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We present an optimization procedure for the design of InAs/AlInAs quantum well (QW) based

up-converter for silicon solar cells. By utilizing nonlinear optical effects in QW structures, the

up-conversion of low energy photons for which the silicon (Si) is transparent, into higher energy

photons that can be absorbed by a Si solar cell, is achieved. Due to lack of the III-V material com-

binations that can provide a large enough conduction band offset to accommodate three bound

states required for the optimal operation, we explore the possibilities of using continuum part of

the spectrum as the third state. Optimization of the up-converter is performed by maximization of

the second order susceptibility derived from the density matrix formalism. Our procedure is based

on use of the genetic algorithm global optimization tool, as a “driver” routine for the eight-band

k � p Hamiltonian “solver” of the QW electronic structure problem. VC 2011 American Institute of
Physics. [doi:10.1063/1.3641977]

I. INTRODUCTION

One of the major obstacles for high power conversion ef-

ficiency of the sun light with conventional semiconductor

materials is that only photons with energies close to that of

the semiconductor energy gap (Eg) are effectively converted

into electron-hole pairs. Photons with energy lower than Eg

are simply lost (the semiconductor is transparent to them) and

of photons with higher energy (> Eg), only a part, i.e., those

with energy almost equal to Eg are best suited for absorption.

The majority of high energy electrons generated by photons

with > Eg, (hot carriers) decay fast thermally to the conduc-

tion band Fermi level before they can contribute to the output

current. The principal aim here must be to make a better use

of the solar spectrum.1–7 One of the promising concepts is to

place another device, a “light converter,” attached to the rear

(front) of an existing solar cell (SC), to capture photons with

energy below (above) the energy gap of SC and re-emit them

at the higher (lower) energy to match the region where SC

exhibits a very good spectral response. Thus it is possible to

enhance the conversion efficiency of the SC device.8–11 Up or

down conversion can occur in a three-level quantum mechani-

cal systems in a manner that luminescent materials convert

photons by utilizing nonlinear optical effects.

In this paper, we propose utilization of the quantum well

structure, optimized with respect to its nonlinear susceptibil-

ity, as a luminescent material. For a three level system, the

difference between the highest and the lowest bound state has

to be approximately the same as the SC (in our case Si)

energy gap.

A detailed examination of the literature12–14 proved that

it was almost impossible to find well/barrier material combi-

nation among conventional III-V binaries and their alloys;

which can provide for deep enough conduction band offset

to accommodate at least three bound states, sufficiently

spaced for 1.12 eV (Si energy gap) conversion. The main ob-

stacle here was the appearance of indirect bands (originating

from X or L states) in the barrier materials beyond certain Al

concentration in Al containing ternaries. Therefore, the con-

tinual part of the spectrum has to be used instead as the third

state. We have chosen Al0.6In0.4As as a barrier and InAs as a

well material for the design of the optical up-converter. Opti-

mization of the QW based up-converter is performed by

using the genetic algorithm (GA) as a global optimization

tool,15–18 to maximize the second order nonlinear suscepti-

bility by varying the QW structural parameters. The quantum

well electronic states, wavefunctions, and optical dipole ma-

trix elements needed to determine the nonlinear susceptibil-

ity were calculated from the eight-band k � p model that

takes into account conduction to valence band band mixing

as well as the effect of strain.

II. THEORETICAL CONSIDERATIONS

A. Genetic algorithm

Owing to the complexity of the target function of an

up-converter, it would be very difficult to find its global

maximum within given multidimensional domain by using

classical optimization algorithms like downhill simplex or

conjugate gradients19 or specialized methods20 including iso-

spectral transformations of the Hamiltonian.21–23 Therefore

we formulate our method using the global optimization tool

based on the genetic algorithm (GA).24 Genetic algorithm is
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a global optimization search engine for the maximization of

scalar functions, f ðx1; x1;…; xnÞ, of real vector arguments,

ðx1;:::; xnÞ, where n is the number of independent parameters.

