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Relationship between electron-LO phonon and electron-light interaction in quantum dots
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The relationship between the Frölich electron-LO phonon interaction and the electron-light interaction in the
conduction band of quantum dots (QDs) based on polar semiconductors is investigated and used to parametrize
the intersublevel polaron lifetime. Based on this, the ratio of the optical gain cross section and nonradiative
lifetime is described in terms of the QD geometrical and compositional parameters, which is important for
possible intraband lasing transitions in QDs.
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I. INTRODUCTION

In the last two decades, quantum dots have attracted
considerable attention as potential candidates for improved
lasing properties compared to their quantum well counterparts.
The modified density of states due to the 3D quantum
confinement increases the efficiency of lasing in comparison to
the standard 1D confined structures, i.e., the quantum wells.1,2

Experimental evidence that the system with truly discrete
states should have a lower threshold current comes from the
extremely low threshold currents observed in quantum-well-
based quantum cascade lasers in the strong magnetic field.3,4

In Refs. 5 and 6 it was suggested that the dominant transition
observed in the PL spectra is the transition between s-like
and p-like states, which was based on numerical calculation
of electronic states and optical matrix elements within the
dipole approximation. There have been several reports on the
observed intraband photoluminscence based on the s-p-like
transitions in the quantum dot cascades.5–7 Room temperature
intraband photoluminiscence was observed in Ref. 8. However,
lasing has not yet been observed.

Several theoretical proposals have been made for an
intersublevel quantum dot cascade laser. They are either 2-level
systems utilizing the s-p-like resonant transition for lasing9–11

or 3-level systems12 with the lasing transition between higher
excited states in the quantum dots (QDs). The resonant s-p-like
transition might be used for lasing in future designs of the QD
intersublevel emitter. If not, we will here restrict considerations
to this transition and the derived theory can be applied to other
cases with a few modifications.

This resonant s-p-like transition requires a detailed inves-
tigation in terms of the radiative and nonradiative transition
strengths. In order to obtain lasing, the strength of the radiative
transition has to overcome population inversion losses due to
nonradiative transitions. Therefore, the theoretical description
of radiative and nonradiative relaxation processes is crucial,
and it would be convenient to provide a theoretical insight
which incorporates both nonradiative and radiative transitions.

The dipole approximation of the electron-radiation cou-
pling has been widely accepted and used for the absorption and
emission processes in various semiconductor nanostructures.
The dipole approximation assumes that the light wavelength
is substantially larger than the dot size, and therefore the
electromagnetic field can be considered as spatially constant.

On the other hand the main source of nonradiative tran-
sitions comes from the electron-phonon coupling. Phonons
behave as waves in the same manner as photons, and their
second quantization is performed analogously.

The dominant electron-phonon interaction is Frölich in-
teraction of electrons and longitudinal optical (LO) phonons.
The Frölich interaction can be viewed as interaction of an
electron and electromagnetic wave induced by dipole-like
LO phonon vibrations. This sets up an analogy between the
electron-phonon and the electron-photon interactions. The
fundamental difference is that wave vectors of the relevant
phonons are larger than those of photons and the dipole
approximation does not hold for phonons.

Detailed theoretical predictions on the key nonradiative
relaxation processes in the QD structures caused by Frölich
interaction have evolved, relying on an increasing amount
of available experimental data. First, it was thought that
due to the discrete nature of the electronic structure and
the nearly constant energy of LO phonons, the so-called
phonon bottleneck would occur.13 However, a great amount
of experimental data showed the absence of this effect.14,15

Magneto-optical experiments in Refs. 16 and 17 showed
that QDs behave like complex condensed matter systems
where electrons and phonons interact strongly via polar Frölich
coupling, thus forming quasiparticles, so-called polarons.
Therefore, the simple picture of weak electron-phonon interac-
tion was not appropriate.18,19 The most prominent theoretical
justification for a short lifetime of excited carriers in QDs has
been presented in Refs. 15 and 20, where the lattice anhar-
monicity perturbation enables the energy exchange between
different polaron modes, thus enabling relaxation toward the
thermodynamical equilibrium.

