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Abstract – We investigate the relationship between the entanglement and subsystem
Hamiltonians in the perturbative regime of strong coupling between subsystems. One of the
two conditions that guarantees the proportionality between these Hamiltonians obtained by using
the nondegenerate perturbation theory within the first order is that the unperturbed ground state
has a trivial entanglement Hamiltonian. Furthermore, we study the entanglement Hamiltonian of
the Heisenberg ladders in a time-dependent magnetic field using the degenerate perturbation the-
ory, where couplings between legs are considered as a perturbation. In this case, when the ground
state is twofold degenerate, and the entanglement Hamiltonian is proportional to the Hamiltonian
of a chain within first-order perturbation theory, even then also the unperturbed ground state has
a nontrivial entanglement spectrum.

Copyright c© EPLA, 2017

Introduction. – Quantum entanglement, primarily a
source of quantum information, has developed into one
of the most studied subfields of many-body physics. In
the last decade, quantum entanglement has mainly been
used to study the phase structure in condensed-matter
physics [1]. The entanglement spectrum of a bipartite
system of subsystems A and B is defined in terms of the
Schmidt decomposition of its ground state |ψ〉 as

|ψ〉 =
∑

n

e−
ξn
2 |ψA

n 〉|ψB
n 〉 (1)

where the states |ψA
n 〉 (|ψB

n 〉) are orthonormal states of the
subsystem A (B), respectively, and the non-negative quan-
tities ξn represent the levels of the entanglement spectrum.
Further, Haldane and Li in ref. [2] have reported a remark-
able relationship between the excitation spectrum and the
edges separating the subsystems, considering the entan-
glement spectrum of the fractional quantum Hall system
obtained using a spatial cut. This connection between
the edge spectrum and entanglement spectrum is observed
in many condensed-matter systems including ladders sys-
tems [3–5]. In many previous studies, the proportionality
between the energetic Hamiltonian of the subsystem A HA

and the entanglement Hamiltonian Hent in the strong cou-
pling regime [6–12] has been observed. However, this does
not hold in general, even in the strong coupling limit which

is illustrated by counterexamples in ref. [13] where four
spin terms of the Kugel-Khomskii model are considered
in ref. [11], in which anisotropic spin ladders of arbitrary
spin length were considered, where even the unperturbed
nondegenerate ground state has a nontrivial entanglement
spectrum.

Here we study the entanglement spectrum of the Heisen-
berg spin ladders in a time-dependent magnetic field via
the degenerate perturbation theory, where couplings be-
tween legs are considered as a perturbation. The entangle-
ment Hamiltonian is, within the first-order perturbation
theory, proportional to the energy Hamiltonian of a chain
in the magnetic field when the ground state is degenerate.
This holds, although the entanglement spectrum of the
unperturbed ground state has a nontrivial entanglement
spectrum.

Motivation. – We consider a bipartite system consist-
ing of two subsystems described by the Hamiltonians HA

of subsystem A and HB of subsystem B, which are coupled
by the Hamiltonian H0. We assume that the Hamiltoni-
ans HA and HB are small compared to H0, and it will
be treated as a small perturbation. This problem can be
illustrated by two leg spin ladders, where the interaction
between rungs is considered as a small perturbation (see
fig. 1).
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Fig. 1: (Colour online) Illustration of the two leg spin ladder
considered in this paper. The entanglement spectrum is per-
formed by tracing out subsystem A.

The projector onto the subsystem orthogonal to the non-
degenerative ground state |ψ0〉 is defined as

Ql = 1 − |ψ0〉〈ψ0| =
∑
l �=0

|ψl〉〈ψl|. (2)

Then, the first correlation |ψ(1)
l 〉 of the nondegenerative

ground state |ψ0〉 reads

|ψ(1)
l 〉 = |ψ0〉

+
1

E0 −H0
Ql ((HA + HB) − 〈ψ0| (HA + HB) |ψ0〉) |ψl〉,

(3)

where E0 = 〈ψ0|H0|ψ0〉. We also use that 1
E0−H0

Ql =∑
l �=0

|ψl〉〈ψl|
E0−El

, where El = 〈ψl|H0|ψl〉 and the fact that
1

E0−H0
Ql|ψ0〉 = 0 by definition. In the following, we will

assume that 1
E0−El

is equal for every l. This allows us to
rewrite eq. (3) as

|ψ(1)
l 〉 = |ψ0〉 +

1
E0 − El

(HA + HB)|ψ0〉. (4)

The density matrix within the first order of the perturba-
tion theory has the following form:

ρ = |ψ(1)
l 〉〈ψ(1)

l |,
ρ = |ψ0〉〈ψ0|

+
1

E0 − El
((HA + HB)|ψ0〉〈ψ0| + |ψ0〉〈ψ0|(HA + HB)).