The optimization mechanism behind the genetic algorithm

can be understood analogously to the evolution of a biologi-

cal system, i.e., a population of individuals. In such a system,

evolution is interpreted as an optimization of certain fitness

properties of the population.

In GA, the population is represented by a set of points

(xi
1; x

i
1;…; xi

n), in the parameter space, where i ¼ 1…np and

np is the population size. The algorithm starts from an ini-

tial population that is randomly chosen. The average value

of the fitness (target) function in the initial population (for

the initial set of parameters) can be very small, but it is

expected to reach an optimal value through the evolutionary

process (optimization). Starting from this initial population,

the algorithm produces a new generation (“siblings”) in

every subsequent iteration through the process of reproduc-

tion. Reproduction entails selection of two parents from a

previous generation, and this is done stochastically, with

probability proportional to the fitness, i.e., target value of

the individuals in the old generation. The number of itera-

tions in the GA can be fixed and should be set to a high

enough value so that the algorithm may reach a predefined

convergence criteria before termination.

B. Electronic structure model

To calculate the electronic structure of the up-converter,

we have used the 8-band k � p Hamiltonian,25 which at

kk ¼ 0 can be reduced to:

H ¼ G 0

0 G

� �
(1)

with

G ¼

Ecb zð Þ 0
ffiffiffi
2
p

Û �Û

0 Ehh zð Þ 0 0ffiffiffi
2
p

Û† 0 Elh zð Þ Q zð Þ
�Û† 0 Q† zð Þ Eso zð Þ

0
BBBBBBB@

1
CCCCCCCA

and

Û ¼ �hffiffiffiffiffiffiffiffi
6m0

p
ffiffiffiffiffiffi
EP

p d

dz
(2)

QðzÞ ¼ �
ffiffiffi
2
p

fðzÞ (3)

EcbðzÞ ¼ Ec0 þ 2acðzÞ 1� c12ðzÞ
c11ðzÞ

� �
exxðzÞ (4)

Elh=hhðzÞ ¼ Ev0 þ 2avðzÞ 1� c12ðzÞ
c11ðzÞ

� �
exxðzÞ6fðzÞ (5)

EsoðzÞ ¼ Ev0 � DsoðzÞ; (6)

where fðzÞ ¼ �baxðzÞ½1� c12ðzÞ=c11ðzÞ�exx is the shear strain,

Ec0 and Ev0 represent the bottom of the conduction band and

the top of the valence band of the unstrained bulk material,

respectively, and m0 is the free electron mass. Furthermore,

EP is the Kane energy, which is assumed to be z-independent

and to take an average value throughout the structure, Dso is

the spin-orbit splitting energy, bax is the axial deformation

potential, and ac and av are the hydrostatic deformation poten-

tials for conduction and valence band, respectively. Finally,

c11 and c12 stand for the elastic constants of the crystals that

constitute the structure, while exx ¼ ðab � awÞ=aw is the rela-

tive change in the lattice constants at the barrier-well inter-

face, with ab and aw being the lattice constants of the bulk

barrier and well material. The solution of the Hamiltonian

eigenvalue problem:

Ecb 0
ffiffiffi
2
p

U �U

0 Ehh 0 0ffiffiffi
2
p

U† 0 Elh Q

�U† 0 Q† Eso

0
BBBB@

1
CCCCA

/c

/hh

/lh

/so

0
BBBB@

1
CCCCA ¼ E

/c

/hh

/lh

/so

0
BBBB@

1
CCCCA; (7)

can be found in an analytic form for a layered structure.

From Eq. (7), we obtain a Schrödinger like equation for

/cðzÞ

� �h2

2

d

dz

1

m�ðE; zÞ
d

dz
/cðzÞ þ EcbðzÞ/cðzÞ ¼ E/cðzÞ; (8)

with

m�ðE; zÞ ¼ 3m�0ðzÞm0

� ½E� ElhðzÞ�½E� EsoðzÞ� � 2f2ðzÞ
EgðzÞ 2½E� EsoðzÞ þ 2fðzÞ� þ ½E� ElhðzÞ�f g

(9)

where EgðzÞ ¼ Ec0ðzÞ � Ev0ðzÞ, while m�0ðzÞ ¼ EgðzÞ=Ep is

the parabolic effective mass given in Table I. If f ¼ 0,

ab¼aw and Eso ¼ Elh, then Eq. (9) reduces to the well-

known expression for nonparabolic effective mass (Ref.