The electron-phonon interaction remains the fundamental
factor governing excited carrier nonradiative relaxation in
QDs. The main aim of this work is to develop a simple model to
establish a relationship between the radiative and the nonradia-
tive transition strengths of carriers in QDs. The basis for it is a
similar physical electromagnetic interaction between electrons
and phonons, and electrons and photons. We will elaborate
the relationship between these two interactions, and a short
review of finite polaron lifetime theory will follow together
with a model for optical gain and absorption coefficients. The
model will then be used to derive important conclusions on
the geometrical and compositional optimization of QDs as
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possible active media. We will also underline the important
role of state-of-the-art postgrowth fabrication modifications
of QDs such as rapid thermal annealing21 or quantum rod
elongation22,23 in future optimizations.

II. THE RELATIONSHIP

Since we are intrested only in s-p-like resonant coupling
we introduce a reduction of the one-electron subspace into
only the ground and the first excited electron states. Those
electronic states will be further labeled with |ψa〉 and |ψb〉, or
shortly |a〉 and |b〉, with energies Ea and Eb.

In this two-level system, the most important parameter re-
garding the electron-light interaction in dipole approximation
is coordinate matrix element Rab = ∫

d3rψ (a)∗(r)r̂ψ (b)(r)
and will be referred to as a “dipole coupling vector.” On the
other hand, the same parameter for the Frölich interaction of
the electron with the LO phonon mode with wave vector k is
Hk

ab = ∫
d3rψ (a)∗ eik·r

k
ψ (b) and will be referred to as a “Frölich

coupling function” (FCF) on wave vector k. The main aim here
is to find a relationship between the dipole coupling vector Rab

and Frölich coupling function Hk
ab.

In quantum dots, due to confinement, the Frölich coupling
function falls rapidly to zero even for relatively small values
of wave vector k. It behaves as a distribution function with
p-orbital-like shape with the maximum value in the limit k →
0. With the aim of estimating this value, one has to expand the
expression for the Frölich coupling function as

Hk
ab =

∫
d3rψ (a)∗ cos k · r

k
ψ (b) + i

∫
d3rψ (a)∗ sin k · r

k
ψ (b)

= 1

k

∫
d3rψ (a)∗ψ (b) + iek ·

∫
d3rψ (a)∗rψ (b)

− k

2

∫
d3rψ (a)∗ (ek · r)2 ψ (b)

− i
k2

6

∫
d3rψ (a)∗(ek · r)3ψ (b) + · · · , (1)

where the second equation represents the Taylor series of sine
and cosine functions, and ek = k

k
.

Given that electronic states |ψa〉 and |ψb〉 are states with
a dominant optical transition—i.e., the intensity of the dipole

coupling vector between these two states, Rab, is significant—
then, in most cases, one concludes that states ψ (a) and ψ (b) have
well-defined and opposite parity. Therefore, in such a case, the
first term in Eq. (1) vanishes and one gets

Hk
ab = i

(
ek · Rab − k2

6

∫
d3rψ (a)∗(ek · r)3ψ (b) + · · ·

)
.

(2)

In the limit k → 0 expression (2) becomes

Hk
ab = ek · Rab. (3)

Hence, the maximum of the scalar field Hk
ab is proportional to

the intensity of the dipole coupling vector, and is at k → 0.
It should be pointed that the FCF is singular at k = 0,

and also the vector k does not have a defined direction, and
therefore the expression ek · Rab is not defined. However, the
factor ek · Rab indicates that even for small k the distribution
Hk

ab has a strongly anisotropic behavior. For k pointing in
the direction of the dipole coupling vector, the FCF exhibits
the weakest negative slope. This slope is increasing with
increasing angle between k and the FCF and decays rapidly
to zero when k becomes almost perpendicular to the dipole
coupling vector. In the limit where k is exactly perpendicular,
the FCF is zero. All these features prove that the FCF has a
p-orbital-like shape. This was indeed expected, since the FCF
is essentially a Fourier transform of an even function.

