture of the CF, and for an elaborate introduction to
the CF formulation the reader may consult [5]. We conclude
that it may be expected and natural that an operator describing
annihilation or creation of CF will carry two indices, one for
the state of the elementary particle and the other for the state
of the hole in an orthonormal basis. In the following we will
introduce the two-index formalism that was first proposed in
[4] and further elaborated in [5] and [6].

We start from an enlarged space with (composite) fermion
¢} with two indices, each corresponding to an orbital in the
LLL (fixed LL): m,n =1, ..., Ny = N such that

{Cnmv C;,n/} = 8n,n’8m,m’~ (1)

Each c,, fermion represents a composite object. We define
physical subspace of bosonic states in the LLL by

Ny
i)=Y &M el 10), (2)

my,...,my

where ¢ is the Levi-Civita symbol. In this way, bosonic
physical states have a property, defined by

R .
Py = Z Cy‘ymcnm’v 3)
n

that

oR i, .o ny) =1 |ny, ..., ny), 4

expressing a single occupancy of each unphysical orbital
m. The physical states are defined by this property so that
unphysical orbitals make a uniformly occupied background.
They furnish a spin-singlet representation of SU(N) group,

sny) =0, &)

R
m#m', ppolni, ...
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which is in agreement with the requirement that the physics
should not depend on the choice of basis in the unphysical
sector R.

But, we may reformulate this requirement by demanding
that (1) ,off;m = 1 and that (2) “unphysical” particles (objects),
which are uniformly distributed in the LLL, are fermions. This
will automatically lead to (5). In other words, introducing a
certain type of statistics in the unphysical sector is a way
of specifying physical states together with the demand for
pR = 1. In the following we would like to further this view
and introduce an approach, which will make a basis for our
description of the v = % problem, and contrast it with respect
to the previous construction of the bosonic v = 1 state.

First, we will recapitulate the Pasquier-Haldane construc-
tion, and the way vortex statistics enters the description. The
Pasquier-Haldane enlarged space consists of states

el 0), (6)

myn; *“myny

which describe the presence of N composite objects. To each
object we associate two single-particle LL states, the state
n; of the elementary, physical particle, boson, and state m;
of vortex. By exchanging states n; <> n; or m; <> m;, we do
not get the same state up to a sign, i.e., we cannot speak
about definite statistics. But if we trace out one of the (two)
degrees of freedom, like by tracing out in an antisymmetric
way vortices in (2), we can speak about definite statistics; we
have to do an ordinary (symmetric) trace in all z indices to get
a state with definite statistics in the unphysical sector, a single
Slater (Vandermonde) determinant of fermionic vortices in
this v = 1 case.

This motivates our approach: we consider an enlarged
space (a subspace of the Pasquier-Haldane space) in which all
m’s (in the unphysical sector) are different (i.e., m; # m; for
i# j;i,j=1,...,N). Physically, we may understand this
as a modeling of a uniformly distributed vortex background.
The SU(N) invariance in the R sector is present, and acts
trivially, because each generator (3) with m # m’ will map out
of this restricted space, and thus effectively (considering the
necessary projection) annihilate state in the restricted space.
If we further require that the states of the restricted space have
definite (fermionic) statistics of vortices we will have a unique
realization of the SU(N) symmetry, given by (2). Thus, we do
not constrain the unphysical degrees of freedom by a single
symmetry requirement (as in the approach to the bosonic
v = 1 in [6], and which is possible, allowed in that system),
but primarily by a physical requirement of the uniform vortex
(unphysical degrees of freedom) density. Thus, we consider
a description with an (additional but necessary) constraint in
the unphysical sector, which is present automatically in the
bosonic v = 1 case, because of the fermionic statistics of the
unphysical degrees of freedom. The constraint of the uniform
vortex density is a way to introduce bosonic vortices into a
theory, and still maintain the SU(NV) invariance in the unphysi-
cal (vortex) sector, i.e., invariance of the physics under change
of basis (transformations) in the unphysical sector. We will
consider examples of this at the end of this section and in the
following section when we discuss a special bilayer problem
as a preparation for the half-filled LL problem. Furthermore,
we will see that in the half-filled LL problem, unphysical
degrees of freedom are associated with both L and R sectors,

and thus we see that in that case also, the requirement of
the uniform density of the unphysical degrees of freedom
is the most natural to constrain these degrees of freedom,
and maintain the invariance under change of basis [not by a
spin-singlet realization of SU(N) symmetry in one (R) sector].
Therefore, we can specify physical states by demanding the
uniform distribution of unphysical degrees of freedom in the
states that enter description of the physical states. These states
form a space that is effectively invariant under SU(N) trans-
formations. The demand for a definite statistics of unphysical
degrees of freedom in these states leads to physical states.
Thus, in principle, we can discuss a possible physical sec-
tor (system) in an enlarged theory for which pR =1, but
with the unphysical particles being (“hard-core”) bosons, and
the physical sector being a v = 1 fermionic system. The old
requirement (5) would be fulfilled effectively (= under the
necessary projection) in a restricted space for which pf =1,
i.e., space defined by hard-core vortex configurations (of N
of vortices). The physical space is defined by a hard-core
configuration of vortices that correlate as bosons. In this case

Ny
Ry, ...,AN)f = Z smemet ...cLNnN|O), )

where s™' "™ = 1 only if no index is equal to any other index,
but otherwise zero. But as we know, this would not lead to a
plausible Hartree-Fock description, i.e., a good representation
in which the Hartree-Fock approach to the system of compos-
ite fermions c,,, would make a good starting point for more
refined descriptions.

Therefore, in principle, we can consider both bosonic and
fermionic realizations of the SU(N) group (that works in the
unphysical sector), by considering the theory with CFs as
building blocks of the effective description, at a particular
fraction, and only one will realize as a physical theory. [We
should choose composite bosons (CBs) in the system in which
the CF realization fails.] The single occupancy in the unphysi-
cal sector will lead to definite statistics (fermionic or bosonic)
in the unphysical sector because the algebra of the density
operators (that the theory is built on), in a LL basis, is

(o ol ] = Pyt — Pl ®)

i.e., the algebra of SU(N) generators that can be realized either
by fermions or bosons. The constant density and demand
for fermionic statistics will coincide with a simple SU(N)
invariance: the group action will map the state in (2) into itself.
The constant density requirement and demand for bosonic
statistics will coincide with a special SU(N) invariance (a
maintenance of the symmetry under the projection to the
constant density): the group action will map the state in (7)
into the same state up to a number (a coefficient because of
the projection) and only the symmetric group S,, forn = N,
a subgroup of SU(N), represented by signed permutation ma-
trices, will map the state into itself, up to a sign. Thus, by
fixing the density, we will have either fermionic or bosonic
realization in the unphysical sector, and in the following we
will emphasize which realization (statistics) we choose.
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IIl. TOWARDS v = ! FERMIONS:
A SPECIAL BILAYER SYSTEM

As a preparation for a setup of the v = % (i.e., the
half-filled LL) problem in the language of composite quasi-
particles, we will discuss a setup for a special quantum Hall
bilayer system. The special bilayer is characterized by two
layers of electrons, each at filling factor v = % of a fixed LL,
but what is special is that an electron in one layer cannot be
in the same (LL) orbital with an electron from the other layer.
Thus, we may speak about two kinds of composite objects,
composite fermions ¢ and d, which are overall neutral objects
consisting of elementary particle electron of a given layer, and
unphysical (vortex) object of opposite charge. Therefore, we

consider two CFs, ¢/ ~and d] , for the two layers, and an
enlarged space with states
i i T ¥
Coami *+ Comgamsgs s+ dm}//zﬂ’w/zm)’ )

i.e., always there are N/2 ¢ fermions and N/2 d fermions,
where N, as before, is the number of available orbitals in
the LL.