26): m�ðE; zÞ ¼ m�0ðzÞm0 1þ E� Ec0ðzÞð Þ=EgðzÞ
� �

.

TABLE I. The properties of AlAs and InAs used in calculations of layer

parameters and electronic structure of the convertor (Refs. 12 and 13). VBO

is the top of the valence band within the scale where VBO of InSb is set to

zero.

AlAs InAs

a0 [nm] 0.56611 0.60583

m�0 [m0] 0.15 0.026

Eg [eV] 3.01 0.359

Ep [eV] 21.1 21.5

VBO [eV] �1.33 �0.59

Dso [eV] 0.28 0.39

ac [eV] �5.64 �5.08

av [eV] �2.47 �1

bax [eV] �2.3 �1.8

c11 [GPa] 1250 832.9

c12 [GPa] 534.1 452.6

063713-2 Prodanović et al. J. Appl. Phys. 110, 063713 (2011)

Downloaded 03 Jul 2013 to 129.11.21.2. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jap.aip.org/about/rights_and_permissions



The other envelope function components can be

obtained from the solution of Eq. (8) as:

/lhðzÞ ¼
ffiffiffi
2
p
½EsoðzÞ � E� �

ffiffiffi
2
p

fðzÞ
½ElhðzÞ � E�½EsoðzÞ � E� � 2f2ðzÞ

Û/cðzÞ (10)

/soðzÞ ¼ �
½ElhðzÞ � E� � 2fðzÞ

½ElhðzÞ � E�½EsoðzÞ � E� � 2f2ðzÞ
Û/cðzÞ; (11)

and /hhðzÞ is decoupled at kk ¼ 0.

It has been shown in Ref. 27 that the normalization con-

dition for the ith state is given as:

1 ¼ h/c;ij/c;ii þ h/so;ij/so;ii þ h/lh;ij/lh;ii (12)

and the dipole matrix elements read

hwijZjwji ¼ h/c;ijzj/c;ji þ h/so;ijzj/so;ji þ h/lh;ijzj/lh;ji
(13)

where wi and wj are ith and jth eigenstate of the 8-band Ham-

iltonian with components /c;i, /so;i, /lh;i and /c;j, /so;j, /lh;j,

respectively, and Z is the z coordinate operator represented

as Z ¼ zjjIjj (I is the 3� 3 unity operator).

All the equations in this section are derived for kk ¼ 0,

hence Eq. (9) is used to describe the effective mass m�ðE; zÞ,
which includes the nonparabolic correction in addition to the

conduction band-edge mass m�0ðzÞm0. Among the quantities

needed for evaluating the nonlinear optical susceptibility

vð2Þzzz , which is the main goal of this work, are the diagonal

matrix elements q0
ll of the density matrix of the unperturbed

system as described in the next section. These matrix ele-

ments may be found from 8� 8 Hamiltonian for all kk 6¼ 0

via an extremely complex procedure. Therefore we have

used two standard approximations: first, that the dependence

of dipole matrix elements on kk is very weak, so that we may

consequently use their kk ¼ 0 values, and second, that

q0
ll ¼ 1 for l ¼ 1, otherwise q0

ll ¼ 0. In this case, it is suffi-

cient to analyze the 8� 8 Hamiltonian for kk ¼ 0 only.

C. The target function model

If we expose an electronic system such as the optical

converter to the incident radiation with electric field E r; tð Þ,
then the response can be quantified via global polarization

P r; tð Þ of the system. Consequently, we define the linear sus-

ceptibility v (the first term in the response expansion) and

the tensor of nonlinear susceptibility vijk (the second term in

the response expansion) through the relation:

Pi ¼ vEi þ
X

j;k

vijkEjEk: (14)

Our aim here is to derive an expression for the polarization

of electronic system, which depends on quadratic terms of

the electric field, starting from the calculated electronic

structure of the optical converter. Then it would be possible

to obtain the second order susceptibility from such expres-

sion as a target function that will be used in the optimization

process.