One can demonstrate these statements by taking a simple
example of a hard-wall cuboidal quantum dot where it is
possible to calculate analytically Hk

12 between the ground and
the first excited state. The results for the quantum box of height
20 nm and square basis side of 15 nm are presented in Fig. 1(a)
in the kx-kz plane without losing generality. The FCF behaves
in the same way in the direction kx as in ky , for a square base
case.

Therefore, we can model the Frölich coupling function by
a bell-shaped distribution function, with the maximal value
at k → 0 proportional to the intensity of the dipole coupling
vector and multiplied by the ki

k
, where i denotes the direction
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FIG. 1. (Color online) (a) The Frölich coupling function for a hard-wall box calculated in the kx-kz plane. The height of the dot is 20 nm
and the square basis side is 15 nm. (b) The Frölich coupling function modeled by a Gaussian with fitted line width inversely proportional to the
dot dimensions of the hard-walled QD. The whole Gaussian is multiplied by the cosine of the angle between k and kz.
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of the dipole coupling vector. This model gives∣∣Hk
ab

∣∣ = |Rab| kz√
k2
x + k2

y + k2
z

I(k), (4)

where I(k) is the anisotropic distribution function with
maximum I(0) = 1. Therefore, we have parametrized the FCF
via two factors. One is the dipole coupling vector Rab which
is a well-known spectroscopic quantity, and the second is the
distribution function with the property I(0) = 1. All details of
the quantum dot are hidden in the width and line shape of this
function. We will show later that the most important quantity
regarding nonradiative relaxation is the integral of the squared
absolute value of distribution function. This is why the exact
line shape has a limited significance. On the other hand, we
will show that widths of the distribution functions are closely
related to the size of the quantum dot in the corresponding
direction.

III. POLARON STATES

Electrons and LO phonons are in a strong-coupling regime
in the polar semiconductor quantum dots.16,24 The full Hamil-
tonian to be considered accounts for the Frölich coupling
between electrons and LO phonons, i.e.,

H = He + Hph +
√

e2h̄ωLO

2V

(
1

ε∞
− 1

εst

)

×
∑
ij k

Hk
ij â

+
i âj (b̂k + b̂+

−k), (5)

where He is the electronic part of the Hamiltonian, Hph is
the phonon part of the Hamiltonian, b̂k and b̂+

k are phonon
annihilation and creation operators, and âi and â+

j are the
corresponding operators for electrons. It has been argued
that one has to diagonalize this full Hamiltonian in order
to obtain agreement with results obtained in magneto-optical
experiments.15–17

The diagonalization procedure from Ref. 19 has been
adopted here. The Hamiltonian, Eq. (5), commutes with the
electron number operator N̂ and therefore can be solved in
each subspace for a constant number of electrons. Therefore,
the one-electron limitation is introduced here together with the
two-level system explained above.

The eigenstates of the trivial case of the Hamiltonian
without electron-phonon interaction is a simple uncorrelated
eigenbasis formed by the direct product of a pure electronic
eigenstates and pure phonon eigenstates. When it comes to
the full Hamiltonian, as has been proved in Refs. 17 and 19,
only a finite number of LO modes couples with a finite
number of electronic states in the nondispersive phonon modes
approximation. For two-level electronic systems only three
LO modes are considered. Their further orthonormalization25

and proper unitary rotation give three new modes which
are coupled to a two-level system with one electron. Only
one mode couples the s-p resonant transition to the classical
emission or absorption of one phonon and will be denoted as
B1. The second mode couples the s-p resonant transition with
the self-translation which gives rise to the Franck-Condon
factors.19 It will be denoted as B

γ

2 where the parameter γ

represents translation. The third mode is properly translated
so it does not couple to the resonant s-p transition in the one-
electron case and can be omitted from further consideration.

