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Trigonal warping in bilayer graphene: Energy versus entanglement spectrum
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We present a mainly analytical study of the entanglement spectrum of Bernal-stacked graphene bilayers in
the presence of trigonal warping in the energy spectrum. Upon tracing out one layer, the entanglement spectrum
shows qualitative geometric differences to the energy spectrum of a graphene monolayer. However, topological
quantities such as Berry-phase-type contributions to Chern numbers agree. The latter analysis involves not only
the eigenvalues of the entanglement Hamiltonian but also its eigenvectors. We also discuss the entanglement
spectra resulting from tracing out other sublattices. As a technical basis of our analysis, we provide closed
analytical expressions for the full eigensystem of bilayer graphene in the entire Brillouin zone with a trigonally
warped spectrum.
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I. INTRODUCTION

Although first considered as a source of quantum cor-
rections to the entropy of black holes [1], entanglement
entropy, in particular von Neumann entropy, evolved into a
tool in the field of many-body systems. This brought along
connections between seemingly unrelated research areas. In
condensed matter, the entanglement entropy serves, e.g., as
a geometrical interpretation for the boundary between local
quantum many-body systems. This connection has its origin
in the area laws [2].

However, Li and Haldane have shown that the related
entanglement spectrum contains more information than the
single number expressed by the entanglement entropy [3].
This spectrum is determined by the Schmidt decomposition
of the ground state of a bipartite system, and the reduced
density matrix obtained by tracing out one of the subsystems
can always be formulated as

ρred = e−Hent

Z
(1)

with an entanglement Hamiltonian Hent encoding the entan-
glement spectrum, and a partition function Z = tr(e−Hent ). Fol-
lowing the Li-Haldane conjecture [3], in a gapped phase, the
entanglement spectrum can be directly related to the spectrum
of edge excitations as shown for the fractional quantum Hall
system [4–6]. This relation to edge excitations can also be
seen analytically in the case of noninteracting particles. It can
be shown by mapping the free fermionic system H onto a
flatband Hamiltonian Hflat [7]. Now, the eigenenergies ei of
the latter are related to the eigenenergies of the corresponding
entanglement energies εi as ei ∼ tanh (εi/2)/2 + const [8].
Thereby, the eigenstates of both Hflat and H are the same.
Thus, if H contains topologically protected surface states, the
same holds for the entanglement Hamiltonian.

This is why the entanglement spectrum, beyond the related
entropy, is considered a tower of states and is used as a
fingerprint for topological order. However, this is not true in
general, as shown recently by Chandran et al. [9].

As a result of a multitude of studies, there is a plethora
of revisited effects in the context of an entanglement spec-
trum, such as the Kondo effect, many-body localization, or

disordered quantum spin systems; for recent reviews, see
Refs. [10,11].

A particular situation arises if the edge comprises the entire
remaining subsystem, as is the case for spin ladders [12–21]
and various bilayer systems [22–24]. A typical observation
in such scenarios is, in the regime of strongly coupled
subsystems, a proportionality between the energy Hamiltonian
of the remaining subsystem and the appropriately defined
entanglement Hamiltonian. We note that the entanglement
Hamiltonian entering the reduced density matrix (1) is only
determined up to multiples of the unit operator, which has
consequences regarding thermodynamic relations between the
entanglement entropy and the subsystem energy [22–24].

On the other hand, such a close relation between energy
and the entanglement Hamiltonian is not truly general, as
shown in Ref. [18], where a spin ladder of clearly nonidentical
legs was studied. In the present work, we provide another
counterexample given by graphene bilayers in the presence of
trigonal warping [25,26]. As we shall see in the following,
the geometric properties of the entanglement spectrum of
an undoped graphene bilayer and the energy spectrum of
a monolayer clearly differ qualitatively. However, certain
topological quantities such as Berry-phase-type contributions
to Chern numbers agree. The latter analysis involves not only
the eigenvalues of the entanglement Hamiltonian (i.e., the
entanglement spectrum) but also its eigenvectors.

This paper is organized as follows. In Sec. II, we discuss
the full eigensystem of the tight-binding model of bilayer
graphene in the presence of trigonal warping; a full account
of the technical details is given in Appendixes A and B. To
enable analytical progress, we neglect here terms breaking
particle-hole symmetry. On the other hand, our calculation
considers the entire first Brillouin zone and avoids the Dirac
cone approximation usually employed in studies of trigonal
warping in graphene bilayers [27–35]. We compare our results
for the full four-band model with an effective Hamiltonian
acting on the two central bands [27,34,35]. The entanglement
spectrum obtained from the ground state of undoped graphene
bilayers is analyzed in Sec. III. We discuss the case of one
layer being traced out as well as the situation in which the
trace is performed over two other out of four sublattices.
We close with a summary and an outlook in Sec. IV.
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II. ENERGY SPECTRUM OF GRAPHENE BILAYERS:
TRIGONAL WARPING AND TOPOLOGICAL INVARIANTS

The standard tight-binding Hamiltonian for graphene bi-
layers in Bernal stacking can be formulated as [25,26]

H = −t
∑

�k
(γ (�k)a†

1�kb1�k + γ (�k)a†
2�kb2�k + H.c.)