We use the density matrix formalism to describe the

electronic system of the optical converter.28 The electric field

of the incident radiation is treated as a perturbation that

excites the electrons to higher states of our QW structure.

New collective electron state is described by the density

matrix whose matrix elements are calculated using the pertur-

bation theory. The susceptibility tensor then reads (Ref. 28):

vð2Þijk ðEp;Eq;Ep þ EqÞ ¼ �
e3 ~q
2

X
lmn

q0
ll

�
(

ri
lnrj

nmrk
ml

½ðEnl � Ep � EqÞ � iCnl�½ðEml � EpÞ � iCml�

þ ri
lnrk

nmrj
ml

½ðEnl � Ep � EqÞ � iCnl�½ðEml � EqÞ � iCml�

þ rk
lnri

nmrj
ml

½ðEmn � Ep � EqÞ � iCmn�½ðEnl þ EpÞ þ iCnl�

þ rj
lnri

nmrk
ml

½ðEmn � Ep � EqÞ � iCmn�½ðEnl þ EqÞ þ iCnl�

þ rj
lnri

nmrk
ml

½ðEnm þ Ep þ EqÞ þ iCnm�½ðEml � EpÞ � iCml�

þ rk
lnri

nmrj
ml

½ðEnm þ Ep þ EqÞ þ iCnm�½ðEml � EqÞ � iCml�

þ rk
lnrj

nmri
ml

½ðEml þ Ep þ EqÞ þ iCml�½ðEnl þ EpÞ þ iCnl�

þ rj
lnrk

nmri
ml

½ðEml þ Ep þ EqÞ þ iCml�½ðEnl þ EqÞ þ iCnl�

)
(15)

where cartesian indexes i; j; k are to be permuted as described

in Ref. 28 (it should also be noted that the z component of

the dipole matrix element is significantly larger than x and y
components29), ~q is the mean value of the electron density in

the structure, q0
ll is the diagonal matrix element of the density

matrix of the unperturbed system, ri
ln is the ith component of

the matrix element between states l and n, Enl is the energy

difference between states n and l, Enl ¼ En � El, Cnl is the

relaxation factor between states n and l, while Ep and Eq are

the relevant photon energies of radiation involved in the non-

linear effect.

Let us consider the QW up-converter with two bound

states: E1 and E2. The energy of the first of two incident

photons, Ep, that take part in the nonlinear effect, has to

match the energy difference between these two bound states

to excite electrons from the first to the second bound state,

Ep ¼ E2 � E1. Furthermore, as a third state involved in the

nonlinear process in Eq. (15), we have to choose a state in

the continuum, Er, because we could not find any suitable

material combination among III–V binaries to support all

bound states. This continuum state is taken as a minimal

energy that still satisfies the transparency condition

TðEÞ ¼ 1. The relaxation of an electron from Er to the

ground state, E1, needs to produce a photon with the energy

that matches the energy of the silicon SC bandgap, i.e.,
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Er ¼ ESi
g þ E1. At the same time, the second incident pho-

ton, Eq, needs to excite the electron from the second bound

state to Er, i.e., Eq ¼ Er � E2. We assume that almost all

electrons in the conduction band of the converter are in the

ground bound state prior to exposing the convertor to the

incident radiation. It is reasonable to expect that such popu-

lation can be obtained by adequate doping of the structure,

while still having enough electrons for optical effects to be

observable. Hence, q0
ll ¼ 1 for l ¼ 1 and q0

ll ¼ 0 for l 6¼ 1 so

that the summation in Eq. (15) over l vanishes and l ¼ 1.