Further space reduction was obtained in Ref. 19 by
introducing the rotating wave approximation, by choosing
only the coupling states differing by the detunings δ± =
Eb − Ea ± h̄ωLO. The first state has the electron in state b

and “certain phonon configuration.” The second state has
the electron in state a and the same phonon configuration,
with only one additional phonon in mode B1 and “translated”
mode B

γ

2 with the same occupation number. The relationship
between these translated and initial modes is determined by
general Franck-Condon factors. By neglecting the polaronic
shift terms, it is possible to obtain approximate analytical
solution of any such 2 × 2 Hamiltonian. Thus, the basis
considered is

|2′〉 = ∣∣b; n0
1; nγ

2

〉
, |3′〉 = ∣∣a; n0

1 + 1; n0
2

〉
,

where n1 = n2 = 0. We additionally take two adjacent states
into account, namely the ground state a with zero phonons
(i.e., uncorrelated ground state) and its coupling state b with
one phonon in mode B1 and the “translated” mode B

γ

2 with
the same occupation number:

|1′〉 = ∣∣a; n0
1; n0

2

〉
, |4′〉 = ∣∣b; n0

1 + 1; nγ

2

〉
.

The superscript at the phonon modes denotes translation of
the mode from the bulk one. Enumeration of the basis states is
made to order the states according to their increasing energy;
i.e., we consider the case where the detuning is δ− < 0.

The solution of this model is also given in Ref. 19 and it
reads

|1〉 =
√

1

2

(
1 − δ+

R+

)
|4′〉 +

√
1

2

(
1 + δ+

R+

)
|1′〉,

|2〉 =
√

1

2

(
1 − δ−

R−

)
|2′〉 −

√
1

2

(
1 + δ−

R−

)
|3′〉,

|3〉 =
√

1

2

(
1 + δ−

R−

)
|2′〉 +

√
1

2

(
1 − δ−

R−

)
|3′〉,

|4〉 =
√

1

2

(
1 + δ+

R+

)
|4′〉 −

√
1

2

(
1 − δ+

R+

)
|1′〉,

where R+ =
√
δ2
+ + 4|Fγ

n Cab|2 and R− =
√
δ2
− + 4|Fγ

n Cab|2 are
the Rabi splittings, while F

γ
n = 〈n|n〉γ is the Franck-Condon

factor and Cab = ∑
q |Mab(q)|2 is a normalization constant

used to normalize the mode B1. If one assumes zero energy of
the state |1′〉 the eigenenergies of this polaron model are

E1 = 1
2 (δ+ − R+), E2 = 1

2 (δ+ − R−),

E3 = 1
2 (δ+ + R−), E4 = 1

2 (δ+ + R+).

In conclusion to this section, the most important quantity,
directly responsible for formation of the coherent polaron
modes, is the normalization constant Cab. In terms of the FCF
this normalization constant reads

Cab = e2h̄ωLO

16π3

(
1

ε∞
− 1

εst

)∫
d3k

∣∣Hk
ab

∣∣2
(6)
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and will be further referred to as the Frölich coupling constant.
By using the relation (4), the Frölich coupling constant
becomes

|Cab|2 = e2h̄ωLO

16π3

(
1

ε∞
− 1

εst

)
|Rab|2S, (7)

where

S =
∫

d3k
k2
z

k2
x + k2

y + k2
z

I2(k) (8)

will be further on referred to as the coupling integral constant.
We have deconstructed the Frölich coupling constant for

any quantum dot via factors containing the dipole coupling
vector and integrals of the distribution function. Due to this
integral, the precise shape of this distribution function becomes
unimportant, and only its linewidth remains as a crucial factor
determining the value of the coupling integral constant S.