+ t⊥
∑

�k
(b†

1�ka2�k + a
†
2�kb1�k)

− t3
∑

�k
(γ (�k)b†

2�ka1�k + γ ∗(�k)a†
1�kb2�k)

+ t4
∑

�k
[γ (�k)(a†

1�ka2�k + b
†
1�kb2�k) + H.c.], (2)

where a
†
i�k (ai�k) and b

†
i�k (bi�k) create (annihilate) electrons with

wave vector �k in layers i = 1,2 on sublattices A and B,
respectively. Moreover, γ (�k) = ∑3

l=1 exp(i�k · �δl), where the �δl

are the vectors connecting a given carbon atom with its nearest
neighbors on the other sublattice in a graphene monolayer. In
what follows, we will use coordinates with

�δ1,2 = a

2
(−1,±

√
3), �δ3 = a(1,0), (3)

where a = 1.42 Å is the distance between neighboring carbon
atoms, such that the two inequivalent corners of the first
Brillouin zone can be given as

�K± = 2π

3
√

3a
(
√

3,±1). (4)

The parameter t describes hopping within each layer between
the sublattices while t⊥ parametrizes the vertical hopping

FIG. 1. Brillouin zone with a density plot of |γ (�k)|.

between the two sublattices in different layers lying on top of
each other. The additional hopping processes described by the
skew parameters t3,t4 lead to trigonal warping of the spectrum
and electron-hole asymmetry, respectively. Experimentally
established values [36] for these quantities are t = 3.16 eV,
t⊥ = 0.381 eV, t3 = 0.38 eV, and t4 = 0.14 eV. The geometry
of the first Brillouin zone is visualized in Fig. 1 along with a
color plot of the modulus |γ (�k)|.

The presence of all four couplings in the Hamiltonian
Eq. (2) makes its explicit diagonalization in terms of ana-
lytical expressions a particularly cumbersome task. As the
present study chiefly relies on analytical calculations rather
than resorting to numerics, we will drop the contributions
proportional to the smallest parameter t4 in order to achieve an
analytically manageable situation.

Setting t4 = 0, the full eigensystem of the Hamilto-
nian (2) can be obtained in a closed analytical fash-
ion as detailed in Appendix A. The four dispersion
branches [±E1(�k)],[±E2(�k)] form a symmetric spectrum with

E1/2 =
√

1
2

(
t2
⊥ + t2

3 |γ (�k)|2 + 2t2|γ (�k)|2 ±
√

4t2|γ (�k)|2(t2
⊥ + t2

3 |γ (�k)|2 − 2t⊥t3|γ (�k)| cos(3φ�k)
) + (

t2
⊥ − t2

3 |γ (�k)|2)2)
(5)

and γ (�k) = |γ (�k)|eiφ�k . The two outer branches [±E1(�k)] are
separated from the inner ones [±E2(�k)] by gaps determined
essentially by the hopping parameter t⊥. The result Eq. (5)
generalizes the energy spectrum given in Ref. [27] within
the Dirac cone approximation to the full Brillouin zone.
Moreover, in Appendix A we also give the complete data of
the corresponding eigenvectors. Figure 2 concentrates on the
vicinity of a given K point using realistic parameters.

The inner branches [±E2(�k)] dominate the low-energy
physics of the system near half-filling and meet at zero energy
for

γ (�k) = 0 (6)

corresponding to the two inequivalent corners K± of the first
Brillouin zone, and for

cos(3φ�k) = −1 ∧ |γ (�k)| = t⊥t3

t2
. (7)

The latter condition defines three additional satellite Dirac
cones around each K point, two of which lie on the edges
(faces) of the Brillouin zone connecting K±. The third satellite
Dirac cone lies formally outside the Brillouin zone but is
equivalent to a satellite cone on the edge around an equivalent
K point. Indeed, the quantity γ (�k) has a constant phase
φ�k ∈ {−π/3,π/3,π} on each face: As an example, consider
the edge connecting the two inequivalent K points given in
Eq. (4), where one finds

γ

(
2π

3a
,ky

)
= e−iπ/3

[
2 cos

(√
3

2
kya

)
− 1

]
(8)

with the parentheses being non-negative for ky ranging
between [±2π/(3

√
3a)]. Thus, solving for ky , the satellite
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FIG. 2. The central energy bands [±E2(�k)] plotted around a given
K point for t⊥ = 0.1t, t3 = 0.15t . The dispersions show a central
Dirac cone accompanied by three satellites. The components of the
wave vector are measured relative to the K point.

Dirac cones on that edge lie at

�k =
(

2π

3a
, ± 2√

3a
arccos

[
1

2

(
1 + t⊥t3

t2

)])
, (9)

and the other satellite cones are located at positions being
equivalent under reciprocal-lattice translation and/or hexag-
onal rotation. Note that for t⊥t3/t2 = 1, the satellite cones
merge in the M points (centers of the faces) and they vanish
for even larger values of that ratio. In Fig. 3 we present a sketch
of the situation in the entire Brillouin zone for moderate values
of t⊥ and t3.

FIG. 3. Contour plot of the energy band [+E2(�k)] plotted for t⊥ =
t, t3 = 0.5t . The contour of the colored region indicates E = 0.2/t⊥.
The edge of the first Brillouin zone is marked by dashed lines.