The coordinate matrix element for transitions between con-

tinuous states may be neglected; this implies that the sum-

mation over m in Eq. (15) vanishes as well and m ¼ 2. The

relaxation parameters Cnm between states n and m are taken

to be the same for all bound to continuum state transitions

and are labeled with Cc1, while parameters for bound to

bound state transitions are labeled with C21. It can also be

shown that the dominant term of Eq. (15) is:

vð2Þzzz ðEp;Eq;Ep þ EqÞ ¼ �
e3 ~q
2

X
n>2

z1nzn2z21

� 1

ðEn1 � Ep � EqÞ � iCc1

þ 1

ðEn2 þ Ep þ EqÞ þ iCc1

� �	

� 1

ðE21 � EpÞ � iC21

þ 1

ðE21 � EqÞ � iC21

� �

þ 1

ðE2n � Ep � EqÞ � iC2n
þ 1

ðE21 þ Ep þ EqÞ þ iC21

� �

� 1

ðEn1 þ EpÞ þ iCc1

þ 1

ðEn1 þ EqÞ þ iCc1

� �

(16)

where znm ¼ rz
nm, is the z component of the dipole matrix ele-

ment. Because E2n < 0, E21 > 0, and En1 > 0, the second

term in Eq. (16) can be neglected because it is far from the

resonance. Also, the term ½ðEn2 þ Ep þ EqÞ þ iCc1��1
is

much smaller then ½ðEn1 � Ep � EqÞ � iCc1��1
and can be

neglected too. The polarization and the electric field vectors

are real quantities that imply that nonlinear susceptibility

also has to be a real quantity. Therefore only the real part of

Eq. (16) has to be evaluated. By taking all the previous con-

siderations into account we obtain:

vð2Þzzz ðEp;Eq;EpþEqÞ ¼
e3 ~qz21

2

X
n>2

z1nzn2

� Cc1½ðEp�EqÞ2þ 2C2
21��C21ðEp�EqÞðEn1�Ep�EqÞ

C21½ðEn1�Ep�EqÞ2þC2
c1�½ðEp�EqÞ2þC2

21�

( )

(17)

Because our up-converter design is limited by having only

two bound states, the remaining sum over the continuum

states index n can be transformed into integration:P
n ! ðLz=2pÞ

Ð
dkz, where Lz is the length of the structure.

By using the relation Eðkk ¼ 0Þ ¼ �h2k2
zb
=2m�bðEÞ þ Ub, the

integration in k space can be transformed into integration

over energies of the degenerate continuum states. Here, sub-

script b denotes the barrier layer and Ub is the conduction

band offset between the barrier and the well material. The

final expression for the second order susceptibility, to be

used as the target function in GA, reads:

vð2Þzzz ðEp;Eq;Ep þ EqÞ ¼
e3 ~qffiffiffi
2
p

p�h
z21

ð1
Ub

DðEÞdE

����
���� (18)

where

D Eð Þ ¼

1

2

DE

C21

� �2

þ1

" #
� 1

2

DE

C21

� �
E� Er

Cc1

C21

DE

C21

� �2

þ1

" #

�KðEÞHðEÞ
ðE� UbÞ

dm�bðEÞ
dE

þ m�bðEÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�bðEÞðE� UbÞ

p
(19)

and

KðEÞ ¼ ~z1Ea
~z2Ea
þ ~z1Eb

~z2Eb
(20)

HðEÞ ¼ Cc1

E� Erð Þ2þC2
c1

; (21)

DE ¼ Ep � Eq (22)

Here, Ea, Eb are the two orthogonal continuum double

degenerate states with energy E. To prevent singularities in

the limit Lz !1, we introduce notation ~z2Ea;b
¼ z2Ea;b

ffiffiffiffiffi
Lz

p

that allows for the factor Lz, arising from the density of con-

tinuum states, to be canceled out with the squared normaliza-

tion factor of the continuum states L�1
z originating from the

expression for KðEÞ. One must also indicate that the function

KðEÞ does not depend on the selection of the basis states in

the double degenerate subspace of the eigenvalue E with

indices a and b.

