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We report on the existence of a bound state in the continuum (BIC) of quantum rods (QR). QRs are
novel elongated InGaAs quantum dot nanostructures embedded in the shallower InGaAs quantum well.
BIC appears as an excited confined dot state and energetically above the bottom of a well subband
continuum. We prove that high height-to-diameter QR aspect ratio and the presence of a quantum well
are indispensable conditions for accommodating the BIC. QRs are unique semiconductor nanostructures,

exhibiting this mathematical curiosity predicted 83 years ago by Wigner and von Neumann.
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1. Introduction

Semiconductor quantum dots exhibit full 3D confinement for
carriers, giving a few bound integrable states with a discrete spec-
trum below the barrier, and free non-integrable states with contin-
uum spectrum above the barrier. Quantum dots are often referred
to as “artificial atoms” due to their discrete part of spectrum and
discrete optical resonances arising from transitions between bound
orbital states. Both atoms and quantum dots can be ionized, when
electrons gain sufficient energy to escape the binding potential,
and subsequently occupy free states — in vacuum in the case of
atoms or bulk in the case of quantum dots.

However, boundedness and discreteness of an orbital state in
quantum dots do not come necessarily together. We show in this
Letter that novel semiconductor nanostructures, so called quan-
tum rods, exhibit bound excited state with an energy embedded in
the continuum of other free electronic states, above the ionization
threshold. This is a so called bound state in continuum (BIC). There
are various types of BIC reported since the foundation of quantum
mechanics, but none of them were reported for atomic or con-
densed matter systems. In what follows, we state only a few. The
first prediction originates back to 1929 when von Neumann and
Wigner showed such a possibility by mathematical construction of
a bounded potential accommodating a BIC [1]. This issue was revi-
talized by Stillinger and Herick [2] pointing out, 46 years later, that
a BIC could occur in some specific molecular systems. The first
artificial semiconductor nanostructure accommodating the bound
state above ionization threshold, was reported in Ref. [3]. This
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bound state was argued to be a consequence of Bragg reflection
due to the superlattice. Even though above the barrier, this state
wasn’'t surrounded by a continuum of states and it was strictly
speaking a quasi-bound state with free motion in the lateral direc-
tion. Some theoretical proposals and proofs for the BIC existence
were reported for more complex quantum mechanical systems. For
example, coupled system of electrons and nuclei in molecules [4]
was considered. BIC, as an quantum mechanical interference effect
can occur in various abstract models. Some examples of theoreti-
cal abstract systems that support BIC were reported in Refs. [5-10].
Experimentally, only photonic crystal systems with the BIC were
reported [11,12]. A theoretical design of one-dimensional photonic
heterostructure, supporting the BIC was provided in Ref. [13].

In what follows, we briefly describe the geometrical and com-
positional properties of quantum rods, and based on that we pro-
vide proof for BIC existence. The type of BIC which occurs in quan-
tum rods is somewhat different from the majority of BICs reported
in the literature. The most similar system supporting the BIC was
reported by Robnik et al. [14], and one could say that the BIC re-
ported here represents the 3D generalization of the 2D potential
theoretically constructed in [14]. The rest of the Letter is dedicated
to the discussion of possible interesting features arising from BIC
existence, together with available experimental data and conclud-
ing remarks.

2. Quantum rods

Quantum rods are elongated InGaAs quantum dots embedded
in a InGaAs quantum well sandwiched by two GaAs bulk regions.
Details of the QR fabrication can be found in Refs. [15-17]. A sim-
plified model for geometric and compositional properties of these
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Fig. 1. Simplified geometric model of a quantum rod. Cylindrical symmetry is as- 20 10 P ?nm] 10 20

sumed, so the entire structure can be depicted within the z-p plane. Indium con-
tent of the dot region is larger than in the well region, i.e. x < y.

nanostructures is presented in Fig. 1. This structure consists of
GaAs/InGaAs quantum well of width h over the region between
—h/2 and h/2. The quantum dot is positioned within the quan-
tum well so that the bulk region is above and below the dot in the
z-direction and the quantum well is surrounding the rod in the
radial direction. The entire structure is optically active giving the
combined features of dot, well and the bulk as it is obvious from
PL measurements [16,18]. The height of the rod and the width of
the surrounding well are the same. This simplified model assumes
that entire structure is cylindrically symmetric, even though such
strict symmetry hasn’t been reported. However, the general con-
clusions that follow do not depend on the exact shape of the rod
basis. Therefore, we choose the circular shape of the basis in order
to simplify theoretical consideration. The quantum rod has higher
In content then the surrounding quantum well which makes the
dot energetically deeper than the surrounding well.