For t3 = 0, the two energy bands [±E2(�k)] touch only at
the K points where they have a quadratic dispersion. Finite
t3 	= 0 causes a splitting into a total of four Dirac cones with
linear dispersion, an effect known as trigonal warping [25,34].

As a further important property, the eigenvectors corre-
sponding to [±E2(�k)] are discontinuous as a function of
wave vector at the degeneracy points defined by Eq. (7); for
more technical details, we refer the reader to Appendix B.
As a simplistic toy model mimicking such an effect, one can
consider the Hamiltonian H = −kσ z with a one-dimensional
wave number k and the Pauli matrix σ z describing some
internal degree of freedom: In the many-body ground state
of zero Fermi energy all occupied states with k > 0 have spin
up, while for all states with k < 0 the spin points downward,
resulting in a discontinuity of the occupied eigenvectors at
k = 0. As we shall see below, in the present case of graphene
bilayers this discontinuity is also reflected in the entanglement
spectrum.

An effective Hamiltonian providing an approximate de-
scription of the central bands [±E2(�k)] can be given following
Ref. [27]. In up to linear order in 1/t⊥, one finds

H = −
(

0 t2

t⊥
(γ ∗(�k))2 + t3γ (�k)

t2

t⊥
(γ (�k))2 + t3γ

∗(�k) 0

)

(10)

with respect to the basis (b†
2�k,a

†
1�k)|0〉. The eigenstates read

|χ±〉 = 1√
2

(
1

∓eiψ�k

)
(11)

with

eiψ�k =
t2

t⊥
(γ (�k))2 + t3γ

∗(�k)∣∣ t2

t⊥
(γ (�k))2 + t3γ ∗(�k)

∣∣ . (12)

Note that the Hamiltonian (10) vanishes if and only if the
conditions (6) or (7) are fulfilled, implying that the positions of
the central and satellite Dirac cones are the same as for the full
Hamiltonian (2). Moreover, ψ�k is a smooth and well-defined
function of the wave vector except for the locations of Dirac
cones. Accordingly, the Berry curvature

F (�k) = ∂Ay

∂kx

− ∂Ax

∂ky

(13)

arising from the Berry connection

�A(�k) = i〈χ±(�k)| ∂

∂ �k |χ±(�k)〉 = −1

2

∂ψ�k
∂ �k (14)

vanishes everywhere outside the Dirac cones where contri-
butions in terms of δ functions arise. Integrating the Berry
connection along a closed path in �k space leads to geometrical
quantities often referred to as Berry phases, although no
contact to adiabaticity is made here. Moreover, if the Berry cur-
vature has only nonzero contributions in terms of δ functions
(as is the case here and in the following), these geometrical
phases are indeed topological, i.e., they are invariant under
continuous variations of the paths as long as the support of the
δ functions is not touched.
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As discussed in Refs. [31,33,34], integrating along a closed
path around the central Dirac cones at K± yields a Berry phase
of (∓π ), while each of the accompanying satellite cones gives
a contribution of (±π ). Thus, the total Berry phase arising
at and around each K point is, as in the absence of trigonal
warping, (±2π ), and the integral over the whole Brillouin zone
of the Berry connection (i.e., the Chern number) vanishes.
Naturally, our present analysis going beyond the Dirac cone
approximation confirms these results.

III. ENTANGLEMENT SPECTRA

For systems of free fermions such as those studied here,
the entanglement Hamiltonian can be formulated as a single-
particle operator [23,37,38],

Hent =
∑

λ

ξλd
†
λdλ. (15)

Here the d
†
λ generate eigenstates of the correlation matrix

Cαβ = 〈�|c†αcβ |�〉, (16)

where |�〉 is the ground state of the composite system, and
single-particle operators cα,cβ act on its remaining part after
tracing out a subsystem. The entanglement levels ξλ are related
to the eigenvalues ηλ of the correlation matrix via

ξλ = ln

(
1 − ηλ

ηλ

)
= 2 artanh (1 − 2ηλ). (17)

In particular, the entanglement Hamiltonian and the correlation
matrix share the same system of eigenvectors.

A. Tracing out one layer

We now consider the ground state of the undoped graphene
bilayer such that all states with negative energies [−E1(�k)],
[−E2(�k)] are occupied while all others are empty. Tracing out
layer 1 leads to the correlation matrix

C(�k) =
(

1
2 u(�k)

u∗(�k) 1
2

)
(18)

where an explicit expression for u(�k) is given in Appendix C.
The entanglement levels corresponding to the eigenvalues
η±(�k) = 1/2 ∓ |u(�k)| are

ξ±(�k) = ± 2 artanh(2|u(�k)|). (19)

The modulus |u| can be formulated as

|u| = 1/2√
1 + {d/[t |γ (�k)|]}2

√
1

2

(
1 − ε1ε2 + b2

E1E2

)
(20)

with [cf. Eqs. (A14) and (A15)]

d =
(
t2
⊥ − t2

3 |γ (�k)|2)/2√
t2
⊥ + t2

3 |γ (�k)|2 − 2t⊥t3|γ (�k)| cos(3φ�k)
, (21)

b = t⊥t3|γ (�k)|| sin(3φ�k)|√
t2
⊥ + t2

3 |γ (�k)|2 − 2t⊥t3|γ (�k)| cos(3φ�k)
, (22)

and [cf. Eq. (A21)]