We must also point out that many body effect have been

neglected in our model, so vð2Þzzz has a linear dependence on

the carrier density ~q. This approximation is valid for very

low carrier densities (implicitly assumed here). For that rea-

son, the numerical results are presented for the quantity

vð2Þzzz=~q, seemingly independent of ~q. For higher values of ~q,

the problem should be analyzed by using many body theory,

as described in detail in Refs. 30–33. Certainly, the calcu-

lated results would quantitatively differ in that case in ac-

cordance with the increase of carrier densities. The exact

determination of vð2Þzzz in the presence of many body effects

will be presented elsewhere.

III. RESULTS AND DISCUSSION

A. Optimization of the QW based up-convertor
structures

To find the optimal QW up-converter design, we have

examined two types of QW structures. The first type is a lay-

ered structure where the Al content is varied independently

in all the layers except the first one (which forms the deepest

part of QW and is made of pure InAs). In each subsequent

optimization, the number of layers was increased to 2, 3,…,
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and overall improvement in the target susceptibility function

was monitored. Those wells will further be referred to as the

“one-step QW” for two layers, “two-steps QW” for three

layers, and so on. The second type of QW structures is also

layered but made of two materials only, Al0:6In0:4As as the

barrier and InAs as the well material. These structures will

be labeled as a “double QW,” “triple QW,” etc.

For every compound layer, the material parameters to be

used in Eq. (7) are obtained by linear interpolation of rele-

vant AlAs and InAs data listed in Table I.12,13 The relaxation

parameter between the bound states is assumed to be

C12 ¼ 0.005 eV, and all the relaxation parameters between

continuum and bound states are taken as Cc1 ¼ 0.02 eV. In

general, the values of relaxation parameters Cm;n depend on

the structural profile, carrier density, and temperature, as

specified in Ref. 34 and may vary significantly (see Fig. 6

therein). The same is to be expected for the structure ana-

lyzed in this work. However, for transitions between two

bound states (1 and 2), we have settled on the typical esti-

mate of 5 meV used in the literature. For bound-continuum

transitions, the linewidths Cc1ðkzÞ and Cc2ðkzÞ are assumed

equal and amount to 20 meV, which is significantly larger

than C12, to account for the dominant effect of transmission

peak width TðkzÞ on line broadening. The exact approach

given in Ref. 34 would undoubtedly yield different and more

precise values of parameters Cm;n, dependent on the wave-

vector component kz, nonetheless, the theory presented in

this work could straightforwardly be adapted for such case.

Optimization of all the structures was performed by the

genetic algorithm. In case of multi-steps QW structures, we

vary the content of Al and the layer width in each of the step

regions. It gives, in total, three free parameters for the one-

step QW, five parameters for the two-step QW, and in gen-

eral, np ¼ 2ns þ 1 parameters, where ns is the number of

steps in the well. The Al mole fraction,x, in the step regions

is limited to x 2 ½0; 0:6�. This still provides structures with

acceptably low strain and direct energy bandgap in the bar-

rier region. The lower boundary for the layer width is set to

one monolayer (�0.3 nm) while the highest value is limited

by the critical layer thickness caused by the strain.35

In case of double QW structures, we vary only the layer

widths of Al0:6In0:4As and InAs, while the boundaries for the

optimization parameters are chosen in the same manner as

for the step QW structures. In this case, the total number of

optimization parameters is np ¼ nl, where nl is the number

of layers in the structure. Optimization was also performed

for the triple QW and QWs with higher number of layers.

In Fig. 1, the evolution of the susceptibility target func-

tion for the step QW is presented. The population (number

of individual quantum wells being tested in each cycle for

optimal value of vð2Þzzz ) is fixed to a typical value of 100, veri-

fied as suitable for problems of this type.18,36 For each gener-

ation, the value shown is selected as the highest among 100

members of the population in the optimization process. Max-

imum generations rule was used as the termination criterion,

implying that GA stops when a specified number of genera-

tions have evolved (in our case 500 generations is sufficient).

As the population evolves, its individuals become more and

more similar, as evident from Fig. 1, and the optimization

process ends after completing 500 cycles, having selected an

optimal individual.