3. Bound state in the continuum

One can naively expect that the quantum rod would accommo-
date bound states only below the quantum well barrier in the ra-
dial direction. However, due to bulk confinement in the z-direction,
bound states could also appear with energies above the well bar-
rier where also well continuum states are present giving the BIC.
Such a situation resembles the one from Ref. [3] where a bound
state occurs above the barrier of a superlattice, but it isn’t sur-
rounded by continuum states because the state itself is an impurity
state in the superlattice, spaced from the continuum superlattice
bands. Also, such a BIC is strictly speaking a quasi-bound state.
We prove that in the case of a quantum rod, such state above
the barrier is indeed surrounded by the continuum and is indeed
bound for a wide range of parameter space.

Existence of the BIC in quantum rods is purely due to the inter-
play of the combined well and dot confinement. In order to prove
this statement, consider the idealized quantum rod structure pre-
sented in Fig. 1. The quantum rod is considered isolated from the
other quantum rods. We assume cylindrical symmetry of the en-
tire structure, and the value of the embedding bulk barrier is set to
infinity. The assumption of infinitely high bulk walls does not af-
fect the general conclusion since the same conclusion follows from
the full 8-band k - p model where the values for all barriers in the
structure were taken with precise offsets and included strain ef-
fects. Now it becomes clear that this simplified model of realistic
quantum rods presents the 3D generalization of the 2D potential
constructed by Robnik et al. [14] in order to obtain the BIC, with
the quantum well as escaping channel. However, it was pointed
out in the same reference that existence of BIC in such potential
is sensitive to perturbation, especially the one which might break
the parallel geometrical shape of escaping channel. That shouldn’t
be a problem in this case, since the existence of quality quantum
well seems very eminent, and the walls of quantum well escaping
channel can be considered parallel to the infinity.

Fig. 2. Illustration of the energy span where a BIC can occur. The effective po-
tential Uegs for the remaining one-dimensional radial eigenproblem is given for
=0 and n=1,2. For n =1 continuum states or quasi-bound well states oc-
cur for E > Uy + AU. For n =2 bound states might occur for E < Up + 4AU,
whereas continuum states occur for E > Uy + 4AU. Therefore the excited bound
state in the well quasi-band continuum might occur for energies in the range
Up + 272 /2myh? < E < Up + 20272 /myh2.

In this simple model we solve one spinless electron single-band
envelope function equation in polar coordinates:

o1
—V V+E EZ "4 =EY 1
(2 —r +Ec(p) + c(Z)) (r) (r) (M
where
_ |0 forp<po
EC(’O)_{Ub for p > po
and
_h h
EZ(2) = 0 for 2<hz<2 .
oo forz<-—zorz>3

Values of the effective mass m,(r) are my and my, in the dot and
the well respectively. In the bulk, where the value of the poten-
tial is set to infinity, the value of the effective mass is unnecessary.
The potential offset between dot and the well region is Uj. Pa-
rameters po and h are the radius and the height of the QR. Due
to infinite bulk barrier and cylindrical symmetry, one can sepa-
rate the variables of the wavefunction ¥ (r) = @ (¢)Z(z)R(p). Fur-

thermore, the solutions for ®(¢) and Z(z) are ®y(¢) = \/%e“‘f’

and Zn(z) = \/%sin(%(z—i- %)) where we introduce good quan-
tum numbers | and n, integer and positive integers respectively.
The remaining Schrédinger-like equation in the radial direction
reads:

1d p d

— 7 "R,
2 pdpme(p) dp M)
h? (n’n? P
+ (Ec(P)—E'Fm(h—Z'FF))RnI(P):O (2)

We provide the full solution to Eq. (2) in Appendix A. In order
to maintain the simplicity, we will demonstrate the existence of
the BIC by considering only the case with [=0 and n=1, 2.

The effective potential for the last eigenproblem in Eq. 2 is
the expression given in brackets. The effective potential for n =1
is Uefr(0) = Ec(p) + AU(p), where AU(p) =h?m?/2m,(p)h? and
for n =2 it is Uefr(0) = Ec(p) + 4AU(p). The effective potential
for =0 and n=1,2 is given in Fig. 2. Note that the effective
mass depends only on the radial coordinate since the value of the
effective mass in bulk is irrelevant due to infinite potential.

For n =1 continuum states or quasi-bound well states occur
for E > Up 4+ h?w?/2myh?. For n =2 bound states might occur
for E < Up + Fl22n2/mwh2, whereas continuum states occur for
E > Up+2h?m2/m,,h?. Therefore, the excited bound state for n = 2
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in the well quasi-band continuum for n =1 (above the ionization
threshold) might occur at an energy between Up, + hzrrz/Zmth <
E < Up + 2h*w2/my,h%. Note that the first bound states for [ =0,
n=1,2 are so called s-like and p-like states as often referred to in
literature. We give the numerical example of this p-like BIC in the
next section.