IV. INFLUENCE OF QD GEOMETRY AND COMPOSITION

In the following we give a quantitative description of the
influence of the QD confinement on the value of expression
(6). Consider first the distribution function. Anisotropy of this
function stems from the dimensional anisotropy of the dot.
Thus, for anisotropic QDs the linewidth of such a distribution
function varies with the direction in k space.

The Frölich coupling function can be thought of as a Fourier
transform of the product of wave functions in the ground and
excited state divided by k. By varying the dot dimensions we
can shrink or expand the envelope wave functions. This can be
modeled by

ψ(x,y,z) → √
αxαyαzψ(αxx,αyy,αzz). (9)

Using these scaled wave functions in the Frölich coupling
function, and taking a particular direction, e.g., the “x”
direction (i.e., setting ky = kz = 0), one concludes that the

FCF has the behavior

Hab(kx,0,0) → 1

αx

Hab

(
kx

αx

,0,0

)
. (10)

However, the prefactor 1
αx

is already included in the scaling
of the dipole coupling vector, and therefore only the scaling of
the distribution function width has to be considered further. By
increasing the dot size in the chosen direction one can decrease
the distribution function width in that direction. However, this
trend remains up to some minimal, critical size in a particular
direction. Beyond this point, the envelope wave function does
not shrink any further, but instead starts leaking outside the
dot. In the hard-wall example, it is possible to use a Gaussian
without a normalization prefactor as a distribution function.
The results of such a model are presented in Fig. 1(a). The
width of the Gaussian is inversely proportional to the dot
extension in the corresponding direction. The modeling by
the Gaussian curve is also the exact solution for a parabolic
QD (see Appendix of Ref. 19).

For calculations with better accuracy we use an 8-band k · p
method with strain effects included to calculate the Frölich
coupling function and demonstrate its dependence on the dot
size.11,18,26,27 In Figs. 2(a) and 2(b) we present the calculated
FCF for lens-shaped dots of height 8 nm, indium content 1,
and radius 22 nm. The second dot is twice as high, 16 nm,
and we note that FCF has accordingly shrunk twofold in this
direction. The In content in the QD also affects the width of
the distribution function. By decreasing the In content one
decreases the QD potential well and the confinement. The
wave functions then expand and the FCF consequently shrinks,
and so does the distribution function. This is demonstrated in
Figs. 3(a) and 3(b), where two geometrically identical QDs
(cylinder shaped) have different In content, of 1 and 0.6,
respectively. We note that FCF in Fig. 3(b) is slightly narrower
than that in Fig. 3(a). It is expected that the maximal possible
width of the distribution function in terms of QD depth occurs
for the hard-wall QD, since it has infinite potential well. The
opposite limit occurs in bulk, where the width is zero; i.e., the
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FIG. 2. (Color online) FCF for two different lens-shaped cylindrically symmetric QDs calculated in the kx-kz plane by the 8-band k · p
method with strain effects included. Indium content in both dots is 1, radius is 22 nm, and their height is (a) 8 nm and (b) 16 nm.
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FIG. 3. (Color online) (a) FCF for two different cylinder-shaped QDs calculated in the kx-kz plane by the 8-band k · p method with strain
effects included. Indium content in dots is (a) 1 and (b) 0.6, and their radius and height are 22 nm and 12 nm, respectively, in both cases.

wave function is a pure plane wave. It is difficult to predict
a more accurate dependence of the width of the distribution
function, but a monotonic behavior is expected between these
two limits.