The resulting one-step QW, that correspond to the maxi-

mal susceptibility vð2Þzzz=e~q ¼ 2:185� 10�18cm3 V-2, is shown

in Fig. 2. The layer widths are 2.23 nm and 3.5 nm, and the

Al concentration in the step is 0.55. The energies amount to

E1¼ 0.39 eV, E2¼ 0.95 eV, and Er ¼ 1.51 eV. It should be

noted that in this structure, the widths of all the layers taken

with arbitrary accuracy during the optimization. However, if

we apply the technological constraint that the width of each

layer must be an integer multiple of one monolayer, the tar-

get function reduces to vð2Þzzz=e~q ¼ 0:892� 10�18 cm3 V-2,

which is 2.45 times smaller than in the previous case. This is

still a satisfactory result, and with such modification, the

layer widths become equal to 2.121 nm (7 monolayers) and

3.504 nm (12 monolayers), and Al concentration is 0.55. The

energy spectra are: E1¼ 0.41 eV E2¼ 0.96 eV Er ¼ 1.53 eV.

FIG. 1. The evolution of the scaled target function toward the optimal value.

The vertical axis provides the maximum value of the susceptibility vð2Þzzz per

mean density of the electron charge in the structure e~qð Þ in each cycle of the

genetic algorithm. Each optimal value point referrs to the best individual

among the current population, and the quantity e~q is subject to doping. The

horizontal axis indicates the number of cycles (generations). The population

size is set to 100 individuals, i.e., 100 QWs in each generation, covering the

free parameters space. The maximum number of generations is used as a ter-

mination criterion and 500 generations prove sufficient for a successful opti-

mization procedure.

FIG. 2. The optimized step QW with respect to vð2Þzzz .
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An alternative way to model the up-converter is by

optimizing multi-QW structures with only two different

kinds of materials. In such structures, we can vary only the

widths of the layers and the number of layers is always odd

starting from 3. Optimization procedure based on GA leads

to an optimal double well structure with vð2Þzzz=e~q ¼ 0:993

�10�18cm3V�2, which is presented in Fig. 3. The layer

widths are 1.689/1.022/2.341 nm, the Al concentration is

0.6, while the energies are at E2¼ 0.34 eV E1¼ 0.54 eV,

and Er ¼ 1.46 eV. The maximal susceptibility vð2Þzzz of the

optimized double well structure is 2.2 times lower than that

of the step well. Again, after imposing technological con-

straints and rounding up the width of the layers to the inte-

ger multiple of one monolayer, the value of the target

function reduces 1.15 times to vð2Þzzz=e~q ¼ 0:864� 10�18

cm3V�2. The layer widths are now: 1.515/1.164/2.121 nm,

i.e., 5, 4, and 7 monolayers, respectively, with Al concen-

tration of 0.6, and E1¼ 0.38 eV, E2¼ 0.57 eV, Er ¼ 1.5 eV.

In comparison to the step quantum well, the vð2Þzzz of the opti-

mized double well with layers widths limited to the integer

number of one monolayer has 2.55 times lower value. This

is again an acceptable result, bearing in mind that in an

arbitrarily chosen QW vð2Þzzz can be several orders of magni-

tude lower.

To check out if the structures with larger number of

layers or steps can provide for the increased susceptibility,

we have performed further optimizations of two-step, three-

step as well as triple QW structures. We have observed that

those more complex structures improve the susceptibility for

only �5% when compared to the one-step or double QW

structures. Hence, it is probably not worth the technological

effort to grow structures with increased number of layers due

to negligible improvement of the desired effect. Thus for the

multi-step wells structures, the optimal solution appears to

be a one-step well. Furthermore, for the second type of struc-

tures, the optimal one is the simple double well with three

layers.

We conclude that the optimized QW structure presented

in Fig. 2 has the highest value of the target susceptibility

function among all the layered structures considered here.

To obtain the overall efficiency improvement, it is nec-

essary that the absolute value of the photon flux emitted

from the SC to the converter does not exceed the photon flux

emitted from the converter and absorbed by SC. This implies

that the SC chemical potential lsc should be smaller then the

chemical potential of emitted light from the up-converter lc.