4. Numerical results

In our previous work [19] we have calculated detailed elec-
tronic structure of the realistic quantum rods grown in [16] by us-
ing the 8-band k - p method with strain effects included. In this
Letter we will use one-band model derived in previous chapter in
order to demonstrate the existence of BIC and 8-band results will
be used as a supporting reference.

For the fabricated rods reported in Ref. [16], the In content in
the dot and the well is typically 0.45 and 0.16, respectively, and
their radius was estimated to be around 5 nm. For such a structure
we have extracted the value of dot-well band offset Uy, = 120 meV,
using the full 8 band k - p model with strain effects included [19].
The height of the rods from Ref. [16] is in the range 10-40 nm.

In the following, all energies are referenced to the bottom of
the conduction band of the rod material. For the typical rod height
of 10 nm, the continuum for n =1 starts at 182 meV, and the p-
like bound state for n = 2 is below the n = 2 continuum, starting
at 356 meV. The splitting between s-like ground state and p-like
first excited state (which is the BIC) is 200 meV. For the same
rod, but with 15 nm height, we find 2 additional bound states, for
=0 and n =3 and 4, which are also embedded in the contin-
uum. There are no discrete states solutions for [ > 0. By increasing
the rod height we generally get more bound states in the con-
tinuum, since new bound states with higher values of n appear.
However, the energy of all bound states gets lower with increas-
ing the quantum rod height [19], and consequently bound states
with the lowest n might sink under the n =1 continuum, ceasing
to be BIC. Also, by increasing the rod radius, additional states may
appear with higher value of quantum number I. These states may
also become BIC.

Energy diagram of a 10 nm tall rod calculated by 8-band model
is presented in Ref. [19]. Energy diagram clearly show the exis-
tence of the BIC. The higher the rod, the higher is the excited dot
state embedded in continuum. For the 10 nm tall rod, the split-
ting between ground state and the bound state in the continuum
is 150 meV. Higher value of s-p splitting is due to infinite po-
tential barrier in growth direction which was realistically taken to
be finite in 8-band model. In this work we used one-band model
with infinite barriers as a default model in order to get insight in
physics arguments of the BIC existence.

Therefore, we proved the existence of the bound state in con-
tinuum as a sole consequence of combined well-dot confinement,
and for a wide range of structure parameters, especially the ad-
justible rod height.

5. Discussion

The above consideration shows that BIC occurs for higher val-
ues of the quantum number n, i.e. BIC has at least one node in
the growth direction. The quantum rod must be sufficiently tall in
order to support at least two bound states (s-like and p-like) local-
ized in the dot due to the growth confinement, i.e. with quantum
number n > 0. With increasing quantum number n, the effective
potential Uegr(p) = Ec(p) + AU (p) might become a barrier instead
of a well, since my < m,,. Therefore, the upper bound on a value

. . P h Ub mymy
of n for which BIC exists is imposed n < /F#fma where m,,
and my are effective masses of the well and the dot respectively.

We also conclude that confinement in the growth direction has to
be stronger than the confinement in the radial direction caused
by the shallower well. At the same time, well subbands may have
energies lower than the bulk barrier, opening the possibility that
their energy equals the energy of the excited bound state of the
dot.

In similar nanostructures, quantum dots in a quantum well
(DWELL), this effect does not exist. Conventional quantum dots
have very low height to diameter aspect ratio and an excited
bound state is guided by the radial confinement, i.e. the excited
bound states have nodes in the radial direction and there is no
bound state with nodes in the growth direction. Therefore, energy
of such an excited state cannot be higher than the well barrier
in the radial direction. One thus concludes that quantum rods are
unique semiconductor nanostructures with 3D bound state in con-
tinuum as a consequence of their distinct features: high value of
height-to-diameter aspect ratio and existence of the shallower sur-
rounding well.

We have previously shown in Ref. [19] that only the growth-
polarized light can excite an electron from the ground dot state
in the conduction band to the first excited dot state which can be
set to be BIC for particular heights of the rod. This is so called
s—-p-like optical transition. Such a transition is expected to be a
single broadened line. We argue that homogeneous broadening is
expected to be high due to effective interference of the continuum
with the bound state via phonons. We also argue that asymmet-
rical lineshape of such optical resonance should be expected, also
a consequence of interference of the continuum and p-like bound
state along the resonant s-p transition. However, we do not expect
that asymmetrical lineshape is observable due to high broadening
and other resonances.