The density of the unphysical objects, vortices (of the op-
posite charge with respect to electrons), may be expressed in
the analogous way as in the previous section:

o) = Z ChonCony (10)

and
P = Z (11)

Following the discussion in the previous section, we re-
quire
P+ P’ = 1. (12)
i.e., we uniformly distribute particles in the unphysical sec-
tor. Furthermore, we choose them to be bosons and mutual
bosons. The requirement (12) may be associated with special
(identical for both ¢ fermions and d fermions) transformations
of the LL basis in the unphysical sector, which we denote by
SUf(N ) (where ¢ stands for charge), a transformation that
is realized identically on both ¢ fermions and d fermions
by affecting their unphysical index. These transformations
would leave the physical states unchanged if we work in the
restricted subspace with (unphysical) hard-core bosons

m#m,

(b ,1,(;,(,2)+P515,f))|n1,--~, nyy) =0,
(13)

where the equality is the result of the projection to the

restricted state, and thus by assuming (12) and bosonic cor-

relations in the unphysical sector, we have that

’
Ny, ...,

’ ’
Ini, <oy Ny, N, ~--,”N/2>
N
— E §m LMy m}\,/z
My, My My, m;v/z

xch ol d, ...d, 0y, (14

min mNj2N2 " mn) m,/v/zn,v/2

/ s . .
where ™"V jg nonzero, equal to one only if no

index is equal to any other index.

In (14) we have not only required that the unphysical
bosonic degrees of freedom are uniformly distributed (12),
but that they correlate mutually in a symmetric way. Thus,
we chose a sector of definite statistics in the enlarged space.

If N =2, we have the following candidates for physical
states:

In,n'y = (¢} d}, + c},d} )0y, (15)

where n, ' = 1, 2. Additionally, as a part of the definition, we
require that in the special bilayer system, i.e., two half-filled
LL system, LL orbitals in the physical states cannot be doubly
occupied. Thus, what is needed is to suppress the unwanted
states [those with (n,n’) = (1,1) or (2,2) in the N = 2 ex-
ample] of double occupancy (with an eye on the half-filled
problem). Therefore, we need also

n(f) + pL(d) =1. (16)
This leads to |phy), physical states for which
n#n', (op £ o) Iphy) =0. (17

nn

We may associate the plus combination with SUX(N), and
the minus combination with SUSL(N ) “spin” transformations
which are inverse in the d sector with respect to the ones in
the ¢ sector. Together, (16) and (17) with the plus sign lead to
conclusion that |phy) states are spin singlet(s) under SUf (N).
On the other hand, in the physical states, the generators of
SUf (N) transformations

P = oy (18)

may have expectation values from the interval [—1, 1]. At the

beginning, before the requirement (16), operator sets { p:,ic)}

and {p""}, with the constraints Y p=(© = 3" pL@ = N/2,
furnished two adjoint representations of SU(N) group. How-
ever, with the hard-core constraint (16), we have only one
nontrivial representation of SU(N) group, SUf. (N). The phys-

ical states are invariant under global Ug(1) transformation

because
L c

and so are the unphysmal (R-sector) states

Z P = Z P’ =NJ2, (20)

Z P’ = N/2, (19)

by definition.

This completes a constraint [(12), (16), (19), (20)] plus
statistics setup for the description in an enlarged space of the
problem that concerns a special bilayer at v, = 1 with two
kinds of electrons, i.e., composite ¢ fermions and d fermions,
which cannot occupy the same orbital in the restricted space
of a fixed LL.

IV. SPECIAL BILAYER SYSTEM AND ITS
TRANSFORMATION INTO THE HALF-FILLED SYSTEM

We may consider the previous formulation of the special
bilayer as a starting point for the formulation of the half-filled
problem. To reach the half-filled problem, one kind of electron
(in one of the layers) should transform, i.e., become (elemen-
tary, physical) holes. If we consider a layer with composite
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d fermion, under the special electrons into holes transfor-
mation, what was the density of “physical” electrons p™@
should become the description of the density of unphysical
vortices, quasielectrons, and be a part of the constraints and
description in the unphysical sector, i.e., pf@ — pH?D_ And
similarly, what was the density of unphysical vortices (with
charge opposite to the one of electron) pR@ should become
the description of the density of “physical” holes, and be a
part of constraints and description in the physical sector, i.e.,
PLD s pR@),

Thus, by making a PH transformation, i.e., charge conjuga-
tion in one of the layers, described by composite object d, it
is appropriate to call this object composite hole because now
the physical degree of freedom is a hole.

We may make this discussion more concrete by consider-
ing the special bilayer description in the inverse space and
fixing the notation that will be in place also for the half-filled
case. Also, we will discuss possible particle-hole transforma-
tions in the special bilayer case and derive again the necessary
transformations that transform the special bilayer problem
into the one of the half-filled LL.

We consider a representation of ¢ and d composite
fermions of the special bilayer in the inverse (momentum)
space. Following the previous studies on the v = 1 bosonic
problem, we introduce the following decompositions:

dk
o = / (nltdm)cr 1)
2m)}

and

dk
dpm = / T (n|Te|m)dy. (22)
(2m)?
with 7, = exp(ik - R), where R is a guiding-center coordinate
of a single particle in the external magnetic field,
[R)m Ry] = _iv (23)

we took /g (magnetic length) = 1, and {|n)} are single-particle
states (orbitals) in a fixed LL.
With these decompositions we find that

dq
L(c) _ / L(c)
= 3 chucrn = / el 4

. dk . kxgq
pg():/(zn)zck_qckexp (l > >, (25)

L(d)
nn'

l dq L
(d) (d)

d dym = n|t.\n y 26
P Z mn f 27 < | q| > ( )

q) . 27)

Note the inverse order of indices n and n’, on the left- and
right-hand sides of (24) and (26). Similarly,

R(e) _ §
pmm’ - Cmncnm

n

where

and similarly for p

where

dq 1y R
=/g<m|rq|m>p§“, (28)

where

. dk kxgq
:05( ) — f (Zn)zc;_qck exp (—z 5 ) 29)

R(d)

nn'

dq
R(d
Pt = Z Do = / 5 mlrglm )o@ (30)

kxgq
R(d) /(2 2% dkexp< > ) (€19

Note the positions of indices m and m’ on the left- and right-
hand sides of (28) and (30).
We have

and analogously for p

where

.. (axq
[p‘;‘, p‘;‘,] =2 sm( 3 )pqL+q, (32)
and

o (1x4
[105’ pr’] = —2i sin (T)p;:,qu (33)

e., Girvin-MacDonald-Plazmann (GMP) algebra for two
kinds of particles, particles with opposite electric charge.
We may introduce a particle-hole transformation in the d
sector by taking

di — d', (d] — d_). (34)

This implies
dpn — d, (dl — dp), (35)

and also for
pHD = Zd s nFE N (36)

we have

L(d)
'Onn’ - Z

m

nm == Z mn - 5;‘1)_ (37)

In the inverse space this implies

P g) > =" V@), (38)

which is consistent with our expectation of what a particle-
hole transformation should imply on the physical density in
the d sector; it should induce a density of particles of opposite
charge in the magnetic field (L — R) (and a minus sign that
is always accompanied with such a transformation). We can
reach the same result by considering pHD(q) forq # 0,

and applying the transformation dy — dik (a’,j — d_g).