(5)

Owing to the fact that, here, the Hamiltonian HA acts
only on the subsystem A, the reduced density matrix can
be calculated by tracing out the subsystem B:

ρred = ρ1 +
1

E0 − El
(HAρ1 + ρ1HA) , (6)

where ρ1 = tr2|ψ0〉〈ψ0| is the reduced density matrix
within the zeroth order of the perturbation theory. When
the two subsystems are maximally entangled, ρ1 is pro-
portional to the unit matrix. In this case, we obtain

ρred = ρ1

(
1 − 2

E0 − El
HA

)
. (7)

The reduced density matrix can be reformulated as

ρred =
1
Z

exp(−H(1)
ent), (8)

where the entanglement Hamiltonian Hent is the entan-
glement Hamiltonian, and the partition function Z is
Z = tr(exp(−H(1)

ent)). The entanglement Hamiltonian

Hent =
2

E0 − El
HA (9)

is proportional to the Hamiltonian of subsystem A, with
the proportionality factor β = 2

E0−El
interpreted as an

inverse temperature.
To conclude, we assume that

1) 1
E0−El

is equal for every l, and

2) ρ1 is proportional to the unit matrix.

These two assumptions directly lead to the proportionality
between the entanglement and subsystem Hamiltonians in
the strong coupling limit within the first order of the per-
turbation theory, when the ground state is nondegenerate.

In ref. [6], Poilblanc stressed a remarkable similarity be-
tween the chain-chain entanglement spectrum in the two-
leg spin-1/2 ladders and the energy spectrum of a single
spin-1/2 Heisenberg chain. Läuchli and Schliemann [10]
analytically showed that the entanglement Hamiltonian of
the two coupled anisotropic XXZ chains is proportional to
the energy Hamiltonian of the single chain with renormal-
ized anisotropy in the first order of the perturbation theory
in the strong coupling limit. There, the first assump-
tion (1) is not valid. In the case of the isotropic Heisenberg
ladders, both assumptions (1) and (2) are valid, and for
that reason, they found that the entanglement spectrum
is directly proportional to the energy of the single chain.
The authors in ref. [11] generalized this observation for the
isotropic Heisenberg ladders to the case of the arbitrary
spin length S. They found that for arbitrary spin, the en-
tanglement spectrum of the isotropic Heisenberg ladders
is proportional to the energy of the single chain within the
first-order perturbation theory. This is also a consequence
of the fact that both assumptions (1) and (2) hold. How-
ever, they found that there is no proportionality between
the entanglement Hamiltonian of anisotropic spin ladders
of arbitrary spin length. Since here, the reduced density
matrix in zeroth order of the perturbation theory is not
proportional to the unit matrix, there is no mention of
proportionality.

Model. – We investigate the Hamiltonian of the
Heisenberg spin-1/2 ladder in a time-dependent circularly
polarized magnetic field B described by the Hamiltonian

H̃ = Jrung

∑
i

�S2i
�S2i+1 + B

∑
i

(Sx
i cos ωt − Sy

i sin ωt)

+ Jleg

∑
i

�S2i
�S2i+2 + Jleg

∑
i

�S2i+1
�S2i+3. (10)

where ω is the angular velocity of the rotation of the mag-
netic field. The sites on the first (second) leg are denoted
by even (odd) labels, such that the i-th rung consists of
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sites 2i and 2i + 1. All spin-1/2 operators are taken to
be dimensionless, such that the couplings along the rungs
Jrung and the legs Jleg have the dimensions of energy. We
will consider antiferromagnetic coupling when Jrung > 0.

This time-dependent Hamiltonian can be factorized to
a time-independent Hamiltonian by unitary transforma-
tions that represent a rotation around the z-axis R(t) =
exp(−iSzωt/h̄) [14]. Since

R(t)SxR−1(t) = Sx cos ωt + Sy sin ωt,

R(t)SyR−1(t) = −Sx sinωt + Sy cos ωt,

R(t)SzR
−1(t) = Sz, (11)

the Hamiltonian equation (10) can be transformed into a
time-independent Hamiltonian:

Ĥ = R(t)H̃(t)R(t)−1, (12)

Ĥ = Jrung

∑
i

�S2i
�S2i+1 + B

∑
i

Sx
i + Jleg

∑
i

�S2i
�S2i+2

+Jleg

∑
i

�S2i+1
�S2i+3. (13)

Defining the propagator that confirms

∂

∂t
K(t, t0) = − i

h̄
H̃(t)K(t, t0), (14)

∂

∂t
K(t, t0) = − i

h̄
R−1(t)Ĥ(t)R(t)K(t, t0), (15)

we find

∂

∂t

(
R(t)K(t, t0)R−1(t0)

)
= − i

h̄
H

(
R(t)K(t, t0)R−1(t0)

)
.