Intraband resonances of quantum rods were investigated in
Ref. [17], where the rods were charged with several electrons,
enough to completely fill the 3D confined states below the well
barrier. Authors then used growth-polarized radiation to excite
electrons, and they recognized a clear difference between well
and dot resonances. The leading rod resonance comes from tran-
sition from excited and fully charged rod states to unoccupied
states higher in the conduction band. However, authors in Ref. [17]
argued that electron-electron interaction in fully charged rods
shifts the bound electronic states to higher energies. Detailed the-
oretical examination of that situation is required due to electron-
electron interaction which is responsible for perforation of the 2D
electron gas, i.e. continuum. Nevertheless, the short lifetime of
the BIC via fast scattering into the well subband was indicated
in Ref. [17]. It is intuitively clear that such fast scattering occurs
due to the availability of the continuum of free states around the
energy of the BIC.

Altogether, one can conclude that carriers from the bound
quantum rod state can be efficiently scattered into the continuum
of the well by strong optical resonance due to ground state-BIC
transition and coupling between the BIC and surrounding contin-
uum. The similar effect, where strong optical resonance can trigger
ionization from bound-like state to continuum state where carriers
can freely move was explained in Ref. [20] for the case of 1D su-
percrystal formed of the vertically stacked self-assembled quantum
dots. Specifically, first supercrystal miniband occurs in the barrier
gap and second one in the conduction band. Optical transitions be-
tween these two minibands are strong since those minibands were
formed of s-like and p-like states respectively. Therefore, this struc-
ture, if constructed as solar cell, exhibits increased efficiency due
to strong transitions between first miniband burried in the barrier
gap and second miniband buried within the conduction band con-
tinuum. In addition, strong optical transitions between below-the-
barrier and above-the-barrier bound states were observed experi-
mentally in Ref. [3] in a Bragg-confined quantum well structure.
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Fig. 3. Illustration of the polarization-independent terahertz photodetector. In this
geometry, the electric field due to the bias on contacts is in the lateral direction.

These exotic optical properties of the BIC could allow experi-
mental observation of the BIC and associated effects. The simplest
version of such an experiment is based on doped structures with
up to one electron per rod. In such a case, intraband optical tran-
sitions at low temperatures are limited to the transitions from
the ground state. One could measure the absorption of far-infrared
light in such doped quantum rods at low temperatures for two lin-
early polarized directions of incident light. We have also shown in
Ref. [19] that radially polarized light can excite the electron from
the same ground dot state to the first well subband. This transition
is not expected to be a single broadened line due to the continuum
of the well subband, but resonances are expected to start at an en-
ergy corresponding to the bottom of the first subband of the well.
If these resonances for the radially polarized radiation were at
lower energy than the first resonance for the growth-polarized ra-
diation, this would present a clear evidence that the excited bound
state has a higher energy than the minimum of the well subband,
proving the existence of BIC.

Finally, we will briefly discuss a possible application of this ef-
fect. If an electron, excited into the BIC, efficiently scatters into
the well subband, as indicated in Ref. [17], then a radially di-
rected electric field can be used for efficient transport of carriers
in the lateral direction. Strong optical resonance for the growth-
polarized radiation is due to bound-to-bound transition and effi-
cient transport can occur via radially free state channels around
the excited bound state. On the other hand, for radially polarized
incident radiation, carriers are excited directly into the well sub-
band [19], from which they can be easily extracted by a lateral
electric field. Therefore, strong resonance and efficient transport
can be obtained for either polarization of the incident light, paving
the way for polarization-independent terahertz detector. Such a
detector is schematically depicted in Fig. 3. Contacts are positioned
so to provide a lateral electric field. Upon absorption of the inci-
dent radiation the electron concentration in the well increases and
leads to a photocurrent. However, strong reverse process was in-
dicated in Ref. [21] that carriers in the conduction band of the
well and bulk also efficiently scatter into the rod which can de-
grade the effect of detection. Therefore, this proposition for the
efficient photodetector utilizing bound-to-BIC transition still needs
to be carefully examined.

6. Conclusion

In summary, we proved that quantum rods can accommodate
the excited normalizable state, energetically embedded in the con-
tinuum of the subband of the quantum well embedding it, where
the electrons can be ionized into. We proved that existence of such
states is entirely due to the interplay of two different types of
confinement, namely the dot 3D confinement and the well confine-
ment in the growth direction. We indicated that QRs are unique
structures with this exotic mathematical property. As recently re-
alized structures, quantum rods have not been extensively studied

leading universities. V.M. acknowledges the support by Ministry
of Education and Science, Republic of Serbia (Project 11145010).
Authors acknowledge support of NATO Science for Peace and Secu-
rity project EAP.SFPP 984068 and European Cooperation in Science
and Technology (COST) Actions BM1205 and MP1204.