Therefore, this transformation may be identified to be the
one that corresponds (in the enlarged space) to the particle-
hole transformation on the elementary (fundamental) degrees
of freedom ey, the second kind of electrons in the special bi-
layer: e; — h:;, eji — hy (where ey, ej;, hy, hjz are annihilation
and creation operators).

Above we introduced the effect of the particle-hole trans-
formation (on electrons e;) in the d sector on composite
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fermion operators, while putting aside the question of the
diagonal terms pL(@ and the necessary existence of a constant
term, equal to N, due to the anticommutation relation of d,,,’s.
This would imply an additional delta-function contribution
[~82(q)] in the inverse space for the particle-hole transfor-
mation of p““)(q).

To comply with the restrictions of physical spaces in the
enlarged spaces of composite fermion operators d,,, and ¢,
of the half-filled and special bilayer problem, we expect

HD 1 — pR@ (40)

'Onn

because the summation on 7z on both sides, and the restrictions

Yot = Z o = = (41)

would be consistent with the particle-hole (single-layer) sym-
metry of the physical system and restrictions on the special
bilayer system.

Thus, in order to project the transformation d,,, — d:m on
the physical spaces of half-filled and special bilayer problems
we demand

P
which requires an additional subtraction of a constant term
(N — 1) after the d,,, — dj;m (d;m — d,,;,) transformation, in
order to project out the unphysical degrees of freedom. In the
inverse space this affects the delta-function contribution; thus,
for g # 0 we still have p@(g) — —pR@(q).

In the following we would like to examine how this
particle-hole transformation affects the constraints imposed
on the bilayer system in order to see how they look like in
the (enlarged) space of the special bilayer system. The two
“hard-core” constraints pR© + pR@) — 1 in (12) and pL(©) +
pEd) = 1 in (16) become

P = P (43)

— 1 - pf®, (42)

and
P = P, (44)

respectively, which is consistent with the view that now the
d sector is described by hole degrees of freedom. On the
other hand, the operator p£© — pL(@ transforms into pL(©) +
pR@ 1, ie., pL + p,'f,f") acquires expectation values in
the physical states ranging from O to 2. Thus, we introduced
the hole view in the d sector and this increased the allowed
occupancy of c¢ particles and d holes of a single site to 2. But,

we want to introduce a description in terms of holes not in the

e;(c) [ e(c)| @

=
e,(d) o hid) | O

n= 1 2 n= 1 2

FIG. 1. An illustration of the particle-hole transformation in the
special bilayer problem. The transformation is done in the layer with
particles (electrons) 2 and thus also on the associated composite d
fermion.

e,(c) () e(c) o

=
e,(d) o h(d) O

n= 1 2 n= 1 2

FIG. 2. An illustration of the “active” particle-hole transforma-
tion, i.e., the particle-hole conjugation on particles (electrons) 2
which become holes. In this way the special bilayer problem is
transformed into the half-filled LL problem.

way of change of variables but in the way of a real change in
the d sector: where there are particles there should be holes
and vice versa. Thus, pt@) — pR@ apd pR@) 5 pL@ jp ac-
cordance with the discussion at the beginning of this section.
In this way the operator pL(©) — pL{@) becomes pLl©) — pRid)
and describes fluctuating charge of the half-filled LL. Also

the following action on operators dwn and ) is implied:

dyn = dum (), — d) (45)

mn

[compare the definitions of the density operators in (26) and
(30), in L and R sectors]. Figures 1 and 2 illustrate the dif-
ference between the particle-hole transformation as a change
of variables, and one that is an active transformation that
transforms the special bilayer problem into the one of the
half-filled LL.

V. FORMULATION OF THE HALF-FILLED PROBLEM

On the basis of the discussion in the previous section, we
can conclude that the charge fluctuations around mean density
%(#), where Ip is the magnetic length, can be expressed by

B

(pE©) — pR@)) /> Thus, the Hamiltonian that can be consid-
ered together with the hard-core constraints pf(© + pL@ = |
and pL© 4 pRd — 1 js

1
H= E/qu(lql)

L (g) — pRD(q) pH(—q) —
2 2

P (—q)

(46)

The charge operator [p“()(q) — pR@)(q)]/2 does not satisfy
the GMP algebra because of the doubling of the degrees of
freedom (extra 2 in the GMP algebra). But together with the
constraint p(g) 4+ pR@(g) = 0 it does because [p"“)(q) —
XD (g)]1/2 becomes pX(g) [or —pR@(g) due to the PH
symmetry] with the constraint, and represents the physical
charge that satisfies the GMP algebra, expressed as a change
of the electron density p*“)(g) or a negative change in the
hole density —pR@(q).

In the form of the Hamiltonian in (46) we incorporated
the PH symmetry, by including both particles and holes with
equal weights (on an equal footing) in the description of
the change of the physical (electric) charge from the mean
value. The Hamiltonian is manifestly invariant under the
transformation p© — pR@ and pR@ — pl© which rep-
resents an effective PH transformation. It consists of a charge
conjugation, which transforms CFs, i.e., ¢’s into CHs, i.e., d’s,
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and vice versa, and an antiunitary, i.e., time-reversal trans-
formation that transforms phases into complex-conjugated
ones (R — L and R — L). Also, the transformation incorpo-
rates the reversal of momenta k — —k that can be associated
with the time reversal, and thus p™“(g) — pR@(—q) and
pRD(g) — p©(—q). The charge conjugation and time re-
versal constitute the usual definition of the PH transformation
in the presence of the magnetic field, under which the physics
should be invariant. We should note that the charge conjuga-
tion in our case is not uniquely defined on ¢’s and d’s and we
get the same transformations of p%(©) and p®@ by considering
cx —> ad_y and dy — Bc_y, where o and B are constants, and
la] = |B] = 1.

We will recapitulate the necessary constraints in the formu-
lation of the half-filled LL problem. We summarize that

P oD =1, (47)

together with the definite statistics requirement in the unphys-
ical sector, and

PaO + oD =1, (48)
with global constraints
YO =" D =N/2 (49)
and
Yo omI =2 o =N/2 (50)
n n

form a set of constraints that define the half-filled LL problem.
In this case physical states are

’ !’
Inls RN nN/Z’ n]’ ey nN/Z)
N
— E sml...mN/zm’] ..... mZ’V/2
mp,..., myy2 My, m}’\,/2
t + + ¥

X Conany ooy ot .dn,N/zm;mIO), (1)

where ¢V g nonzero, equal to one only if no

index is equal to any other index. Compare with (14), and the
discussion and (45) at the end of the previous section. Also, in
(51), n; # n; foranyi, j=1,...,N/2.