ε1,2 = t |γ (�k)|

±
√(

t2
⊥ + t2

3 |γ (�k)|2 − 2t⊥t3|γ (�k)| cos(3φ�k)
)2

/4 + d2

(23)

implying

E1,2 =
√

ε2
1,2 + b2. (24)

The right-hand side of Eq. (20) becomes zero if the radicand
vanishes. According to the discussion in Appendixes B and
C, this is the case when cos (3φ�k) = −1 leading to b = 0 and
E1 = ε1 � 0,E2 = |ε2| such that

|u| ∝
√

1

2

(
1 − ε2

|ε2|
)

. (25)

Now Eq. (B2) shows that |u(�k)| = 0 is equivalent to

cos(3φ�k) = −1 ∧ |γ (�k)| ∈ [0,t⊥t3/t2], (26)

where the end point of the above interval defines according
to condition (7) the location of the satellite Dirac cones. As a
result, the entanglement levels (19) vanish along segments of
the faces of the first Brillouin zone bounded by the positions
of the central Dirac cones and their satellites. At the satellite
Dirac cones, the entanglement spectrum is discontinuous as a
function of wave vector. In Fig. 4, we plotted the entanglement
spectrum ξ+(�k) for the whole Brillouin zone. For a better
visualization, large hopping parameters have been chosen.
The contour of the colored region connects all three satellite
Dirac cones. As discussed in Appendix B, this discontinuity
is inherited from a discontinuity in the eigenvectors of the
occupied single-particle states. The entanglement spectrum in
the entire Brillouin zone is illustrated in Fig. 4, whereas Fig. 5
focuses on a given K point.

Moreover, apart from the eigenvalues of the entanglement
Hamiltonian, let us also consider its eigenvector, which

FIG. 4. Contour plot of the entanglement spectrum ξ+(�k) plotted
for t⊥ = t, t3 = 0.5t . The contour of the colored region indicates
ξ = 1.5. The dashed line delineates the first Brillouin zone.
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FIG. 5. The entanglement spectrum (19) plotted around a given
K point for the same parameters as in Fig. 2. The density plot shows
the upper entanglement level. Zero eigenvalues of the entanglement
Hamiltonian occur along lines connecting the K point with the
locations of satellite Dirac cones of the energy spectrum (thick black
lines). The components of the wave vector are measured relative to
the K point.

coincides with the eigenvectors of the correlation matrix (18).
As discussed in Appendix C, the complex function u(�k)
entering the correlation matrix becomes singular at the K

points and the positions of the accompanying satellite Dirac
cones of the energy spectrum, leading again to δ-function-type
contributions to the Berry curvature that vanishes otherwise.
Combining symbolic computer algebra techniques and nu-
merical calculations, we find here a Berry phase of (∓π/2)
around the corners K± of the Brillouin zone, and (±π/2) for
the corresponding satellite positions. For the central positions,
the above calculations can also be done fully analytically
by expanding the eigensystem data around K±. For the
satellite locations, such an expansion is not possible due to
the discontinuity of the eigenvectors.

Thus, the total Berry phase contribution from each K point
K± is (±π ) and agrees with the Berry phase around the Dirac
cones in monolayer graphene. As a result, although the entan-
glement spectrum of graphene bilayers generated by tracing
out one layer shows obvious differences from the energy spec-
trum of monolayer graphene regarding qualitative geometrical
properties, the topological Berry phases obtained from the
corresponding eigenvectors still coincide at each K point.

B. Tracing out other sublattices

Now, we will consider the entanglement spectrum obtained
by tracing out sublattices A1 and B2 (or A2 and B1) lying in
different layers. In the former case, one finds

C(�k) =
(

1
2 v(�k)

v∗(�k) 1
2

)
, (27)

where an explicit expression for v(�k) is given in Appendix C.
The above correlation matrix has eigenvalues η±(�k) = 1/2 ∓

FIG. 6. Eigenvalues η−(�k) = 1/2 + |v(�k)| of the correlation ma-
trix plotted around a given K point for t⊥ = 0.1t, t3 = 0.15t . The
thick black lines correspond to the one in Fig. 5, and the components
of the wave vector are again measured relatively to the K point.

|v(�k)| leading to the entanglement levels

ξ±(�k) = ± 2 artanh(2|v(�k)|) . (28)

In Fig. 6, we plotted the eigenvalues η−(�k) = 1/2 + |v(�k)| of
the correlation matrix around a given K point. The modulus
|v(�k)| reads more explicitly

|v(�k)| = 1

2

√
1 − t2|γ (�k)|2

t2|γ (�k)|2 + d2

1

2

(
1 − ε1ε2 + b2

E1E2

)
(29)

= 1
2

√
1 − 4|u(�k)|2 (30)

and has a structure similar to |u(�k)| given in Eq. (20). In
particular, |v(�k)| = 1/2 ⇔ |u(�k)| = 0 if the conditions (26)
are fulfilled. In this case, η+ = 0 and η− = 1, indicating that
the remaining subsystem is unentangled with the system traced
out.

Regarding Berry phases generated from the eigenstates
of the correlation matrix (27), we note that the off-diagonal
element v(�k) does not vanish anywhere. As a consequence,
the Berry curvature defined analogously as in Eqs. (11)–(14)
is zero throughout the Brillouin zone, which in turn holds
for all Berry phases. The nonvanishing of v(�k) follows from
the fact that |v(�k)| = 0 would require |u(�k)| = 1/2 such that
the entanglement (19) would diverge, which is, as seen in
Sec. III A, not the case.