Appendix A. Full solution to the model

In this appendix we provide the full solution to the radial equa-
tion (2). It can be rewritten as

d’R(p) , dR(p)
2
dp? TP dp +

where the radial wavenumber depends on quantum number n only
and is defined as

0 (K2 ) P2 —B)R(p) =0 (A1)

2 2mygy
(kg/w) zﬁ—zw

Subscripts d and w refer to the dot and well domain, respec-
tively. All material parameters are constant within each of these
regions. For a fixed n, the wavenumber squared for the dot region

2,22
hnn] (A2)

R e

(k%)? is positive in the range of energies E > hzznﬁﬁzz- However. the
wavenumber squared for the well region (k%,)? is negative in en-

i 2,22
ergy interval E < Up + thTWZZ )

Therefore, the solution for an energy in the interval ﬁzznngzz
E<Up+ Z;’::VZZZ reads
— Cl jl(kgp) for £ < Po

Ru(p) = { C2K1(K‘T}V,0) for p > po (A.3)

where we used the standard Bessel function notation and intro-
duced (lca,/d)2 = —(k"jv/d)2 which is positive real number for the
considered energy interval. The Bessel function of the second kind
Y, and modified Bessel function of the first kind I; are absent from
the solution due to their divergent behavior in corresponding do-
mains. Boundary conditions at p = pg are the continuity of radial
wavefunction and continuity of its derivative divided by effective
mass, and lead to homogeneous system of linear equations in Cq
and C, which has a solution if

Kl d ki d
- k) — (Ki(00k™)) = —% K (oK) — K" A4
— Ji(po d)dp( 1(poky)) mg 1(0 d)d,o (Ji(ooky)) (A4)
By solving this transcendent equation one obtains the discrete
energy spectrum for fixed n and [ and those solutions are num-
bered with index j. Eq. (A.4) has to be solved in the energy range

2,22 2,22 . .
Wn'n’ « E < Up + B0 but further narrowing of this range ex-
2mgh 2myh

ists for | # 0. Taking into account the condition that energies of
discrete levels have to be above the minima of effective potential
one can show that narrowed energy range for solving Eq. (A.4) is

% nn? | 2 h2n2m?
2mg (e +p§)<E<Ub+2mwh2'

Each discrete energy defines the radial wavenumbers er/d

and K:f/d which do not depend explicitly on [ (only implicitly,
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via the so!utions for discrete spectrum). The corresponding radial On the other hand, if Uj 40 L fhrzz Zmd (q Li ) then bound
wavefunctions are h2p2?
¢ Jz(kgjp) for p < po state in the czonztmuum occurs for energies satisfying Up + Tmol? <
Ruij(p) = Iilzkd £0) K (K ,0) for p > o (A.5) E < Uy + 2m e
where the Cq is determmed by normalization. References

For the remaining range of energies, i.e. E > Uy + h "2”2 the

spectrum is continual and for each energy the correspondmg radlal
wavefunction is

Ryg(p) = C1Ji(kjp) for p < po
mEL) =0 ¢y J1(KR, p) + C3Yi(KD, o) for p > po

By using the same boundary and normalization condition one
can obtain the constants Cq, C» and Cs. There are infinitely many
continuum states for any energy counted by quantum number I,
in contrast to discrete part of the spectrum where boundary condi-
tions do not allow solutions to exist for values of quantum number
I higher than some critical value. Such upper bound to the quan-
tum number [ depends also on quantum number n. For increasing
value of n, the upper bound of | decreases and eventually there
will be no discrete states for some critical value of quantum num-
ber n.

Consider now the general case of discrete states with quan-
tum numbers n =g, and | = q;. Such states can occur in the

(A.6)

2 2.2 2 2,22
energy range zﬁﬁ(q’ﬁ + Z_IS) <E<Up+ ng:vjsz (It is implicitly

2 2
assumed that g, and q; are small enough so ;Td(q';g

qi
+ 3y <
pS)

Up + Zj:ﬁ’;j .) We want to find the conditions for which the con-
tinuum with quantum number n = p can embed the given bound
state. The continuum with quantum number n = p exists for ener-
2p252 i(qgﬂ i
2m nZ < 2mg\h2 n2”
then a bound state W1th quantum numbers n =q, and | =¢q; can
occur in the continuum of quantum number p in the range of en-

. W q2n? @ Wq2n?
ergies 5o (%= + p—fg) <E<Up+ TR
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