VI. PREFERRED FORM OF THE HAMILTONIAN

The most natural binding in H is the Cooper pair binding
(ckd—_r) # 0 in the s-wave channel. In a Hartree-Fock treat-
ment, the mean-field description would have kinetic terms
with quadratic dispersions, for ¢ and d degrees of freedom,
but this description of these objects does not conform to our
expectation that they are dipoles, distinct dipole objects that
pair, and that their dispersion comes from the polarization
energy due to their dipole moments in a Hartree contribution
as emphasized in [6]. In this way, we see a reason why the so-
called PH Pfaffian, connected with s-wave pairing, is absent
in a fixed LL [9-12].

Asinthe v = 1 bosonic case we may wonder whether there
exists a “preferred” form of the Hamiltonian, i.e., the Hamil-
tonian with some of constraints included in its formulation but
with the same description (and action) as the original one in

the physical space. The “preferred” form should capture the
basic physics in the most efficient way, enabling the descrip-
tion of the basic physics in a Hartree-Fock treatment.

It is not hard to see that a unique low-momentum possi-
bility for a kinetic (nonpairing) term can be reached by an
addition of the following term:

1
7—[—>7—l+§/dq\/(|q|)

L PR@) + oMV g) pM(=g) + "V (—g)

, (52
5 5 (52)
which uses the following constraint,

P+ p"(g) =0, (53)

in the physical sector for the unphysical degrees of freedom
that directly follows from the requirement (47).

In this way, we removed the cause for the s-wave Cooper
pairing and modified the relevant term from

~ / dql—p" (@) " (—g)V (Iq]) (54)

to

~ / dql—p*(q)p" P (—q) + p* (@) p" P (—)1V (Iq])

~ /a’q/dkl/dkg c;:_qck]d,jﬁqdh
x [itk1 + k2) x qlV (|ql). (55)

Clearly, this term in the Hartree-Fock treatment can lead only
toa (c}('dk) # 0 instability and a Dirac-type description of the
low-momentum physics.

VII. DIRAC THEORY FROM THE MEAN FIELD

Thus, we apply the Hartree-Fock approach to the relevant
part of the Hamiltonian (we neglect the quadratic contribu-
tions from the other terms)

d
Ho = [ GV UaDi=" @™ )+ 5" @ )

\%
~~ /dqfdklfdkg 4(;':')1 [itk, + k2) x q]

x [(c,t]_qdh)dkz s

Fop gl o) = (cp_odio)(d,cn)]
dk - .
* 71 i
= / —(27[)2 (Akdka + Akckdk) + C, (56)

where C is a constant and

\% ~ .
D= [ da 350Gk x ] gensa). (ST

We diagonalize Hp by introducing o and S operators

Ck —L 1 —exp{—id} || o
[dk]_fz[exp{iak} 1 }[ﬁk} (58)

where J is defined by Ax = | Ak| exp{—idk}.
The very important question is how we choose the occu-
pation of the momentum k states in the ground state that is
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subjected to the constraints
R L
)+ O = S (59)

and

L(c)
Pry

+ /OR(d) = - (60)

In a mean-field treatment we expect that at least the global
constraints

dk . dk . 1 1
——cag= | —=d/di=p. = =——— 61
(27 )2 Kk Qu R« =P = 5 0nr el
will be satisfied.
In the o, Br language this implies
/ dk(e™af B + € Blay) = 0. (62)

This is a complex constraint and we may try to satisfy the re-
quirement on «’s and B’s, by demanding that also the number
of a’s and B’s is conserved. We might expect

dk .
Wukak = (2 )2 ﬂkﬂk (63)
This seems a very crude “translation” of (62), but it incorpo-
rates the basic idea of our approach: to treat the particles and
holes in an equal way, with their dynamics not independent
but constrained, and in this way duplicated in a theory. The
constraint implies two sectors, o and S, in the ground-state
configuration: half-filled o sector and half-empty B sector.
In this we implicitly assumed the finiteness of the available
volume of k: the number of available k’s is N, the number
of orbitals in the fixed LL. We expect that the description is
duplicated by treating particles and holes in an equal way and,
in the first (mean-field) approximation, the dynamics of o and
B are separate and independent, and we may consider one or
the other sector as a description of the problem.
Thus, for A we get, by self-consistency,

. v .
Ap = |k|e*’¢kf dq (|q|)2(ik x
gl<qr  4(27)

q)e*i¢k+q+i¢k , (64)

where gr = 1/lg(=1). In this expression for Ay, because
of the Gaussian in V (|q|), and the long-wavelength |k| ~ 0
approximation, the contribution of the « sector is taken into
account and we neglected the contribution from the g sector.
We choose & to describe a definite momentum state 8; = ¢,
where ¢ is the phase of the complex variable k = k, + ik,. It
follows that

. T qr )
[Ag| = Wm/(; dqqV(g). (65)

The strength of the amplitude is zero for higher angular mo-
menta (other than angular momentum one).

Thus, by applying the Hartree-Fock approach to the pre-
ferred form of the Hamiltonian (53), we reached a low-energy
description of the problem in terms of

dk
Hp = / m(A;;d,jck + Arcpdy), (66)

where Ay = (k, — iky)A with A =
the finite density of the Dirac system.

4(27-[ )2 dq q2V (‘]) at

The system that is described by the Dirac Hamiltonian, at
finite density, represents a Fermi liquid. The time reversal in
this system transforms a state at momentum k into a one with
momentum —k. Concretely, the state with momentum £,

1 [exp{—igx}
Al e

where ¢ is the phase of k. = k, + ik,, is transformed under
the time-reversal transformation U = —io, K, where oy, is the
Pauli matrix, and K denotes the complex conjugation, into

1 -1
st} <68>

i.e., the state of the same energy but opposite momentum —k.
In the language of the basic PH transformation on the system
(that acts on elementary particles, electrons, and holes), more
precisely its realization on the particular description of the
problem that we introduced, the time-reversal transforma-
tion, in the Dirac description, corresponds to the following
transformation on ¢’s and d’s: ¢y — —d_j and d, — c_y (or
cx — d_y and dy — —c_g, compare with the description in
Sec. V).

VIII. INCLUSION OF THE GAUGE INVARIANCE
IN THE EFFECTIVE DIRAC THEORY

The original SU(N) gauge invariance (i.e., invariance un-
der a change of basis in the fixed LL) is broken down [6] to
U(1) in the mean-field (Hartree-Fock, averaged) description
in (66). As we already detailed, in the microscopic approach
the SU(N) gauge invariance is realized by the following two
constraints,

o+ o =1, (69)

i.e., equal charge distribution of unphysical degrees of free-
dom, and

o+ o =1, (70)

i.e., the exclusion of the double occupancy between particles
and holes (extra unphysical degrees of freedom).

To include fluctuations beyond the Hartree-Fock (mean-
field) level in the long-wavelength domain, Dong and Senthil
reinstated the SU(N) invariance in the description of the boson
problem in terms of CFs by introducing composite fermion
fields on noncommutative (deformed) space,

d*k .
c(R,T)= / - exp (ik - R)ck -, (71)
(2m)2

where R is the noncommutative (guiding center) coordinate,
and 7 is imaginary time. The connection with the microscopic
description is the following:

2

d°k
Com = (nlc(R, T)|m) = / 3
(2m)?