Finally, the correlation matrix obtained by tracing over the
sublattices A1 and A2 (or B1 and B2) is proportional to the
unit matrix,

C(�k) =
( 1

2 0

0 1
2

)
, (31)

indicating that these sublattices are maximally entangled with
the part traced out.

115106-5



SONJA PREDIN, PAUL WENK, AND JOHN SCHLIEMANN PHYSICAL REVIEW B 93, 115106 (2016)

IV. CONCLUSIONS AND OUTLOOK

We have studied the entanglement properties of the ground
state of Bernal stacked graphene bilayers in the presence of
trigonal warping. Our analysis includes both the eigenvalues
of the reduced density matrix (giving rise to the entanglement
spectrum) as well as its eigenvectors. When tracing out one
layer, the entanglement spectrum shows qualitative geometric
differences to the energy spectrum of a graphene monolayer,
while topological quantities such as Berry-phase-type contri-
butions to Chern numbers agree. The latter finding is in contrast
to the reduced density matrix resulting from tracing out other
sublattices of the bilayer system. Here, all corresponding
Berry phase integrals yield trivially zero. Thus, our study
provides an example for common topological properties of the
eigensystem of the energy Hamiltonian of a subsystem (here
a graphene monolayer) and the entanglement Hamiltonian,
while the geometrical shape of both spectra grossly differs. Our
investigations are based on closed analytical expressions for
the full eigensystem of bilayer graphene in the entire Brillouin
zone with a trigonally warped spectrum.

Future work might address bilayer systems of other geo-
metrical structures such as the Kagome lattice, the influence
of a static perpendicular magnetic field [23,39], and the effect
of time-periodic in-plane electric fields [40].

Note added in proof. Recently, we became aware of
Ref. [41] where also Chern numbers calculated from the

eigenstates of entanglement Hamiltonians are studied. Most
recent work building upon this concept is reported on in
Ref. [42].
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APPENDIX A: DIAGONALIZATION OF THE
BILAYER HAMILTONIAN

Setting t4 = 0 and fixing a wave vector �k, the Hamiltonian
(2) reads with respect to the basis (a†

2�k,b
†
1�k,b

†
2�k,a

†
1�k)|0〉

H =

⎛
⎜⎜⎜⎜⎝

0 t⊥ −tγ (�k) 0

t⊥ 0 0 −tγ ∗(�k)

−tγ ∗(�k) 0 0 −t3γ (�k)

0 −tγ (�k) −t3γ
∗(�k) 0

⎞
⎟⎟⎟⎟⎠. (A1)

Using γ (�k) = |γ (�k)|eiφ�k , we apply the transformation

U1 = 1√
2

⎛
⎜⎝

1 1 0 0
0 0 eiφ�k e−iφ�k

0 0 eiφ�k −e−iφ�k

1 −1 0 0

⎞
⎟⎠ (A2)

such that in

H1 = U1HU
†
1 =

⎛
⎜⎜⎜⎜⎝

t⊥ −t |γ (�k)| 0 0

−t |γ (�k)| −t3|γ (�k)| cos(3φ�k) it3|γ (�k)| sin(3φ�k) 0

0 −it3|γ (�k)| sin(3φ�k) t3|γ (�k)| cos(3φ�k) −t |γ (�k)|
0 0 −t |γ (�k)| −t⊥

⎞
⎟⎟⎟⎟⎠ (A3)

all information on the phase φ�k is contained in the matrix elements being proportional to the skew parameter t3. Proceeding now
with the transformation

U2 = 1√
2

⎛
⎜⎝

1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1

⎞
⎟⎠, (A4)

we find

H2 = U2H1U
†
2 = 1

2

⎛
⎜⎝

e1 c −is −is

c e2 is is

is −is −e2 c

is −is c −e1

⎞
⎟⎠ (A5)

with

e1 = 2t |γ (�k)| + t⊥ − t3|γ (�k)| cos(3φ�k), (A6)

e2 = −2t |γ (�k)| + t⊥ − t3|γ (�k)| cos(3φ�k), (A7)

c = t⊥ + t3|γ (�k)| cos(3φ�k), (A8)

s = t3|γ (�k)| sin(3φ�k). (A9)
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Here it is useful to split the above matrix as H2 = H
′
2 + H

′′
2 , where

H
′
2 = 1

2

⎛
⎜⎝

e1 0 −is 0
0 e2 0 is

is 0 −e2 0
0 −is 0 −e1

⎞
⎟⎠, H

′′
2 = 1

2

⎛
⎜⎝

0 c 0 −is

c 0 is 0
0 −is 0 c

is 0 c 0

⎞
⎟⎠. (A10)

H
′
2 is diagonalized by

U3 =

⎛
⎜⎝

α+ 0 −iσα− 0
0 −iσα+ 0 α−

−iσα− 0 α+ 0
0 α− 0 −iσα+

⎞
⎟⎠ (A11)

with σ = sign (sin[3φ(�k)]) and

α± =

√√√√√1

2

⎛
⎝1 ± t⊥ − t3|γ (�k)| cos(3φ�k)√

t2
⊥ + t2

3 |γ (�k)|2 − 2t⊥t3|γ (�k)| cos(3φ�k)