In summary, we have introduced four parameters: αx,αy,αz,
and σ . The first three parameters measure the relative QD
extension in a specified direction, and the parameter σ is an
increasing function of the In content in the QD. By varying
these geometrical parameters the distribution function evolves
as

I(kx,ky,kz) → I
(

αx

σ
kx,

αy

σ
ky,

αz

σ
kz

)
(11)

and consequently the coupling integral constant evolves as

S →
∫

d3k
k2
z

k2
x + k2

y + k2
z

I
(

αx

σ
kx,

αy

σ
ky,

αz

σ
kz

)
, (12)

which gives

S → σ 3

αxαyαz

∫
d3k

k2
z(

αz

αx

)2
k2
x + (

αz

αy

)2
k2
y + k2

z

I(k)

= σ 3

αxαyαz

S ′. (13)

Equation (13) describes the variation of the coupling integral
constant in terms of quantum dot geometric and composition
parameters. The largest contribution comes from the prefactor.
Coupling integral constant S is slightly different from S ′; i.e.,
it differs only by the “cosine part.” In the case of an isotropic
enlargement of the QD size, the “cosine part” in the integrals
remains unchanged and therefore so do the constants S and S ′.

V. LIGHT ABSORPTION AND STIMULATED EMISSION

The polaron ground state is |1〉 with the dominant compo-
nent being the electron ground state. In the case of δ− < 0, the
first excited polaron state is |2〉. As expected, the dominant
component of that state is the first excited electron state,

which enables efficient optical excitation of that polaron state
from the ground state. Therefore, when dealing with optical
excitation, we will omit the polaronic nature of the carriers in
QDs and will derive expressions for the quantities of interest
with pure electronic notation. Later, we will only replace the
electronic notation with the corresponding polaronic notation.
Let the system be described semiclassically, with particular
interest in estimating the transition rate between the lower
state |a〉 with energy Ea and the higher state |b〉 with energy
Eb. Within this semiclassical approach, Fermi’s golden rule
transition rate can be used to find the coefficients of absorption
and stimulated emission gain in the active medium. The
optical cross section gives the absorption line and gain when
multiplied by the population difference. With the “−e r̂ · E”
interaction the expression for optical cross section reads28

σ ε
ab(ω) = 4π |e|2ω

nε0cm
2
0

|Rab · ε|2g(Eb − Ea ∓ h̄ω), (14)

where g(Eb − Ea ∓ h̄ω) is the normalized distribution func-
tion (e.g., Gaussian), recovering the inhomogeneous broaden-
ing due to the size inhomogeneity of the quantum dot ensemble
and ε is the light polarization unit vector. Constants e, m0, n,
and c are electron charge and mass, refractive index of the
quantum dot, and speed of light. The sign “–” corresponds to
absorption and “ + ” to emission.

VI. NONRADIATIVE POLARON LIFETIME

After excitation, the relaxation of nonequilibrium polarons
is enabled by anharmonic perturbation of the crystal. So far,
this has been the most reliable theoretical explanation of
the finite excited carrier lifetime proposed in Ref. 29. This
potential acts only on the phonon factor in the polaron state.
Besides the zero-phonon component in the excited polaron
state, there is also a one-phonon component responsible for
nonradiative relaxation of the excited polaron due to crystal
anharmonicity potential. Therefore, the nonradiative decay
rate has to be proportional to the absolute squared value of
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the weights of the relevant components:

�(Ei) = 1

4
�ph(Ei)

(
1 + δ+

R+

)(
1 + δ−

R−

)
. (15)

The quantity �ph (Ei) represents the bare decay rate of phonons
which would have polaron energies driven by anharmonicity
potential:

�ph(Ei) = 2π

h̄

∑
j

|〈j |Va|3′〉|2. (16)

The summation is performed over all possible decay channels
of mode B1 with one phonon. Detailed discussion on decay
channels and the derivation of analytical expression for
�ph(Ei) can be found in Ref. 29.