)2

(n|ti|m)cy,- (72)

Physically, the state of the CF with vortex orbital m and
electron orbital n can be described by a superposition of
the (commutative) momentum k states, the weights of which
depend on the effective distance between orbitals (the size of
the dipole), |kef|, because t; = exp(ik - R) is the translation
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operator. For more details see [6]. In this way, the L and R
transformations on ¢y,

L R
Cnm —> UpyppCnmU,pyyy s

(73)

can be represented by noncommutative Moyal-Weyl star prod-
uct of fields on ordinary commutative space,

cx,t) = Ul@x, t) > clx, ) * UR(x, 1), (74)
the star product being defined by

a(e, ) % by, ) = ¢ VW a(e, b, lyor.  (75)

Two-dimensional Levi-Civita (i, j = 1, 2) is defined by €'? =
—e?! = 1. See Appendix A for a more elaborate account.

The two constraints in our problem, (69) and (70), imply,
in the effective description, simultaneous SU(N) transforma-
tions in L and R sectors to which we may associate gauge
fields a{" and a{?. We may also consider a (background)
field A, that is associated with physical degrees of freedom
(particles and holes) pL(©) — pR(),

Thus, we expect the corresponding covariant derivatives of
the following form:

Dyc = duc—i(a)) +A,) xc—icxal, (76)

Dyd = d,d —ial xd —id x (a}) — A,) 7

in the noncommutative description of the low-energy physics,
following the considerations in [6] for the v = 1 system of
bosons.

But, there is a problem with this proposal for a non-
commutative description: the structure of these derivatives is
not consistent with unitarity of gauge transformations (see
Appendix B for details).

We have to step back to understand why this problem
occurs. The formulation of the half-filled LL with constraints
(69) and (70) is different from the case of bosons at v =1
filling, in which there is a clear distinction between L and
R, physical and unphysical sector, The formulation of the
half-filled LL system is more intricate since it includes an ex-
change of L and R sectors, which complicates the distinction
between them.

Having this in mind, we may reconsider the question
of constraints and gauge invariance in an effective, long-
wavelength theory that we are looking for, a theory that will
nevertheless include some noncommutative aspects of the
physical system. In order to get a gauge-invariant description,
we will also apply the long-wavelength limit on the con-
straints (not just in the derivation of the Hamiltonian). In the
ensuing long-wavelength description there is no distinction
between physical (particles or holes) and unphysical (quantum
of flux excitation) degrees of freedom, constraints (69) and
(70) become one [compare (25) and (29) in the small-g limit,
etc.]. We may also expect that A, (background field) couples
symmetrically to the unphysical and physical sector. Thus, we
may define covariant derivatives D, ¢ and D, d in a way that
ensures gauge invariance of the theory:

D,c=0,c—iA, xc—icx(a, —A,), (78)

Dyd = d,d —iA, xd —id x (a, —A,).  (79)

The R gauge field is introduced in a decomposed way a, —A,,,
that will be natural in the commutative limit.

The change that we introduced by going from (76) and
(77) to (78) and (79) is certainly drastic; the change is a
departure from the microscopic description that we found
based on the view of quasiparticles as neutral composites.
In the case of bosons at filling factor one, Dong and Senthil
showed that, on the basis of the Hartree-Fock description that
is modified to include the SU(N) invariance, in the manner
of noncommutative field theory, an approximate commutative
field theory description can be reached (via Seiberg-Witten
map) in the form of Halperin-Lee-Read (HLR) [1] description
with a Chern-Simons term. This description cannot be viewed
as a HLR theory (although of the same form), but as one that
is based on the neutral composites (CFs) and limited to a LL,
a description that is analogous to the description by composite
bosons of the Laughlin case in [13]. In the case of electrons,
in the half-filled LL, for which the Son’s theory is relevant,
one expects that, due to the requirement for the PH symmetry,
a microscopic description will not generate a Chern-Simons
term in an effective description. We encountered difficulties in
the application of the program proposed by Dong and Senthil
to maintain the gauge invariance we consider constraints in the
long-wavelength limit, which certainly implies changes in the
microscopic physics, i.e., ultraviolet domain. We will find that
the ensuing field theory will have a Chern-Simons term, but
one may argue that now Pauli-Villars type of regularization
is associated with the field theory, i.e., we have to treat the
high-energy physics in a different way as opposed to the
version of the Son’s theory that was first proposed by Son, and
assumes the dimensional regularization. Therefore, although
we have done a drastic change in the microscopic domain, the
theory may still make sense as a theory based on another kind
of quasiparticle [12,14] and give a version of the Son’s theory
described in [15-17].

The covariant derivatives (78) and (79) can define an NC
description, and it should be checked whether in the commu-
tative limit via Seiberg-Witten map we can recover the Son’s
theory to the linear order in the small parameter 6 = —I3.
Because of the simultaneous presence of small-6 and long-
wavelength expansions, we will seek an effective description
by considering only lowest-order terms. To find the first cor-
rection to the commutative limit we start with the (Euclidean)
NC action of the form

Sne = /d‘c d*x (¢" «Dyc+d" « D.d + ¢  (iD, +Dy)d

+ d" % (iDy — Dy)c + i(ap — Ag)Pe)- (80)

In Syc we have a constraint term, linear in NC field ag — Ao,
that fixes the total number of ¢ and d fermions. Recall that our
description is for O < |k| in the upper half of Fig. 3, and thus
we have

k. ]
Q2 )2 (Ckck + dk dk)lupper half = Pe- (81)

In Appendix A we detail the small-6 expansion in terms of
commutative fields ¢, d, a,,, A,, (denoted by a hat symbol). We
find Sxe = S@ + SO + ... where the classical limit (9 = 0)
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FIG. 3. A schematic illustration of the implementation of the
global constraint in (61) via (63), i.e., half-filled positive-energy
sector and half-empty negative-energy sector.

is simply
sO — [ dtd’x (¢'D.¢ +d'D.d
+&"(iDy + Dy)d + d*(iD, — D,)é + i(ay — Ao)pe),
(82)

and the linear NC correction reads as (see Appendix A for
details)

lpee o a A g A
s =T€ ﬁy/dl’ d’x (Go — Ag)dg(a, —Ay)

1 4 L
+9/dr d2x|:6]<§f12—F12>D,6

1, N 1. L
—ét (zflo - F10>Dy5 +ét (Efzo - on)Dxf]

a1 A N ~
+9/d1’d2x|:d‘-<§f]2_F12>Dtd
S T 2 L
—d §f1o—F10 Dyd +d Efzo—on D.d |,
(83)

where we introduced classical (commutative) gauge field
strengths

E=8,A, —d,A,, (84)
fow = 80 — 8,0, (85)

and %P7 is the Levi-Civita symbol.

The classical action S and the Chern-Simons term in
SM give the description of a version of the Son’s theory [3]
of the Dirac composite fermion [15-17] that assumes the
Pauli-Villars type of regularization [12,14] because of the
presence of the Chern-Simons term for field a,. Note that

J

the CS term has the correct coefficient ﬁ Also, in the linear
NC correction S) the Dirac momentum density couples to the
external electric field as expected from the Galilean invariance
[4,18]. On the other hand, the presence of a coupling to the
internal electric field &, is quite natural and expected given
the influence of other particles on a selected one. Also, we find
that the presence of internal and external (i.e., departure from
the uniform) magnetic field induces a change in the coefficient
of the kinetic terms ¢79, ¢ and dATafdA . Thus, we can conclude
that the NC formulation, up to the first order in 6, recovers
known results but also systematically adds terms that we may
expect on physical grounds.