⎞
⎠ (A12)

such that

H3 = U3H2U
†
3 =

⎛
⎜⎝

ζ1 idσ 0 b

−idσ ζ2 b 0
0 b −ζ2 idσ

b 0 −idσ −ζ1

⎞
⎟⎠, (A13)

where

d =
(
t2
⊥ − t2

3 |γ (�k)|2)/2√
t2
⊥ + t2

3 |γ (�k)|2 − 2t⊥t3|γ (�k)| cos(3φ�k)
, (A14)

b = t⊥t3|γ (�k)|| sin(3φ�k)|√
t2
⊥ + t2

3 |γ (�k)|2 − 2t⊥t3|γ (�k)| cos(3φ�k)
, (A15)

and ±ζ1 and ±ζ2 are eigenvalues of H
′
2 given by

ζ1/2 = 1
2

( ± 2t |γ (�k)| +
√

t2
⊥ + t2

3 |γ (�k)|2 − 2t⊥t3|γ (�k)| cos(3φ�k)
)
. (A16)

Splitting now H3 in the form

H3 =

⎛
⎜⎝

ζ1 id 0 0
−id ζ2 0 0

0 0 −ζ2 id

0 0 −id −ζ1

⎞
⎟⎠ +

⎛
⎜⎝

0 0 0 b

0 0 b 0
0 b 0 0
b 0 0 0

⎞
⎟⎠, (A17)

the first part is diagonalized by

U4 =

⎛
⎜⎝

−iσ τβ+ β− 0 0
β− −iσ τβ+ 0 0
0 0 −iσ τβ+ β−
0 0 β− −iσ τβ+

⎞
⎟⎠ (A18)

with τ = sign(d) and

β± =
√√√√1

2

(
1 ± ζ1 − ζ2√

(ζ1 − ζ2)2 + 4d2

)
(A19)

while the second part is left unchanged by U4, resulting in

H4 = U4H3U
†
4 =

⎛
⎜⎝

ε1 0 0 b

0 ε2 b 0
0 b −ε2 0
b 0 0 −ε1

⎞
⎟⎠ (A20)
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with the diagonal elements given in terms of

ε1/2 = 1
2 (ζ1 + ζ2 ±

√
(ζ1 − ζ2)2 + 4d2). (A21)

Finally, H4 is brought into diagonal form via

U5 =

⎛
⎜⎜⎜⎜⎝

γ
(1)
+ 0 0 γ

(1)
−

0 γ
(2)
+ γ

(2)
− 0

0 γ
(2)
− −γ

(2)
+ 0

γ
(1)
− 0 0 −γ

(1)
+

⎞
⎟⎟⎟⎟⎠ (A22)

with

γ
(1)
± =

√
1

2

(
1 ± ε1

E2

)
, γ

(2)
± =

√
1

2

(
1 ± ε2

E2

)
, (A23)

and

E1/2 =
√

ε2
1,2 + b2 (A24)

=
√

1
2

(
t2
⊥ + t2

3 |γ (�k)|2 + 2t2|γ (�k)|2 ±
√

4t2|γ (�k)|2(t2
⊥ + t2

3 |γ (�k)|2 − 2t⊥t3|γ (�k)| cos(3φ�k)
) + (

t2
⊥ − t2

3 |γ (�k)|2)2
)
. (A25)

Thus,

U5H4U
†
5 = diag(E1,E2,−E2,−E1), (A26)

and the matrix elements of the corresponding total transformation U = U5U4U3U2U1 can be expressed as

U11 = 1
2 (α− − iσα+)(τβ+ + β−)(γ (1)

+ − iσγ
(1)
− ), (A27)

U12 = 1
2 (α+ − iσα−)(τβ+ + β−)(γ (1)

− − iσγ
(1)
+ ), (A28)

U13 = −eiφ�k

2
(α− − iσα+)(τβ+ − β−)(γ (1)

+ + iσγ
(1)
− ), (A29)

U14 = e−iφ�k

2
(α− + iσα+)(τβ+ − β−)(γ (1)

+ − iσγ
(1)
− ), (A30)

and

U21 = − 1
2 (α+ + iσα−)(τβ+ − β−)(γ (2)

+ − iσγ
(2)
− ), (A31)

U22 = − 1
2 (α+ − iσα−)(τβ+ − β−)(γ (2)

+ + iσγ
(2)
− ), (A32)

U23 = −eiφ�k

2
(α+ + iσα−)(τβ+ + β−)(γ (2)

+ + iσγ
(2)
− ), (A33)

U24 = −e−iφ�k

2
(α+ − iσα−)(τβ+ + β−)(γ (2)

+ − iσγ
(2)
− ), (A34)

which are the complex conjugates of the components of the eigenvectors of the conduction-band states with positive energies
E1(�k),E2(�k), while

U31 = 1
2 (α− − iσα+)(τβ+ − β−)(γ (2)

+ − iσγ
(2)
− ), (A35)

U32 = 1
2 (α− + iσα+)(τβ+ − β−)(γ (2)

+ + iσγ
(2)
− ), (A36)

U33 = −eiφ�k

2
(α+ + iσα−)(τβ+ + β−)(γ (2)

− − iσγ
(2)
+ ), (A37)