Then, the Hamiltonian becomes

H = Jrung

∑
i

�S2i
�S2i+1 + B

∑
i

Sx
i + ω

∑
i

Sz
i

+ Jleg

∑
i

�S2i
�S2i+2 + Jleg

∑
i

�S2i+1
�S2i+3, (16)

where the propagator is

K(t, t0) =

exp
(

i

h̄
Szωt

)
exp

(
− i

h̄
H(t − t0)

)
exp

(
− i

h̄
Szωt0

)
.

(17)

In order to use the perturbation theory, we will rewrite
the Hamiltonian equation (16) as H = H0 + H1, where

H0 = Jrung

∑
i

�S2i
�S2i+1 + B

∑
i

Sx
i + ω

∑
i

Sz
i (18)

and

H1 = Jleg

∑
i

�S2i
�S2i+2 + Jleg

∑
i

�S2i+1
�S2i+3 (19)

and consider H1 as a small perturbation. The Hamiltonian
equation (18) is independent of the direction of the

magnetic field and it can be considered as the isotropic
Heisenberg chain in the magnetic field

√
B2 + ω2

H0 = Jrung

∑
i
�S2i

�S2i+1 +
√

B2 + ω2
∑

i Sz
i (20)

and

H1 = Jleg

∑
i
�S2i

�S2i+2 + Jleg

∑
i
�S2i+1

�S2i+3. (21)

The energies of a rung of the singlet and triplet
states are

Esi
= −3

4
Jrung, (22)

Et+i
=

1
4
Jrung +

√
B2 + ω2, (23)

Et0i
=

1
4
Jrung, (24)

Et−i
=

1
4
Jrung −

√
B2 + ω2. (25)

The ground state changes from the spin singlet |si〉 to
the triplet state |t−i 〉 by increasing the value of

√
B2 + ω2.

When Jrung =
√

ω2 + B2, the ground state is twofold de-
generate, since the singlet states |si〉 and triplet states
|t−i 〉 have the same eigenenergy. The situation when the
ground state is twofold degenerate is quite interesting and
it will be considered in the following section.

Entanglement spectrum. – When Jrung =√
ω2 + B2, it is necessary to use the degenerate per-

turbation theory, while any combination of eigenstates
|si〉 and |t−i 〉 can be taken as the ground state |ψ0〉. In
order to achieve an analytically manageable situation,
we will assume a finite number of rungs i = 4. Let us
suppose that the unperturbed ground state |psi0〉 of the
Hamiltonian H0 is an unknown combination of eigenvec-
tors |si〉 and |t−i 〉. In the following, we will note eigenvec-
tors of the ground state |ψ0〉 as {|nλ〉|, λ = 1, . . . , 4}, where

|n1〉 = |s1〉|s2〉|s3〉|s4〉, |n2〉 = |s1〉|s2〉|s3〉|t−4 〉,
|n3〉 = |s1〉|s2〉|t−3 〉|s4〉, |n4〉 = |s1〉|t−2 〉|s3〉|s4〉,
|n5〉 = |t−1 〉|s2〉|s3〉|s4〉, |n6〉 = |t−1 〉|t−1

2 〉|s3〉|s4〉,
|n7〉 = |t−1

1 〉|s2〉|t−1
3 〉|s4〉, |n8〉 = |t−1

1 〉|s2〉|s3〉|t−1
4 〉,

|n9〉 = |s1〉|t−1
2 〉|t−1

3 〉|s4〉, |n10〉 = |s1〉|t−1
2 〉|s3〉|t−1

4 〉,
|n11〉 = |s1〉|s2〉|t−1

3 〉|t−1
4 〉, |n12〉 = |t−1

1 〉|t−1
2 〉|t−1

3 〉|s4〉,
|n13〉 = |t−1

1 〉|t−1
2 〉|s3〉|t−1

4 〉, |n14〉 = |t−1
1 〉|s2〉|t−1

3 〉|t−1
4 〉,

|n15〉 = |s1〉|t−1
2 〉|t−1

3 〉|t−1
4 〉, |n16〉 = |t−1

1 〉|t−1
2 〉|t−1

3 〉|t−1
4 〉.
(26)