Because the chemical potential of the radiation cannot

exceed the lowest photon energy that forms the radiation, we

have: lc < Ub � E2.8 For the optimized one-step QW,

lc < 0:57 eV, and consequently, we must have lsc < 0:57

eV, if improvement in efficiency is expected.

Unfortunately the proposed QW structures are not deep

enough to satisfy thermodynamical demands. If Ub was

higher then the lsc, lc could have taken higher values and

consequently, the efficiency improvement would be higher.

For values of lc around 0.8 eV efficiency improvement is

around 3%. Also, a higher value of lc gives the possibility

for higher value of lsc which is optimal around 7.2 eV.

B. Analysis of the target function

To gain a better understanding of the requirements for the

optimal structure, we proceed with the analysis of the target

function (Eq. (18)). As presented in Fig. 2, Ep � Eq � 0:56

eV, i.e., DE � 0. From Eq. (19), it can be concluded that for a

small values of DE, the integral function increases. However,

DE determines only the first part of Eq. (19). Therefore, KðEÞ
and HðEÞ must also be examined. Those functions are given

in Fig. 4 for the optimal quantum well structure from Fig. 2.

In the limit Cc1 ! 0, the value of HðEÞ (Eq. (21)) amounts to

pdðE� ErÞ. Thus, for the small values of Cc1, HðEÞ and con-

sequently DðEÞ, have a peak at the energy Er. This peak can

be noticed in Fig. 4, but it is small when compared to the first

peak of the sub-integral function DðEÞ. The first peak is usu-

ally determined by a peak of KðEÞ function, which is always

placed very close to the barrier top. This is somewhat

expected because the continuous states are slow oscillating at

the lower energies part of the continuum spectra. It rises very

fast due to phase fitting and then slowly falls down to zero.

However, there are cases when the peak at Er is dominant.

Such situation occurs when the pack of KðEÞ has smaller val-

ues and while the same functions acquire generally higher

FIG. 3. The optimized double QW with respect to vð2Þzzz .

FIG. 4. Left energy function that explicitly involves bound to continuumma-

trix elements for the optimized step quantum well from Fig. 2. Right:

sub-integral function of the energy for the continuum states of the same QW.

063713-6 Prodanović et al. J. Appl. Phys. 110, 063713 (2011)

Downloaded 03 Jul 2013 to 129.11.21.2. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jap.aip.org/about/rights_and_permissions



values toward the infinity. Which peak is dominant should not

be very important for the optimal value of Eq. (18). It turns

out that for all the optimized QWs considered here, the first

peak is always dominant. It suggests that DðEÞ is not strongly

dependent on the parameter Cc1 which cannot be chosen with

high accuracy anyway.

Ideally, for the proposed systems, both peaks should be

at the same energy. This could be obtained for deeper QWs.

The first peak is always very close to the top of the barrier as

indicated in the preceding text. The position of the second

peak is determined by the position of the first bound state. In

the case of deeper QWs, it is expected that the first bound

state is generally around the same position, and therefore Er

is closer to the top of the barrier. As a result, peaks would be

multiplied and integral value would be higher.

IV. CONCLUSION

The optical up-converter for enhancing the silicon solar

cells efficiency based on the InAs/AlInAs asymmetric step

QW structures, taking into account critical layer thickness as

constraint, was proposed and optimized. The optimization

was done by using the genetic algorithm, which leads to the

maximization of target function in the form of second order

susceptibility of the QW, for the light frequencies that are

suited for the desired photon conversion. The second order

susceptibility was derived from the density matrix formal-

ism, while the relevant electron states were calculated using

8-band k�p Hamiltonian.

Ideally, QW up-converter should have three bound

states where desired nonlinear effect would be more effi-

cient. Unfortunately among zinc-blende III-V materials such

QW structure cannot be identified. Therefore, in future work

one should seek a material combination that can provide a

sufficiently deep well. Possible candidates are wurtzite III-N

compounds, which require different modeling. However, the

choice of continuum states as the “third state” has proven

that the optimization may also be done automatically for

nearby continuum states, which would physically improve

the nonlinear effect.
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