Although we reproduced the version of the Son’s theory
from a conjectured NC field theory that is partially based on
the microscopic approach, we may wonder whether there is a
formulation of an NC field theory that can reproduce, via the
Seiberg-Witten map, the original version of the Son’s theory.
In that case, there would be no terms that are not invariant
under the PH transformation, like the CS term for gauge field
a,, and we would not have to assume that their effect will be
erased or canceled by a particular way of regularization.

With the experience of the previous derivation that re-
sulted in Eqgs. (78) and (79) for covariant derivatives
[and action (80)], we may ask ourselves how Eqgs. (76) and
(77) can be modified in a way that they still express the micro-
scopic constraints, but represent valid covariant derivatives. A
way to do that is by including a symmetry between physical
and unphysical sectors by assuming that the background field
A,, couples to both sectors.

Thus, we consider

Dyc=duc—i(a) +A,) xc—icx(aP —A,),  (86)

Dud =3,d —i(a} +A,)*d —id * (a)}) —A,).  (87)

Note that, as before, in the course of the implementing micro-
scopic constraints (69) and (70), where each one constrains
densities both in R and L sectors, the implied gauge fields con-
nect, i.e., transform, at the same time, in the R and L sectors
of fields ¢ and d. We warn the reader that, as it stands, in the
proposed covariant derivatives, only fields bi}.l,):t =da)£A,

and bf)i = aff) + A, are assumed to transform canonically
(see Appendix B for details), and fields a', a?, and A,,,

TRl TRl
that enter their decompositions (as they refer both to R and
L sectors) do not. The complete setup of the new NC theory
is given in terms of bﬁ,)i and bi)i only. In Appendix B we

explain why necessarily bij)i = bi)i =b, 4+, 1e., af}) = aff),

and we have an emerging symmetry between the unphysical
and physical sectors. The fields a, = b, + +b, _ and A, =
(b, + — by, —)/2 will assume their expected U(1) gauge field
roles in the commutative limit of the new theory in which we
get the original version of the Son’s theory that incorporates
the PH symmetry (CP or CT in [3]). The resulting NC action
up to first order is given by

Sne = / dt d*x(é'D.¢é +d'D.d + &' (iD, + Dy)d + d'(iD, — D,)é + itiop.) + fsaﬁy / dt d*x A, da,
TT

+6 f dt d*x(&'FiaD. ¢ — &' FigDyé + ¢ FyyDyé + d*FiaD.d — d'FioDyd + d' FyD,d). (88)
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Thus, we obtained an effective (long-wavelength) NC field
theory that consistently reproduces the Son’s theory in the
commutative limit. The introduced formalism and NC setup
can be used to systematically generate corrections in small
parameter 6. The achieved NC descriptions need further un-
derstanding and analysis especially concerning the questions
of regularization and scaling of gauge fields [3,17,19]. At first
glance, it seems that our approach does not have the scaling
problem.

IX. INCLUSION OF PAIRING

We have eliminated unphysical degrees of freedom in a
way of constraint (47), although in the case of the half-filled
Landau level we also had to impose additional bosonic corre-
lations of the unphysical degrees of freedom to fix a unique
subspace of physical states: we called it spin-singlet sector of
the SU(N) gauge symmetry of unphysical degrees of freedom.
[Subsequently, we also had to impose (48) to eliminate hole
degrees of freedom.]

We may search for another such state for unphysical de-
grees of freedom by imposing other constraint(s), such as

R(c) L(d)

P ™ = Py - (89)
In the inverse space this corresponds to
p*q) — p"Vg) = 0. (90)

This choice seems natural as a requirement that will equalize

and uniformly distribute the electric charge of the unphysical

degrees of freedom (similarly to the special bilayer system).
The Hamiltonian that we can consider now is

1
Hp=H E/dzqvuqn
PN — p"D(q) P (=q) — p"V(—9)
2 2 '
which contains the same relevant two-body part for the Dirac

physics as in the previous inclusion of constraints (53), but
now we have the diagonal terms in the ¢ and d sectors, like

oD

~ / d*q[p"(@)p"(—q) — p" (@)™ (—)]V (gl

N/dzq/dzklfd2k2 czlchklczﬁqckz
X i[(ky — k2) x g1V (Iq]), 92)

in the ¢ sector, that can lead to p-wave (Pfaffian in the ¢ sector
and anti-Pfaffian in the d sector) instabilities.

We will assume a PH symmetry breaking and an effective
Hartree-Fock-BCS Hamiltonian of the following form:

d2

Hpes = an?

———(Apdf ek + Axcpdy)

LI Aol ot
+ W(Akc,kck + Agciely). 93)

Here, Ay is defined in (57) and

. 14
Ap = |k|/d2q (qu(kxq)(

42n ) g O

We project to the o sector by taking

Cx — % o (95)
and
di — ie’%k (96)
V2
Thus,

o d’k Ar
Hpcs = any |Ak|OlkOlk + 70{ _ray + H.c.
N
Equations [7] that follow and need to be solved self-
consistently are

Vgl
|Ae| = |k|/d2q Sonp 18 2(¢q>(

| Akrgl — |qu|)
Ek+q

(98)

and

(Iql) | Akiql
Arl = k| | d*q : 99
| Akl = | I/ 16027 lq| si (¢>q) Erra 99)
where qu = (|Agl — |AqF|)2 + |Aq|2. In this way, by speci-
fying V(lg|) that will include factors due to the projection
to a fixed Landau level, we can find amplitudes in Ay =
| Al exp{—igy} and Ay = [Ag|exp{—idy}.

X. PAIRING SOLUTIONS

The effective interaction in a fixed LL, m =0, 1,2, ..., 1s
given by the following expression:

_u? g\
Vlgh) = Vellghe™* | Lu( - ) | - (100)
where
\%
V.(lgh) = — (101)
g

represents the Coulomb interaction Iz = 1, and L,, denotes
the Laguerre polynomial associated with a fixed LL with the
quantum number m.

In the LLL, Egs. (98) and (99) lead to self-consistent
solutions with the following amplitudes in the kinetic part
|Ag| = Alk| where A ~ 0.017 086 Vj, and in the pairing part
|Ax| = Alk| where A ~ 0.001 414 V,. The self-consistent so-
lution is numerically obtained using Mathematica with error
estimation to 5x 10~7. Obviously, this represents a weak cou-
pling case in which the kinetic part dominates. In Fig. 4 is
illustrated solutions of Egs. (98) and (99) with corresponding
self-consistent solution.

In the sLL, we found that Egs. (98) and (99) do not support
a coexistence of (nonzero) kinetic and pairing amplitudes, and
thus if only pairing is present it leads to a gapless (critical)
p-wave state at this level of approximation. We considered
the question of coexistence when a cubic term is generated in
the expansion (56), in the kinetic part. The resulting equations
are slightly modified equations (98) and (99) (V — 5, etc.),
and lead to a solution that describes a coexistence of pairing
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FIG. 4. The red line and the blue line represent solutions of
Eqgs. (98) and (99), respectively. The black dot marks the correspond-
ing self-consistent solution.

|Ax| = Alk| where A = 0.002 337 Vp, and now |Ax| = Alk|?
where A =~ 0.000591 Vy (I = 1). The numerically obtained
solution using Mathematica is shown in Fig. 5. The error is
estimated to 1x107°. Thus, this is a strong coupling, weak
pairing case that can be identified with the usual Pfaffian-state
case in which all composite fermions are paired in the same
way of a p wave.