The projector P
(0)
n of H0 projects on the subspace,

and is defined by the eigenvalue E
(0)
n = − 3

4Jrung of the
Hamiltonian H0. Furthermore, the projector P

(0)
n satisfies

P (0)
n H′

P (0)
n |ψ0〉 = E(1)|ψ0〉, (27)

where E(1) is the eigenvalue of P
(0)
n H′

P
(0)
n for eigenvector

|ψ0〉. In order to find the eigenvalue E(1) of the pertur-
bation H′

and the ground state |ψ0〉, it is sufficient to

57003-p3



Sonja Predin

diagonalize a 16 × 16 matrix⎡
⎣ 〈n1|H′ |n1〉 · · · 〈n1|H′ |n16〉

· · · · · · · · ·
〈n16|H′ |n1〉 · · · 〈n16|H′ |n16〉

⎤
⎦ . (28)

By elementary calculations, one finds the uniquely
determined ground state |ψ0〉 and the first correction of
the energy E(1).

The unperturbed density matrix is constructed from
this ground state and is given, after simplification, by

ρ(0) =
∑16

λ |nλ〉〈nλ|. (29)

By again tracing out one leg, we obtain the reduced un-
perturbed density matrix

ρ
(0)
red =

1
24

4⊗
i=1

(
1 − Sz

2i+1

)
. (30)

It is obvious that this reduced density matrix is not pro-
portional to the unitary matrix and possesses a nontriv-
ial entanglement spectrum. The first corrections to the
ground state in the degenerate perturbation theory are
defined by

|1〉 =
∑
n�=n

|nλ〉 〈nλ|H1|ψ0〉
E

(0)
n − E

(0)
n

, (31)

|1′〉 =
∑

n�=n,n′

∑
λ′

|nλ〉 〈nλ|H1|n′λ〉
E(1) − E

(1)
λ

〈n′λ|H1|ψ0〉
E

(0)
n − E

(0)
n′

. (32)

One finds the reduced density matrix to the first order

ρ
(1)
red =

1
24

4⊗
i=1

(
1−Sz

2i+1

)
− Jleg

8Jrung

(
(1−Sz

1 )(1−Sz
3 )�S5

�S7

+ (1 − Sz
1 )�S3

�S5(1 − Sz
7 ) + �S1

�S3(1 − Sz
5 )(1 − Sz

7 )
)
. (33)

The reduced density matrix can be rewritten as

ρred =
1
Z

exp(−H(1)
ent), (34)

where the partition function Z is Z = tr exp(−H(1)
ent) and

the entanglement Hamiltonian within the first order of the
perturbation theory has the following form:

H(1)
ent =

1
Jrung

3∑
i=0

(
2Jleg

�S2i+1
�S2i+3 + JrungS2i+1

)
. (35)

The entanglement Hamiltonian is simply proportional
to the Hamiltonian of a chain in the magnetic field with
the proportional factor β = 1

Jrung
defined as an inverse

temperature.
The system of the Heisenberg chain in the longitudinal

magnetic field is exactly solvable by the Bethe ansatz. The
ground state becomes the spin-liquid one and gapless up
to when

√
B2+ω2

Jleg
= 2, where the phase transition of the

Pokrovsky-Talapov type takes place and the ground state

becomes a completely ordered gapped ferromagnetic state.
One of the most important features of the energy spectra
of spin chains is the absence of an excitation gap over
the ground state for the integer spin length. We restrict
ourselves to the case when the two chains are strongly
coupled; therefore,

√
B2+ω2

Jleg
� 1 and the Hamiltonian of a

subsystem stays gapless in this region. The entanglement
spectrum eq. (35) remains gapless owing to the propor-
tionality to the energy spectrum.

Summary. – Here we investigated the entanglement
spectrum of Heisenberg ladders in a time-dependent mag-
netic field using the degenerate perturbation theory, where
couplings between legs are taken as a small perturba-
tion. When the ground state is not degenerate, the ex-
istence of the trivial entanglement Hamiltonian in the
zeroth order of the perturbation theory is identified as an
important condition that guarantees the proportionality
between the entanglement and subsystem Hamiltonians.
We find that although the entanglement spectrum of the
unperturbed ground state has a nontrivial entanglement
spectrum, the entanglement Hamiltonian of Heisenberg
ladders in a time-dependent magnetic field, within the
first-order perturbation theory, is proportional to the en-
ergy Hamiltonian of a chain in the magnetic field when
the ground state is degenerate.
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