U34 = −e−iφ�k

2
(α+ − iσα−)(τβ+ + β−)(γ (2)

− + iσγ
(2)
+ ), (A38)
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and

U41 = 1
2 (α+ + iσα−)(τβ+ + β−)(γ (1)

+ − iσγ
(1)
− ), (A39)

U42 = − 1
2 (α− + iσα+)(τβ+ + β−)(γ (1)

− − iσγ
(1)
+ ), (A40)

U43 = eiφ�k

2
(α+ + iσα−)(τβ+ − β−)(γ (1)

+ + iσγ
(1)
− ), (A41)

U44 = e−iφ�k

2
(α− + iσα+)(τβ+ − β−)(γ (1)

− + iσγ
(1)
+ ), (A42)

correspond to the valence-band states with negative energies [−E2(�k)],[−E1(�k)]. Note that all factors involving α±,γ
(1)
± ,γ

(2)
± in

the above expressions have modulus 1, i.e., they are phase factors.

APPENDIX B: CONTINUITY PROPERTIES

The eigenvectors corresponding to the energy branches [±E2(�k)] are discontinuous at wave vectors determined by the
condition (7). This comes about as follows: The matrix elements U2,n(�k),U3,n(�k),n ∈ {1,2,3,4} contain the quantities γ

(2)
± defined

in Eqs. (A23), whereas the U1,n(�k),U4,n(�k) corresponding to [±E1(�k)] involve γ
(1)
± . Fixing now cos (φ�k) = −1, we have b = 0

such that E1 = ε1 � 0 and E2 = |ε2| such that γ
(1)
± remain continuous while γ

(2)
± become

γ
(2)
± =

√
1

2

(
1 ± ε2

|ε2|
)

. (B1)

Inspection of Eq. (A21) now shows that for cos (φ�k) = −1,

ε2(�k)

{
> 0 |γ (�k)| < t⊥t3/t2,

< 0 |γ (�k)| > t⊥t3/t2,
(B2)

such that ε2(�k) changes sign for |γ (�k)| = t⊥t3/t2, i.e., γ
(2)
± is discontinuous at wave vectors given by the condition (7). This

discontinuity is inherited by the correlation matrix and, in turn, by the entanglement spectrum.
The technical reason for this discontinuity in the eigenvectors is of course the fact that the dispersions [±E2(�k)] become

degenerate at wave vectors fulfilling (7). In fact, the eigenvectors can also be considered as continuous functions of the wave
vector by appropriately relabeling the dispersion branches. In the ground state of the undoped bilayer system, however, only the
lower branch [−E2(�k)] is occupied, which makes the discontinuity unavoidable.

To circumvent this discontinuity, one can open an energy gap between the upper and lower central band such that the
corresponding eigenstates are necessarily continuous for all wave vectors. Among the various mechanisms producing such a gap,
only a few allow for a still halfway convenient analytical treatment of the Hamiltonian. These include introducing identical mass
terms in both layers, i.e., H �→ H + H ′, with

H ′ = diag(m,−m,−m,m), (B3)

or applying a bias voltage � between the layers,

H ′ = diag(−�/2,�/2,−�/2,�/2). (B4)

In the former case, the four dispersion branches [±E1(�k)], [±E2(�k)] are given by

E1/2(�k) = [
m2 + 1

2

(
t2
⊥ + t2

3 |γ (�k)|2 + 2t2|γ (�k)|2)
± 1

2

√
4t2|γ (�k)|2(t2

⊥ + t2
3 |γ (�k)|2 − 2t⊥t3|γ (�k)| cos(3φ�k)

) + (
t2
⊥ − t2

3 |γ (�k)|2)2]1/2
(B5)

while for a bias voltage one finds [27]

E1/2(�k) =
[
�2

4
+ 1

2

(
t2
⊥ + t2

3 |γ (�k)|2 + 2t2|γ (�k)|2)

± 1

2

√
4t2|γ (�k)|2(t2

⊥ + t2
3 |γ (�k)|2 − 2t⊥t3|γ (�k)| cos(3φ�k) + �2

) + (
t2
⊥ − t2

3 |γ (�k)|2)2
]1/2

. (B6)

In both cases, the central energy bands [±E2(�k)] are separated by a gap, and the spectrum can still be given in terms of
comparably simple closed expressions since the characteristic polynomial of the 4 × 4 Hamiltonian matrix is a second-order
polynomial in the energy squared leading to a spectrum being symmetric around zero. Also, the corresponding eigenvectors can
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be obtained in closed analytical forms by procedures analogous to (but in detail somewhat more complicated than) the one given in
Appendix A [43].

Note that applying a bias voltage as well as introducing a mass term in each layer discriminates the layers against each other.
The latter circumstance is due to the fact that t⊥ couples sublattices in different layers for which the mass term has a different
sign. As a result, when tracing out, say, one layer of an undoped (i.e., half-filled) bilayer system, the remaining layer will not be
half-filled, which obscures somewhat the comparison with an undoped graphene monolayer.