0.010

0.008

0.006
<] | >o

0.004

0.002

0.000
0.000 0.002

0.004 0.006
A

Vo

0.008 0.010

FIG. 5. The red line and the blue line illustrate solutions of
modified equations (98) (with V — ;’7, etc.) and (99), respectively.
The black dot shows the corresponding self-consistent solution with
pairing |Ax| = Alk|, and |Ag| = Alk].

XI. CONCLUSIONS

To conclude, we presented a microscopic derivation of the
Dirac CF theory and proposed an effective (long-wavelength)
noncommutative field-theoretical description. The developed
formalism can serve as a base for a deeper understanding
of the strongly correlated physics of the half-filled LL. The
microscopic formulation is used to describe (in a mean-
field approach) pairing instabilities of the half-filled LL. The
description is consistent with the known experimental and
numerical phenomenology and provides further insights into
the nature of pairing instabilities.

APPENDIX A: BASIC STRUCTURE OF
NONCOMMUTATIVE GAUGE FIELD THEORY

Noncommutative (NC) spaces are geometric structures for
which the notion of a point loses its meaning. They arise
naturally in physics, the most famous example being the
“quantum” phase space of generalized coordinates and mo-
menta, understood as mutually noncommuting (incompatible)
observables that satisfy Heisenberg’s uncertainty relations
[¢', pj] = ihd}. Another important example of NC space is
realized by a single particle moving in the LLL; the guiding
center coordinates of such a particle satisfy the following
nontrivial commutation relation [Ry, R,] = —ilé. Finally, in
the context of quantum gravity, the idea of NC geometry
is applied to the structure of space-time itself. In this case,
the degree to which space-time coordinates fail to commute
is usually taken to be proportional to the square of the
Planck length. For a more comprehensive review see, for
example, [20].

Here we give a short review of the basic structure of a non-
commutative gauge field theory based on the Seiberg-Witten
(SW) construction, first presented in the context of string
theory [21]. An NC field theory is a field theory defined on
a noncommutative space-time, i.e., a space-time described by
mutually noncommuting coordinates [x*, x"] £ 0. One way
to implement this NC structure is to deform the algebra of
functions (fields) on ordinary (commutative) space-time by
introducing an NC star product, the simplest of which is the
Moyal-Weyl star product

£ *g(y) = &2 T F(0)g(1)]y .

The deformation parameters *” make a constant antisymmet-
ric matrix (hence the term constant noncommutativity). Note
that the first term in the expansion (in powers of ) is just
the ordinary commutative product of functions; higher-order
terms represent NC corrections. When applied to coordinate
functions themselves, the above formula gives us

(AD)

(A2)

[, x"] = x"* o x¥ — x¥ % x" = 6",

which is the simplest form of noncommutativity. Other types
of noncommutativity are related to different star products (see
[22]), but we will be working only with the Moyal-Wey]l star
product. A more comprehensive account on various aspects of
NC geometry and NC gauge field theory can be found in [23].

Let {T4} be a set of generators of a gauge group G. Infinites-
imal SW gauge variation (NC gauge transformation) of an NC
field ® transforming in the fundamental representation of the

115150-12



MICROSCOPIC DERIVATION OF DIRAC COMPOSITE ...

PHYSICAL REVIEW B 104, 115150 (2021)

gauge group (e.g., a matter field) is defined by

Vo =iAx®, (A3)

where A stands for an NC gauge parameter. This transfor-
mation rule is analogous to the familiar one in ordinary,
commutative gauge field theory, except for the noncommu-
tative Moyal-Weyl star product.

There is a notorious problem concerning the closure ax-
iom for SW gauge transformations. Namely, assuming that
NC gauge parameter is Lie algebra valued, A = ATy, the
commutator of two SW transformations is given by

[TV 1 V]@ = (A1 * Ay — Ay x A * @
= 5([A7 1 AT, T} + {AT 1 ATYITa, Tpl) » @, (A4)

Due to the appearance of anticommutator {7, 75}, infinites-
imal SW transformations do not in general close in the Lie
algebra of a gauge group. A way to surmount this difficulty
is to assume that NC gauge parameter A belongs to the
universal enveloping algebra (UEA), which is always infinite
dimensional [24]. This, however, leads to an infinite tower of
new degrees of freedom (new fields), which is not a preferable
property. To see this, consider a SW variation of the covariant
derivative

8$3VD,® =iA xD,, (A5)

with D, ® = 9, ® — iV, » ® (here we only consider “left”
gauge field; the case of “right” gauge field is treated in a
similar manner). This implies the following transformation
rule for the NC gauge potential

SV = A +i[A T V,], (A6)

meaning that it is also an UEA-valued object, which leaves us
with an infinite number of new fields in the theory (one for
each basis element of UEA).

SW map resolves this issue by demanding that NC fields
can be expressed in terms of the NC parameter 6*”, commuta-
tive gauge parameter A = AT, commutative gauge potential
v, = vﬁ T4, and their derivatives,

A=A0, A v,50h,,0v,,...), (A7)

Vi =Vu, vy, v, ...), (A8)

where the ellipses stand for higher derivatives. In this way,
NC theory is defined by the corresponding commutative one.
There are no new degrees of freedom, just new interaction
terms in the NC action.

NC gauge transformations are now induced by the corre-
sponding commutative ones,

SVA = Avy + 8,v,) — Alvy), (A9)

8V, = V(v + 810) — Vi(vy), (A10)

with 6, v, = 9, A +i[A, v,].
From (A4) and (A7) follows a consistency condition for
NC gauge parameter,

A Ay — Aox Ay +i(8TV A — VAL = iAo,
(A1)

which can be solved perturbatively (this makes sense because
the star product is also defined perturbatively). To this end, we
represent the NC gauge parameter as an expansion in powers
of the NC parameter 6, with coefficients built out of fields
from the commutative theory,

A=r+AD 4+ A@ 4. (A12)

The first term in the expansion (zeroth order in 0) is the
commutative gauge parameter A = AT},

An NC gauge parameter, up to first order in %%, is given
by

A 0P v, 3 + 0(6?),

=r-1 (A13)

where 6%f (a, B =0, 1, 2) is a constant antisymmetric matrix
of deformation parameters. In our case, 0°f = 9P where
6 = —112; and €% is defined by €"=0(@G=1,2)and €2 =
—e?! = 1. Note that we work in 2 + 1 dimensions and that
the definition of €*# implies that noncommutativity is realized
only between spatial coordinates; it does not involve the time
coordinate. Generalization to an arbitrary number of dimen-
sions is straightforward.