It was pointed out in Ref. 20 that a strong inhibition of
this mechanism occurs at lower values of the energy splitting
between the electronic ground and excited states. In other
words, the squared detuning δ2

− becomes significantly larger
than the squared Frölich coupling constant, leading to a
simplified linearized ratio of detuning and Rabi splitting:

1 + δ−
R−

≈ 2

∣∣Fγ
n Cab

∣∣2

δ2−
. (17)

Furthermore, by using an additional approximation δ+
R+

≈ 1

and F
γ
n ≈ 1, which holds for small values of the parameter γ ,

one can write

�(Ei) = �ph(Ei)
|Cab|2

δ2−
. (18)

Therefore, the Frölich coupling constant is directly propor-
tional to the lifetime of the excited carrier in the quantum dot.

VII. LASING EFFICIENCY

In order to consider a transition as a possible lasing
transition, both the radiative and nonradiative lifetimes are
important. The longer the nonradiative lifetime, the higher is
the likelihood of photon emission. Thus, we define a figure
of merit for such a transition as the ratio of the optical
cross section and the nonradiative transition rate for the light
polarized along the dipole coupling vector Kab(ω) = σab(ω)

�(Ei )
.

By using Eqs. (14) and (18) the lasing figure of merit
becomes

Kab(ω) = 64π4g(Ei ∓ h̄ω)

nε0cm
2
0h̄

2ωLO
(

1
ε∞

− 1
εst

) δ2
−

S(Ei)

Ei

�ph
. (19)

The inhomogeneous broadening g(Ei ∓ h̄ω) clearly affects
this laser efficiency coefficient, via the optical cross section.
Increasing the inhomogeneous broadening width will decrease
the laser efficiency for a specific frequency of light. The ratio
Ei

�ph
is proportional to 1

En
i

, where n is an integer depending on
the active disintegration channel. A detailed discussion on this
subject is presented in Ref. 29, but the general conclusion is
that a decrease of polaron s-p-like splitting Ei will lead to
improved lasing efficiency. Dot enlargement and a reduced In
content also lead to a decrease of the quantity S, as explained
in the previous section. Furthermore, the squared detuning δ2

−
then increases and leads to improved lasing efficiency.

It is clear now that novel postfabrication techniques such as
rapid thermal annealing21 or quantum rod elongation22,23 could
produce structures with higher lasing efficiency coefficient.
One can enlarge the dot, or reduce the In content by using
those techniques. In Ref. 20, it has been demonstrated that
the nonradiative polaron lifetime is increased by rapid thermal
annealing. However, we have shown here that this does not
affect adversely the radiative lifetime, thus increasing the
overall figure of merit (19).

VIII. CONCLUSION

In summary, in an ideal symmetric case, the FCF was
parametrized with the dipole coupling vector (optical matrix
element) and the distribution function whose widths were
related to geometrical and compositional properties of the
quantum dot. Based on such parametrization we have estab-
lished a direct relationship between nonradiative lifetime and
optical gain for a possible lasing transition in self-assembled
quantum dots based on polar semiconductors. This was further
used to derive an appropriate figure of merit for the lasing
transition, which depends directly on geometrical parameters
of the dot and on the level spacing. Enlargement of the quantum
dot and reduction of In content in the dot lead to a higher
figure of merit and both can be achieved by rapid thermal
annealing. Novel structures such as quantum rods can be
elongated in the growth direction, leading to a higher figure of
merit.

Certainly, going to the extreme with such tailoring of dot
structure will eventually bring in additional effects which
may deteriorate lasing, and were not here accounted for. As
the level spacing decreases, the thermal backfilling sets in,
reducing the population inversion. Furthermore, the difficulty
of selective electron injection into the excited state becomes
more prominent as it gets close to the ground state.

Therefore, one has to solve the full system of rate
equations in order to model the quantum-dot-based quantum
cascade laser properly. The aim of this work was primarily
to study the radiative versus nonradiative lifetimes, and to
describe this problem via the minimum possible number of
parameters. We also aimed to simplify the description of the
Frölich coupling between confined electron states in the QD
conduction band. The important parameters in this coupling
have been deconstructed as much as possible to experimentally
measurable spectroscopic quantities such as level spacing and
dipole coupling vector.
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