APPENDIX C: CORRELATION MATRICES

Upon tracing out layer 1 from the ground state of the undoped bilayer system, the correlation matrix reads in the basis
(a†

2�k,b
†
2�k)|0〉

C(�k) =
(

U31U
∗
31 + U41U

∗
41 U31U

∗
33 + U41U

∗
43

U33U
∗
31 + U43U

∗
41 U33U

∗
33 + U43U

∗
43

)
=

(
1
2 u(�k)

u∗(�k) 1
2

)
(C1)

with

u(�k) = e−iφ�k

4
(β2

+ − β2
−)((γ (1)

+ − iσγ
(1)
− )2 − (γ (2)

+ − iσγ
(2)
− )2). (C2)

This quantity becomes singular at the corners of the Brillouin zone where γ (�k) is zero such that its phase is ill-defined, and at
the positions of the satellite Dirac cones of the energy spectrum where, as discussed in Appendix B, γ

(2)
± is discontinuous.

Tracing out the sublattices A1 and B2, one finds in the basis (a†
2�k,b

†
1�k)|0〉

C(�k) =
(

U31U
∗
31 + U41U

∗
41 U31U

∗
32 + U41U

∗
42

U32U
∗
31 + U42U

∗
41 U32U

∗
32 + U42U

∗
42

)
=

(
1
2 v(�k)

v∗(�k) 1
2

)
(C3)

with

v(�k) = (α− − iσα+)2

4
((τβ+ − β−)2(γ (2)

+ − iσγ
(2)
− )2 + (τβ+ + β−)2(γ (1)

+ − iσγ
(1)
− )2). (C4)

Note that the expressions (C2) and (C4) obey the interesting sum rule

|u(�k)|2 + |v(�k)|2 = 1
4 , (C5)

which is fulfilled whenever the coefficients involved satisfy

α2
+ + α2

− = β2
+ + β2

− = (γ (1/2)
+ )2 + (γ (1/2)

− )2 = 1, (C6)

which is the case here by construction.
Finally, the correlation matrix obtained by tracing out the sublattices A1 and A2 is proportional to the unit matrix,

C(�k) =
(

U32U
∗
32 + U42U

∗
42 U32U

∗
33 + U42U

∗
43

U33U
∗
32 + U43U

∗
42 U33U

∗
33 + U43U

∗
43

)
=

(
1
2 0

0 1
2

)
, (C7)

implying that the remaining subsystem is maximally entangled with the subsystem traced out.
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[15] A. M. Läuchli and J. Schliemann, Phys. Rev. B 85, 054403

(2012).

115106-10

http://dx.doi.org/10.1103/PhysRevD.34.373
http://dx.doi.org/10.1103/PhysRevD.34.373
http://dx.doi.org/10.1103/PhysRevD.34.373
http://dx.doi.org/10.1103/PhysRevD.34.373
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://dx.doi.org/10.1103/PhysRevLett.104.156404
http://dx.doi.org/10.1103/PhysRevLett.104.156404
http://dx.doi.org/10.1103/PhysRevLett.104.156404
http://dx.doi.org/10.1103/PhysRevLett.104.156404
http://dx.doi.org/10.1103/PhysRevLett.105.116805
http://dx.doi.org/10.1103/PhysRevLett.105.116805
http://dx.doi.org/10.1103/PhysRevLett.105.116805
http://dx.doi.org/10.1103/PhysRevLett.105.116805
http://dx.doi.org/10.1103/PhysRevB.84.205136
http://dx.doi.org/10.1103/PhysRevB.84.205136
http://dx.doi.org/10.1103/PhysRevB.84.205136
http://dx.doi.org/10.1103/PhysRevB.84.205136
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1103/PhysRevB.82.241102
http://dx.doi.org/10.1103/PhysRevB.82.241102
http://dx.doi.org/10.1103/PhysRevB.82.241102
http://dx.doi.org/10.1103/PhysRevB.82.241102
http://dx.doi.org/10.1103/PhysRevLett.113.060501
http://dx.doi.org/10.1103/PhysRevLett.113.060501
http://dx.doi.org/10.1103/PhysRevLett.113.060501
http://dx.doi.org/10.1103/PhysRevLett.113.060501
http://arxiv.org/abs/arXiv:1510.07670
http://arxiv.org/abs/arXiv:1512.03388
http://dx.doi.org/10.1103/PhysRevLett.105.077202
http://dx.doi.org/10.1103/PhysRevLett.105.077202
http://dx.doi.org/10.1103/PhysRevLett.105.077202
http://dx.doi.org/10.1103/PhysRevLett.105.077202
http://dx.doi.org/10.1103/PhysRevB.83.245134
http://dx.doi.org/10.1103/PhysRevB.83.245134
http://dx.doi.org/10.1103/PhysRevB.83.245134
http://dx.doi.org/10.1103/PhysRevB.83.245134
http://dx.doi.org/10.1209/0295-5075/96/50006
http://dx.doi.org/10.1209/0295-5075/96/50006
http://dx.doi.org/10.1209/0295-5075/96/50006
http://dx.doi.org/10.1209/0295-5075/96/50006
http://dx.doi.org/10.1103/PhysRevB.85.054403
http://dx.doi.org/10.1103/PhysRevB.85.054403
http://dx.doi.org/10.1103/PhysRevB.85.054403
http://dx.doi.org/10.1103/PhysRevB.85.054403


TRIGONAL WARPING IN BILAYER GRAPHENE: ENERGY . . . PHYSICAL REVIEW B 93, 115106 (2016)

[16] J. Schliemann and A. M. Läuchli, J. Stat. Mech. (2012)
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