Using the expansion (A13) and the transformation rule
(A3) we readily obtain

af ioeB

0
D =¢d— —v,0p0 + Tvauﬁqs + 0(6%).

5 (Al4)

Also, from (A6) follows the transformation law for the NC
gauge field:
oP
V=1, — TUQ(BISUM + Fg,). (A15)
In connection to our model, with left (L) and right (R) NC
U(1) gauge transformations acting on NC CF fields ¢ and d,
it is convenient to combine the two CFs into a two-component

spinor,
c
V= < d)‘ (A16)
Under an NC gauge transformation it changes as
U — U =Up * W x Uy, (A17)

where Uy /g = ¢"*v/*. The NC gauge parameters Az g have a
special form given by

A§ 0
— /R
Apjr = ( 0 AZ/R>' (A18)
Infinitesimally, we get
SV =i(ALx ¥+ W *x Ag). (A19)
Covariant derivative of W is defined by
DM‘P:BMII/—Z'VML*\I!—Z'\II*VIf, (A20)

where we introduced left V/f and right Vf NC gauge potential.
One can show that D,V transforms covariantly,

(D, W) = Uy * (D, V) x Ug, (A21)
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provided that NC gauge potentials VML and V;f transform in the
following way:

(VE) = Uy »VE U/ —i8,U, » U],

(VEY = Ug % VR« U — iU} * 8,Up. (A22)
The NC action (in Euclidean signature) reads as
Sne = /dt d*x[ U > "D,V +i(V) + VF)pe], (A23)
where we have
1 0 0 i 0 1
0 __ 1 _ 2 _
T8 = (O 1), T = (i 0), T° = (_1 O)' (A24)

In terms of components, the action is
Sne = / drd’x(c" *D.c +d" «D.d

+ ¢ % (iDy + D,)d + d' » (iD, — Dy)c
+i(Vy + Vi) Pe). (A25)

The SW map allows us to represent NC fields in terms of
ordinary fields from the corresponding commutative theory;
these commutative fields will be denoted by a hat symbol. NC
fields are organized as perturbation series in powers of the
deformation parameter, and they reduce to ordinary fields in
the & = 0 limit.

SW expansions of NC gauge parameters Ay g (up to first
order) are (note the sign difference) given by

A0 g

AL =AL— Ee“ﬂvjaﬁAL,
~ 0 apoRa A

AR = AR + EG Va 3/3AR (A26)

Likewise, SW expansions of L and R NC gauge potentials
are (again, note the sign difference)

0

VE=VE— zeaﬂx?;(aﬂ\?; +Fy,). (A27)
X 0 N N .
Vi = Vo 4 €V 0V + ), (A28)
with (commutative) gauge field strengths
AL _ o pL oL
Fup = 0,Vy — 0V,
Fly =0,V — 0pV,S. (A29)

Finally, the SW expansion of the NC matter field reads as

; ? 5L R\ _ OLUR,
=y Ee“ﬁ((va —VE)opV — iV VW), (A30)
In particular, if we take V" = A, and VX = a, — A, (both
VML/ R act as scalars), we get covariant derivatives (78) and (79),
and the previous equation becomes
. 6 N N A
U=\ + Ee“f’((&a —24,)05W — it Apg). (A31)

In general, to compute a first-order NC correction for
a product of two NC fields, we apply the following

formula:

AxB)D =ADB 4 ABD 4 %e“ﬁ dADB, (A3
where AV and BV are first-order NC corrections of A and B,
respectively.

Thus, we can readily compute the NC covariant derivative

D, =9, — iV %W —i¥x V5
. 6 . .
=D,V + Ee“ﬂ[(&a —2A,)3sD, ¥
—itgAgD,V — (fo, — 2F,,)Dp W], (A33)

with commutative field strengths f,, = 8,4, — 8,4, and
£, = 9,A, — 3,A,. Commutative covariant derivative is
simply Duli/ = BM\TJ — iflﬂ‘i’.

Inserting (A27), (A28), (A31), and (A33) into the NC
action (A23) and applying the rule (A32), we obtain the
commutative action (82) and its first-order (in ) NC
correction (83).

In a similar fashion, if we consider covariant derivatives
(86) and (87), i.e.,

Dyc=duc—i(al +A,) xc—icx (aP —A,),  (A34)

Dud =0,d —i(a} +Ay) xd —id * (a}) — A,), (A35)

and require al) = al? = ja, (afull symmetry between phys-
ical and unphysical sectors), by the same procedure we obtain
action (88) that reproduces the Son’s theory at the commuta-

tive level.

APPENDIX B: STRUCTURE OF NC
COVARIANT DERIVATIVES

Let us assume that the structure of NC covariant derivatives
is given by Eqs. (76) and (77), i.e.,

Dﬂc=auc—i(ag)—i—Au)*c—ic*af), (B1)

Dyd =0,d —id} «d —id » (a\) —A,),  (B2)

as consistent with the microscopic constraints.
If we want both (B1) and (B2) to transform covariantly,
i.e.,

D,c — Uf *Dyc* Ug, (B3)
D,d — Ul «D,d x U, (B4)

we get two separate transformation laws for the gauge field
a/(f) (in the ¢ case it acts from the right and in the d case from
the left):

a? — Ug' «d? « Us — iU % 8,U5, (B5)
a;(f) — ULd *al(l.Z) * ULdT - iauULd * UZ”' (B6)

Consistency of the two demands the following constraints:
vl = Ug, (B7)

U % 9,U5 = U %0, UM =8, U+ U, (BY)
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The second equation implies that (3,Uf) U — U x
(8,.Uf"") = 0, which is not consistent with Uy being unitary.
Thus, we must change the structure of the derivatives.

Now consider the case when two covariant derivatives have
the same structure,

D,c=0,c—iA,xc—icxb,, (B9)

D,d =0,d —iA,xd —id xb,,, (B10)
with two gauge fields: the external background field A,
(which is L gauge field for both fields ¢ and d) and b, =
a, — A, (which is R gauge field for both fields ¢ and d). They
transform under gauge transformations in the following way:

A, —Up* A, Ul —i(3,U) » Uy, (B11)

b, — U % b, x Ug — iUy % (3,Ug). (B12)

In the commutative limit, these become simple U(1) gauge
transformations

Ay, — A+ 0,04, (B13)
b, — b, + 3,¢p. (B14)

The relevant field a, = b, + A, represents an independent
U(1) gauge field with respect to A,,.

In the setup implied by (86) and (87), i.e.,

D,c=0,c— i(af}) +A,L) *C —ic* (aff) —AM), (B15)

Dud = d,d —i(a) +A) xd —id % (a}) — A,), (B16)

we have to consider four different gauge fields bit])i = af}) +

A, and b}, = a'? + A,,. Their transformation laws are given
by

b, — Uf x b x Ut — i, Uf U, (B17)
b — UgT « b x U — iUS # 9,U¢, (B18)
b3 — Uf b3« U —id, U < U, (B19)
b2 — U « b2 xUs —iUS % 9,Uf. (B20)

However, these four fields are not mutually independent,
bf})+ - bﬁ}’)_ = biz) Y= bfi)_, because aside from the external
field, the theory can have only two more independent gauge
fields, connected with two kinds of constraints. If we require
that the difference of §auge fields transforms as a gauge field,
we will have Uy = URT and ULC/R = ULd/R, i.e., possibilities for
independent gauge transformations, independent gauge fields,
will be reduced to just one, but this would contradict our
beginning setup. That is why we need to take a) = a,
and have two independent gauge transformations and fields
a, =24} =24} and A, in the commutative limit.
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